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Abstract

The overall goal of the Emerald garbage collection scheme is to provide an efficient “on-the-
fly” garbage collection in a distributed object-based system that collects all garbage, and that is
robust to partial failures.

The first goal is to collect all garbage in the entire distributed system; we say that the col-
lection is comprehensive in contrast to conservative collectors that only collect most garbage.
Comprehensiveness is achieved by employing a system-wide mark-and-sweep collection based on
concurrently running collectors, one on each node.

The second goal of our collector is to be robust to partial failures. When facing node failures
the collector will progress in the available parts of the system and, when necessary, wait for
temporarily unavailable nodes to become available again.

The scheme is being implemented on a network of VAXstations at DIKU. The full scheme
employs two concurrent mark-and-sweep collectors on each node in the distributed system, one
for comprehensiveness, one for expediency. Concurrency is achieved by using an object protection
and faulting mechanism.

Keywords: Garbage collection [mark-and-sweep, faulting, comprehensive], Distributed systems
[distributed control, termination detection, fault-tolerance], Concurrency, Object-oriented systems,
Robustness, Emerald, Algorithm.

1 Introduction

The first goal of our distributed garbage collection scheme is to collect all garbage in a entire dis-
tributed system. We have introduce the term comprehensive collection to denote such schemes. In
contrast, partial or conservative collection is a priori non-comprehensive. In general, the garbage
collection problem can be formulated as a graph problem, where the vertices in the graph are objects
and each directed arc represents a reference from one object to another. In contrast to a more con-
servative collection, a comprehensive collection essentially needs to perform a system-wide traversal
of the graph in order to identify which objects are still in use and which are garbage. We attain a
comprehensive collection by combining a basic mark-and-sweep collection scheme with mechanisms
for concurrency and distribution.

Unfortunately, any comprehensive collector in a distributed system will, due to large network
overheads, have problems collecting garbage fast enough to keep up with new object allocations.
Thus, 1t is necessary to supplement our collector with an expedient, but conservative collector. In this
paper, we concentrate on the issues relating to comprehensive collection.

The second goal is robustness to partial failures. In large distributed systems, the probability of
failures becomes significant. Thus, we cannot expect the entire system to be available concurrently
long enough to complete a comprehensive collection. This has lead us to investigate robust garbage



collectors. A robust garbage collection scheme must cope with both short and long term unavailable
parts of the system—partly by adapting its behavior to the situation, and partly by compromising on
its goals.

While still being comprehensive, the collector must be able to survive during temporary unavail-
ability. The collector must progress in the available parts of the system and wait for the needed, but
unavailable, parts to become available again.

When more permanently unavailable parts block the comprehensive collection, both robustness and
expediency demand that garbage is collected in the available parts. This may be achieved by another
collector that collects garbage in the available parts of the system only. Such a collection cannot be
comprehensive as long as the "liveness” of references from unavailable parts is unknown. Based on a
conservative estimate of root objects, taking objects potential reachable from unavailable parts into
account, this supplementary collector may collect garbage in the available part of the system. By
careful selection of the additional root objects, this collection may be nearly comprehensive in the
available parts of the system.

The full garbage collection scheme, which is based on at least two collectors on each node, must also
reduce the latency introduced into applications. Thus, each collector works concurrently with other
processes. The necessary synchronization constraints introduced by this concurrency are achieved
by protecting objects, that have not been traversed by the collector, from being mutated by other
processes.

Our approach has been to implement such a collection scheme for the Emerald Language [Hutchinson 87b,
Raj 91]. Emerald is a distributed, object-based system [Black 86, Black 87, Jul 88b], based on a com-
piler generating native machine code [Hutchinson 87a] and a run-time system [Jul 88a], designed to
take advantage of run-time garbage collection.

The objects handled by the run-time system in Emerald may be migrated between the nodes of the
distributed system. Immutable objects may be replicated instead of moved; the replicas will always
have consistent states because their state does not change. To survive node crashes, any object may
checkpoint its current state to other nodes and/or stable storage. A checkpoint is a passive copy, from
which an object may be recovered, if the real object has been lost during a node failure. Emerald
is based on reliable inter-node communication, thus only nodes may fail. In our model, nodes are
autonomous and have fatled-stop semantics.

In summary, the Emerald garbage collection scheme does a comprehensive and concurrent collec-
tion of all garbage in the distributed system, while being robust to node failures. The full scheme
employs two faulting, mark-and-sweep collectors on each node in the distributed system.

Before presenting our comprehensive and robust solution to the distributed garbage collection
problem in details, the goals of distributed garbage collection are described (Sect. 2). Based on these,
an overview of recently and related work on distributed garbage collection is given (Sect. 3), followed
by a sketch of the basic Emerald garbage collection scheme (Sect. 4).

The Emerald solution is detailed in the following sections. First (Sect. 5), we discuss comprehen-
sive garbage detection in a failure-free distributed system, and next (Sect. 6), the expedient collection
of local garbage is discussed. Then robustness to failures is added, using distributed control and a dis-
tributed termination detection algorithm (Sect. 7). Sect. 8 gives some remarks on storage reclamation,
and finally, we summaries our contribution (Sect. 9).

2 Goals in Distributed Garbage Collection

Distributed garbage collection is not only faced with the traditional problems of garbage collection,
the very nature of distribution poses further challenges. specifically, robustness to partial failures is a
goal that impacts all other goals. We identify the following general goals in garbage collection schemes.
The consequences, when taking robustness into consideration, are described in the rightmost column:



No Conservative Node-local Node-group Comprehensive
collection collection collection collection collection

Figure 1: The degree of partial garbage collection

General goals Robustness considerations
Compre- All garbage is collected, e.g., no Continually adapting to the current
hensiveness memory leakage. available parts, while waiting for

unavailable parts to become avail-
able again as necessary.

Concurrency The collector and mutators run  Mutators must not be blocked by a
concurrently on all nodes. collector due to unavailable parts.

Expediency Delivery of garbage for recycling Collection must complete despite
in a speed comparable to the unavailable parts.
speed of new allocation requests.

Efficiency Limited overhead per byte of Failures and their circumvention
storage collected introduced by must be handled efficiently. Addi-
each step and the total number tional overhead due to robustness
of steps needed. must be limited and mainly paid

when failures are present.

Correctness  Only garbage must be collected, References to wunavailable parts
e.g., no dangling references. and references in checkpointed files
must remain valid.

An ideal scheme would fulfill all of these goals; unfortunately, this is not possible in general. A
comprehensive collection depends on all nodes in the distributed system, thus, the mere presence
of communication delays in distributed garbage collection often rules out the possibility of fulfill-
ing the goals of comprehensiveness and expedience by a single collector. Thus, a trade-off between
comprehensiveness and expediency is necessary.

By trading off comprehensiveness, we achieve a partial collection, i.e., only part of the garbage is
collected. Figure 1 describes the various degrees of partial collection, from collection of nothing, to
collection of all garbage, with a broad variety of conservative collectors, which are able to collect only
part of the garbage, in between . From the most conservative collectors like Boehm-Weiser [Boehm 88]
and Mostly-Copying [Bartlett 88] to comprehensive collectors like the ones implemented for POOL
[Augusteijn 87] and Emerald [Juul 93]. In between, we find collectors based on smaller or larger parts
of the system with conservative estimates of references from other parts. In distributed systems these
may span from one node, over groups of nodes, to nearly all nodes. As a supplementary, expedient
collector Emerald employs such a node-local collector on each node. The Galileo and SOR, projects are
examples of such node-group collectors [Mancini 91, Shapiro 90]. Also [Lang 92] describes distributed
collection schemes; which eventually reclaims all inaccessible objects. The partitioning and grouping
techniques in the distributed environment, has many similarities to non-distributed techniques like
area collection and the partitioning used by generational scavenging.



3 Related Work

Distributed systems like POOL [Augusteijn 87, Beemster 90], Galileo [Mancini 91], Argus [Liskov 86],
and those implemented in the SOR project [Shapiro 90, Shapiro 91] all employ garbage collection.
These distributed garbage collectors fulfill most of the previous mentioned goals. They do, however,
compromise on various aspects of the goals to be able to achieve some of the others.

In general, the non-comprehensive collectors are able to collect more efficiently, while being both
expedient and robust to node-failures. The solution described by Shapiro to be implemented in
project SOR is robust but may fail to collect all garbage, instead, it has the potential for being
expedient. Lang, Queinnec, and Piquer further refine the scheme based on independent node collectors
to cooperate for various groups of nodes. The scheme is expected [Lang 92] to be comprehensive under
the assumption that each distributed (interconnected) graph of garbage objects is contained in a group
of nodes, which do not fail during the collection of the group, i.e., failures during the collection are
not tolerated.

The collector for Galileo is implemented as a global stop-and-copy collection of objects on stable
storage. If nodes become unavailable a fault-tolerant adaption enables a non-comprehensive collection
to complete. The scheme may limit the collection to a subset of nodes and thus only blocking mutators
on those nodes. A comprehensive collection is, however, not guaranteed.

A comprehensive collection is often more costly and assumes a simple failure model or no failure at
all. The collection scheme for the POOL system 1s based on global synchronization of node-local mark-
and-sweep collectors, and to be comprehensive it depends on complete node availability. The garbage
collector for POOL, as described in [Augusteijn 87], does not cope with failures in the distributed
system.

The idea of node-local collectors that cooperate has also been used by Liskov and Ladin in Argus.
The cooperation is made possible by introducing a logically centralized, but physically replicated,
highly available service for cross-node references. Any such reference is registered at the service,
which also does cross-node garbage cycle detection. The service is based on synchronized local clocks
and bounded delays of cross-node message exchanges.

4 The Emerald Garbage Collection Scheme

Based on the ideas in [Jul 87, Jul 88a, Jul 88b], [Juul 93] describes the design and implementation of
a garbage collection scheme for the distributed, object-based system, Emerald, which fulfills all the
goals listed in Sect. 2. The solution combines the comprehensiveness of mark-and-sweep collection
with distribution and concurrency. The primary methods to achieve concurrency and robustness are
distributed control, object protection and faulting, and the use of more than one collector concurrently.

Robustness to partial failures in a distributed system can be achieved when all parts work inde-
pendently. Still cooperation is needed, but distributed control makes partial failures less threatening
to the system. Robustness to partial-failures in distributed systems has lead us to implement our
garbage collector without using centralized control.

4.1 The Basic Mark-and-sweep Algorithm

Our basic algorithm is based on a concurrent variant of mark-and-sweep garbage collection. The
mark-phase is done concurrently with user processes running by protecting non-marked objects from
being used by the running processes with a garbage collection fault mechanism similar to a page-
fault mechanism in a virtual memory system [Appel 88, Appel 91]. In Emerald such a protection
and faulting mechanism is already available in the implementation of remote invocation. Thus, the
utilization of the mechanism by the garbage collector is nearly free.

The mark-phase of our basic algorithm uses the traditional three color settings: white, gray, black.
Objects are marked either white (potentially garbage), gray (alive with references under consideration),
or black (alive with references considered). Furthermore, a root set of objects is given, i.e., the active
processes and the “always present” objects.



The mutators may run without problems in the black objects and the algorithm assures that
mutators execute in black objects only. They may reference other black or gray objects, but the gray
objects are protected. Thus, a mutator, which tries to use a gray object, will be suspended while a
fault handler marks it black and traverses it to ensure that the objects, it references, are marked and
protected. This way mutators are only faced with black objects. When the collection is started, all
objects are white, and all mutators are stopped. Before each mutator is resumed, it is marked black,
and 1its references is marked at least gray. The mark-phase is finished when all gray objects have been
traversed and marked black, i.e., when the gray set is empty.

4.2 The Garbage Collection Invariants

The following invariants form the basis of our garbage collection algorithm. A detailed description
of the basic algorithm and its implementation is found in [Juul 93]. The general assumption is that
garbage stays garbage. The collection scheme is based upon this assumption and five invariants.

Invariant 1 (Progression)

During garbage collection objects become darker, never lighter, i.e.; shading is a monotone function
moving objects from white to gray, and from gray to black.

Invariant 2 (Mutators)

Mutators execute in black objects only.

Invariant 3 (No black-to-white references)

No black-to-white references, 1.e., a black object contains references to gray and black objects only.

Invariant 4 (Faulting)

Gray objects are protected, thus any attempt to access a gray object is withhold until the faulting
mechanism has changed the object from gray to black (by shading its references at least gray).

Invariant 5 (Termination)

No gray objects indicates that black objects are the surviving ones, whereas the whites are all garbage
(and thus reclaimable).

4.3 The Dual Collector Scheme

The Emerald garbage collection scheme consists of two sets of collectors, which are all applied con-
currently. The global scheme, using one collector on each node in the system, continuously adapts to
the current situation and strives to fulfill comprehensiveness while giving up on expediency. The local
scheme foresees the failures of many parts of the system by performing an independent and expedient,
but non-comprehensive, local collection on each node.

The comprehensive collection is achieved by one concurrent mark-and-sweep collector on each
node, which cooperate as one global garbage collector across the entire network of Emerald nodes.
The set does a comprehensive collection of all garbage, while various parts of the distributed system
may be temporarily unavailable. A second set of collectors does an independent, partial collection
on each node. These node-local collectors do a more expedient collection of local garbage without
being comprehensive. Both sets of collectors proceed simultaneous and in parallel (on-the-fly) with the
running processes. Each set of collectors adds robustness to the garbage collection scheme. The global
collection by waiting for needed but unavailable nodes to become available again while progressing
the collection in the available parts of the system. Whereas each local collector is able to collect
local garbage while the rest of the system is unavailable. This further adds efficiency and expedience
to the scheme, as most objects tend to be short lived and local [Lieberman 83, Schelvis 83, Jul 88b,
Rudalics 86].



5 Comprehensive Garbage Collection

In terms of a graph, a comprehensive collection must partition the distributed graph of objects, con-
nected by references, in two very well-defined parts. One containing ezactly all the objects reachable
from the distributed root set, and another containing the rest, i.e., all the garbage. During a com-
prehensive garbage collection, the graph must be traversed from the root set to identify the reachable
objects, i.e., the closure of the root set. To ensure the collection of all garbage, the references in the
root set and the references inside the objects must be identified exactly.

In general, any traversing algorithm has this property. Thus, the basic algorithm, even in the
distributed case, can be based on either mark-and-sweep or copying collection. With focus on garbage
detection, which is the harder part of the problem in the distributed case, the mark-and-sweep al-
gorithm has been chosen due to its nice separation of garbage detection from garbage reclamation.
Our current implementation pays little attention to compaction and locality of references. Though
copying collectors may waste up to half of the available memory, they might be considered in future
implementations where compaction is combined with object mobility.

In the comprehensive garbage collection scheme in Emerald any node may take initiative to a new
global collection cycle and inform the other nodes in the distributed system about the decision. Each
collector progress on its own node by initiating the collection and doing the marking. References to
non-resident objects must, however, be treated differently. To the mutators on the node, we pretend
that the non-resident objects are already black, while we accumulate references to them in the non-
resident gray set. When the gray set of resident objects has been emptied, the non-resident objects
are handled by sending a shade request to the node hosting the object. Meanwhile, remote requests to
shade objects resident on our node are handled by putting these references in our gray set of resident
objects. Each shade request is acknowledged by the node hosting the object, to let the requesting
node remove the reference from the non-resident gray set. Thus, a gray reference will stay in the
non-resident gray set until the node hosting the object guarantees that the object is at least gray, 1.e.,
gray or black.

The mark-phase is finished when both gray sets are empty on all nodes. This global state is stable,
in contrast to the state both gray sets empty on a single node. The global state is detected by a
two-phase commit protocol. For simplicity, the global termination detection could be detected by
approving a coordinator node. The current solution is, however, prepared for robustness to partial
failures.

The cooperating collectors, constituting the global collection, may run very independent on each
node. They only need to coordinate their actions on three topics:

1. When to start, 1.e., when mutators must be stopped and the local part of the distributed set of
root objects constructed.

2. During the mark-phase, i.e., when a non-resident object is shaded by requesting the node hosting
the object and acknowledging the action back to the requesting node.

3. To determine when the mark-phase is finished, a distributed termination detection protocol must
detect the all gray set is empty situation.

All nodes may decide to initiate a new cycle of the comprehensive collection and let this knowledge
sieve to the other nodes. By adding the information (the cycle number) about a progressing collector
in all inter-node messages, any node will become aware of the situation before 1t engages in the transfer
of objects or references with the started nodes. Though the garbage collectors may start at different
wall clock time, we are able to identify a common logical clock where no collector were started before
and all were started after.

6 A Dual Node-Local Garbage Collector

Due to both expediency and robustness the set of global comprehensive collectors has been extended
with another set of independent local collectors.



The local collectors provide expediency by not depending on inter-node communication, and ro-
bustness by only using available nodes. We have chosen not to add a node-group collector scheme as
a third, intermediate scheme. We find the clustering of nodes irrelevant to our current testbed of only
a dozen nodes, to pay the additional cost of maintaining tables of incoming and outgoing references
from each node. Furthermore, the two collector scheme is enough to fulfill our goals, thus a third
scheme would not add substantially benefits.

The node-local collector is conservative in its definition of the root set, but not in its identification of
references between objects. The conservative approach is acceptable, as this collector is supplementary
to the comprehensive scheme. The node-local collector will collect local garbage only, i.e., garbage
which has never been reachable from other nodes.

The implementation is fairly simple. It takes advantage of a general mechanism that marks objects
potentially reachable from other nodes as ReferenceGivenOut. When a reference to a resident object
is exported to another node, the object is marked as known from outside. Though that reference may
later be dropped, the object stays marked during the rest of its lifetime. These marked objects are
added to the root set of the node-local collector. When this collector finds references to non-resident
objects, they are simply skipped.

Beside the extended root set and the missing needs to communicate with other nodes, the local
collector uses exactly the same algorithm as does the global collector on each node. The two collectors
on each node need, however, to synchronize, as they are working on the same data. Thus, they have
their own data structures and mark fields for color information. To prevent either of them from
reclaiming objects, later needed by the other; the two collectors may not have a non-empty set of
resident gray objects concurrently. On each node this is achieved by only starting the local collector
when the global has an empty resident gray set, which is achievable without communication delays,
and by only starting the global collector between the end of the mark-phase and the start of the next
local collection.

7 Robust Garbage Collection

The comprehensive global garbage collection scheme is threatened by node failures, as these influence
the global state as well as the individual collectors.

The failure model is failed-stop, thus, by keeping its main state on stable storage, the collector on
each node may always restart in a globally well-defined state. As an aside, a node failure 1s by itself
an effective garbage collection, as a restarting node gets all storage reclaimed, except checkpointed
objects. These are saved, e.g., on stable storage, and recovered after the failure. This means that live
references may reside on nodes currently unavailable due to a failure.

From a global point of view, node failures may influence the garbage collection as follows:

Before a garbage collection No harm.

During the start of a new collection  Nodes may become out of step concerning the global
garbage collection state.

During the mark-phase The global invariants about colors and mutators may
be broken.
Finishing the mark-phase The global termination detection needs reliable infor-

mation about all nodes.

During the sweep-phase No harm.

Robustness to node failures, i.e., to partial failures of the distributed system, must take the above
situations into account. The problems occur exactly in the situations where the collectors on each
node need to coordinate their action (see the listing of the very same three points in Sect. 5).



7.1 Starting a New Collection

It is fairly easy to assure that restarted nodes adapt to the global situation. The presented mechanism
to ensure synchronization by tagging all inter-node messages, will also force a restarted node to enter
the same garbage collection cycle before 1t engages in mutating the object graph. If it keeps running
locally only, it may, however, not be aware of the progressing global garbage collection on the other
nodes, until one of these sends out shade requests or tries to detect global termination. This will
eventually happens, and when it does, the restarted node may immediately adapt to the situation,
without breaking the global invariants. From a global point of view, all actions, done by the restarted
node until then, have taken place before the logical global clock of the start of the mark-phase.

7.2 A Robust Mark-Phase

During the mark-phase, node failures have several impacts. Both while a node is failed and when it
is recovered.

When recovering, a node will restart its collection, but come up with references to non-resident
objects. It will need to send out shade requests for these references, even though it might have done
so before the failure occurred. Shading is an idempotent function, thus no invariant is broken, only
performance is degraded (but this is insignificant compared to the node crash and reboot sequence).
The scheme also covers the cases where a shade request has been sent but the reply was lost. For
better performance, a node may save its received acknowledgements to remote shade requests on stable
storage and use this information when recovered.

While a node is unavailable, other nodes may have references to objects on it. They cannot shade
these objects until the node is available again. For simplicity, we have implemented the shade request
mechanism as a repeated broadcast with exponentially back-off. Thus, non-acknowledged requests
will be sent out until they are eventually acknowledged.

7.8 Distributed Termination Detection

The detection of the global state all gray set are empty can be difficult when nodes may fail indepen-
dently and randomly often. To achieve comprehensiveness we must ensure that all nodes have finished
their mark-phase and that no request is in transit.

The latter is ensured by the acknowledgement of shade requests. The references in the non-resident
gray set are kept there until an acknowledgement is received by the shade reply mechanism (Sect. 5).

The two-phase commit protocol can be started by any node. A node may do so when it believes
that the collection is done. Such a decision is based on its own status and the network traffic. More
precisely, both gray sets of the node must be empty, and no nodes must have been broadcasting shade
requests for a while. The termination detection protocol is robust to temporary node failures; 1t only
depends on nodes being pairwise available. The current implementation depends on each node being
aware of all other nodes in the system. This assumption holds in the current Emerald prototype. A
system with a very large number of nodes should use another protocol.

8 Storage Reclamation

Though we emphasis on garbage detection, a short presentation of the reclamation part of our garbage
collection scheme is given here to complete the picture.

The sweep-phase of all our collectors (both local and global) has been relinquished from the mark-
phase in a scheme similar to the mark-during-sweep scheme proposed in [Queinnec 89]. On each node
one common sweeper takes care of the sequential traversal of the node-local heap.

The scheme is based on marking with the current garbage collection cycle number, instead of
marking objects black, gray, or white. The gray information is kept aside already, as this information
is used by the faulting mechanism also. During the mark-phase the current cycle number represent
the color black, and the previous cycle, the color white. Objects marked with lower numbers are



identified garbage, waiting for the sweeper to pass by and reclaim them. At the end of the mark-
phase the previous cycle number becomes a garbage indicator, just like white indicates garbage when
the mark-phase is finished. When the next garbage collection cycle is started, the cycle number is
incremented, effectively turning all objects to be considered white until they are marked again. New
objects are always born with the current cycle number, 1.e., black.

The sweeper is interleaved with the allocation routines, i.e., each time a new allocation request is
received, the allocator tries to reclaim the same amount of storage from the heap. It does so starting
from its current sweep position in the heap and moves forwards (viewing the heap as a circular list of
objects) until the requested amount is reclaimed or no more objects marked with old cycle numbers
exist.

9 Conclusion

The Emerald garbage collection scheme has reached its goals by running two mark-and-sweep collectors
on each node in the distributed system:

e The global collectors cooperate to achieve a comprehensive collection of all garbage.

e The global collectors are robust to node failures. The collection progresses on the available nodes
as fast as possible before they wait for the still needed, but failed, nodes to become available
again. All nodes need not be available concurrently.

e The local collection ensures that local garbage is collected on a per node basis independent of
the current status of other nodes, thus achieving an ezpedient collection.

e The garbage collection faulting mechanism has made concurrency with mutators possible and
thus limit the length of pauses introduced by garbage collection on user processes.

The measurements and experiments with the implementation will present a definite evaluation
of the presented collection scheme. Due to a very untimely disk crash whereby parts of the current
implementation were lost, an evaluation of the prototype is, unfortunately, not available as this article
goes to press.
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