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Abstract

Garbage collection schemes are investigated to provide a solution well-suited for

the distributed object-based system, Emerald. A distributed garbage collection

scheme is implemented. It collects all garbage (comprehensive), works while the

system is running user applications (concurrent), and copes with partial failures

due to the distributed nature of the system (robustness). The collection scheme

reaches its goals by using distributed control, a dual-collector scheme, and an

object protection mechanism.

Emerald is a distributed, object-based system running on a set of workstations

connected by a local-area network. The Emerald garbage collection scheme em-

ploys two mark-and-sweep collectors on each node in the distributed system. To

reduce the latency introduced, both collectors work concurrently with other pro-

cesses by protecting unmarked objects during the mark-phase, and interleaving

the sweep-phase with the allocator.

A comprehensive collection of all garbage in the entire distributed system is

achieved by the cooperation of one collector from each node. These global collec-

tors exchange information about reachable objects during their mark-phase and

synchronize their initialization and termination of the mark-phase, without us-

ing a coordinating node. The scheme is robust to temporary node failures and

depends only on nodes being pair-wise able to exchange messages.

As the comprehensive collection depends on information about the entire dis-

tributed graph of objects and references between them, any node failure may

postpone the termination of the mark-phase. To achieve more expedient collec-

tion the other set of collectors does node-local collection on each node using a root

set extended with the objects potentially known from other nodes.

The scheme has been tested in the Emerald system running on four VAXstation

2000 workstations in a local-area network. Measurements show a garbage col-

lection overhead during normal operation on less than 10%. The average pause

introduced by garbage collection may be limit to 0:01 seconds.

.
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Chapter 1

Introduction

The subject of this thesis is garbage collection in distributed, object-based systems. We

have designed, implemented, and measured a distributed garbage collector in an existing

distributed, object-based system, Emerald. One of the most important characteristics of our

algorithm is its ability to collect all garbage that existed at the start of the algorithm. We say

that the garbage collection is comprehensive. Our algorithm relies on a faulting mechanism

to enable user processes to continue during garbage collection. Moreover, our distributed

garbage collection scheme is robust to node failures, i.e., it is able to survive temporary

partial failures and to progress in non-failed part of the distributed system. Part of the

work contained in this thesis was presented at the First International Workshop on Memory

Management [Juul 92].

Many distributed systems are being built these years using the object-based programming

paradigm [Bal 89, Chin 91]. In general, the objects in such systems are dynamically created ,

and persistent, i.e., conceptually they live forever. An implementation of such systems must

cope with a monotonically growing number of objects. Some of these objects may, however,

be considered garbage if they are not reachable by references from the active part of the

system. Garbage objects can be removed from the system, as they will never be able to

in
uence any future outcome of the system.

The implementation maps objects onto a �nite storage. To continuously service the need

for more storage space demanded by the creation of new objects, a garbage collector must

identify the garbage objects and make their storage space available to the storage allocation

routine. Thus the garbage collector has two obligations; (1) it does garbage detection, and (2)

it does storage reclamation, i.e., recycling the garbage. This thesis covers garbage detection,

whereas storage reclamation is only super�cially addressed.

Our solution is based on the well-known mark-and-sweep garbage collection technique

[Knuth 68] extended with an object protection and faulting technique to enable concurrency

with user processes (called mutators). In this way, garbage collection is done \on-the-
y"

without introducing complicated synchronization schemes to preserve consistency. To do

collection in a distributed environment, the collector is also distributed. The distributed

collector takes advantage of distributed control to facilitate robustness to failures in parts of

the distributed system. In general, distribution challenges garbage collection in several ways,

e.g., true concurrency among user and collector processes on di�erent nodes, objects moving

around, inter-node references, and partial and temporary failures of the system.

The advantages of garbage collection have, however, made proposals for, and implemen-

tations of, garbage collectors in distributed systems popular. Due to the many challenges
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most of these proposals remain unimplemented (80 % of the surveyed distributed garbage

collectors in [Abdullahi 92]).

Garbage collectors for distributed systems are characterized by supporting one or more

of the following features:

Concurrency The collector and mutators run concurrently on all

nodes.

Comprehensiveness All garbage gets collected in contrast to conserva-

tive collectors.

E�ciency Limited overhead per byte of storage collected in-

troduced by each step and the total number of steps

needed.

Expedience Delivery of garbage for recycling in a speed compa-

rable to the speed of new allocation requests.

Failures in distributed systems need not stop the entire system, thus robustness , i.e., sur-

vival of failures in part of the system, is also a goal in many of these systems. In our failure

model, failures become visible to the garbage collector as previously, currently, or perma-

nently unavailable objects or nodes. The various distributed garbage collectors may combine

robustness with each of the above mentioned features. Such collectors supports one or more

of the additional features:

Concurrency & Robustness By enabling mutators to run although a collector

may be blocked by a failure.

Comprehensiveness& Robustness By continuing a comprehensive collection on the

currently available part of the system, resuming

collection on the other parts as they become avail-

able again after a failure, and detecting permanent

unavailability.

E�ciency & Robustness By limiting the overhead due to robustness to be

paid mostly when actually facing failures.

Expedience & Robustness By allowing garbage collection in available parts of

the system to complete a partial collection inde-

pendent of the unavailable parts.

In general, the non-comprehensive collectors are able to collect more e�ciently, while

being both expedient and robust to node-failures. The solution described by Shapiro to

be implemented in project SOR [Shapiro 90, Shapiro 91] is robust but may fail to collect all

garbage. Instead, it has the potential for being expedient. Lang, Queinnec, and Piquer further

re�ne the scheme based on independent node collectors to cooperate for various groups of

nodes. The scheme is expected [Lang 92] to be comprehensive eventually, if each distributed

.
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(interconnected) graph of garbage objects is contained in a group of nodes, that does not fail

during the group collection.

The collector for Galileo [Mancini 91] is implemented as a global stop-and-copy collection

of objects on non-volatile storage. If nodes become unavailable a fault-tolerant adaption

enables a non-comprehensive collection to complete. The scheme may limit the collection

to a subset of nodes and thus only blocking mutators on those nodes. A comprehensive

collection is, however, not guaranteed.

A comprehensive collection is often more costly and assumes a simple failure model or

no failures at all. The collection scheme for the POOL system [Augusteijn 87] is based on

global synchronization of node-local mark-and-sweep collectors, and to be comprehensive it

depends on complete node availability. The garbage collector for POOL, as described in

[Augusteijn 87], does not cope with failures in the distributed system.

The idea of node-local collectors that cooperate has also been proposed by Liskov and

Ladin [Liskov 86]. The cooperation is made possible by introducing a logically centralized, but

physically replicated, highly available service for inter-node references. Any such reference is

registered at the service, which also does inter-node garbage cycle detection. The service is

based on synchronized local clocks and bounded delays of inter-node message exchanges.

Many other schemes for distributed garbage collection with these features has been pub-

lished. We have, however, not been able to identify an implemented system featuring con-

currency, comprehensiveness, and robustness in one system.

This thesis considers the design and implementation of such a garbage detection in a dis-

tributed system. Our solution combines the comprehensiveness of mark-and-sweep collection

with distribution and concurrency. Our garbage detection is:

� comprehensive,

� works concurrently with user processes by using a faulting mechanism, and

� detects garbage although part of the distributed system is temporarily unavailable, i.e.,

it is robust to failures.

It features independent collection of local garbage on each node and e�cient (but potentially

slow) collection of all garbage in the distributed system while only depending on pair-wise

availability of nodes.

The rest of this chapter is organized as follows. First the background on distributed,

object-based systems is given and we present our formulation of the garbage collection prob-

lem. We then describe the garbage collection problem as a graph problem, and discuss some

of the main obstacles faced by an implementation of garbage collection in distributed, object-

based systems. A background on the Emerald system is given and then the chapter continues

with a description of our goals, design criteria, and the work done. To measure the outcome of

the work, a set of evaluation criteria and techniques are presented. We conclude the chapter

by summarizing our research contributions.

1.1 Background

Many recent distributed systems have been developed with objects as their main structuring

concept. Distributed, object-based systems take advantage of the object-based programming
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model to support distribution. The main advantage is that each object may be in a separate

protection domain, thus it is self-contained and easily moved.

The common background, on which garbage collection is investigated in this thesis, is

distributed, object-based systems. The subject of the thesis lies in the intersection of object-

based programming, distributed systems, and recycling of object resources. The characteris-

tics of object-based programming and distributed computer systems are given here as general

background for the rest of thesis.

1.1.1 Object-Based Programming

A major trend in programming during the last ten years has been the use of the object-

oriented model. The important and unifying concept in the systems discussed here is that

all data is conceptually represented as objects. Resources in object-based systems are often

visible to the user as objects. In full object-based systems, everything is modeled as objects

at the language level independent of the underlying implementation.

Objects encapsulate their data and provide a clean interface. In principle, the internal

representation of data may only be accessed directly by operations inside the object. Objects

may know about other objects by having references to those objects as part of their data.

References may be exchanged among objects, i.e., they may be copied and deleted. The

lifetime of an object is not necessarily linked to the lifetime of the program creating the

object and the object store may persist longer than the individual programs. Conceptually,

objects live forever in an object-based system. In practice, the space taken by unreachable

objects must be reclaimed to make room for new ones.

1.1.2 Distributed Systems

Although computers are getting faster and faster, applications and their needs for compu-

tational power are growing even faster both in problem size, computational complexity, and

number of problems. The computational power may be achieved by faster computers, us-

ing specialized processing units (pipe-lined, 
oating-point accelerators, etc.), multiprocessors

(tightly coupled processors with access to a common bus and memory), or a large number

of inter-connected computers (distributed system). In a distributed system computers are

connected to cooperate on solving large computational problems. The building blocks are tra-

ditional computers, e.g., workstations connected in networks. In our model, the distributed

computer system consists of a local-area network with cooperating nodes where each node is

an autonomous computers equipped with its own storage and programs.

Distributed systems may be characterized by the availability of individual nodes; each

node playing a role of its own, and a role as part of the whole system. The most important

challenges to garbage collection in these systems are that they feature:

Multiple processors Thus true concurrency is available for both mutators and

collector.

Multiple independent

storage units

Thus storage is addressed as either local (same node) or global

(on any other node).

.
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Partial failures Thus from one node, some other nodes may be temporarily

unavailable.

1.1.3 Distributed, Object-Based Systems

The object-based model is well suited to structure a distributed system. Objects encapsulate

their data and provides a clean interface. Each object may be viewed as a separate protection

domain. This makes objects a natural entity for distribution, i.e., objects may be moved

around and accessed across node boundaries.

The implementation of a garbage collector in this environment cannot be achieved by tra-

ditional garbage collection techniques alone due to the characteristics of these systems. As an

example, a garbage collector in the distributed, object-based system Emerald is challenged

by the following characteristics of objects in Emerald mainly introduced by distribution:

Migration Objects may move around among the nodes.

Replication Certain objects are replicated at di�erent nodes.

Recovery Objects may be checkpointed to a set of nodes and on non-

volatile storage at these nodes. After a node failure such objects

may be recovered, thus reinstantiating them with their check-

pointed state.

Unavailability References may exist to objects whose representation has been

temporarily or permanently lost due to node crashes.

1.2 Garbage Collection Terminology

The terminology used when discussing garbage collection is based on the intuitive model of

objects as entities. The entities are related by the references from one object to another. The

central vocabulary used through out this thesis is presented in this section. Additional terms

will be de�ned during the thesis, as they are presented.

The objects are interconnected by references going from one object to another. On the

user level, they are classi�ed as either reachable or garbage depending on whether the user

can take advantage of them or not. They are always available (all objects are persistent)

though only the reachable objects will ever be useful. We de�ne the root set of objects as the

objects representing user processes and some system-dependent \always useful" objects, e.g.,

the objects representing i/o channels. The objects in the root set are called root objects.

The transitive closure of the root set using references as the relation between objects,

de�nes the reachable objects . All other objects are garbage. These garbage objects may be

implemented using zero bit, i.e., the storage that they occupy may be reclaimed. Thus, the

name garbage collection for the process that collects these objects.
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Figure 1.1: A system containing 15 objects and their references

Example: A Graph of Objects.

Figure 1.1 illustrates a graph of objects, which is used as an example through out the thesis.

The graph consists of 15 objects, labeled A, B, ..., O, and 18 references between them. In the

example, object A, B, and C are the root objects, and three subgraphs (shaded and labeled 1,

2, and 3) contain garbage objects only.

A Garbage collector does two tasks:

Garbage detection Identi�es the garbage objects, e.g., the three shaded subsets in Fig-

ure 1.1.

Storage reclamation Recycle the storage occupied by the detected garbage objects.

There are two distinct techniques for garbage collection. Algorithms to detect garbage

either associate a reference count for each object that is updated each time a reference is

updated, or traverse the reachable objects to identify the transitive closure of the root set.

Traversing algorithms either evacuate the reachable objects during the traversal (copying)

or mark the live objects so that a subsequent search of all objects can identify and reclaim

the dead objects, i.e., those not marked. This exhaustive search is called a sweep, and the

scheme is called mark-and-sweep. The subsequent sweep may alternatively evacuate the

marked objects instead of reclaiming the unmarked.

For any given traversing garbage collector, we de�ne a garbage collection cycle, as the

work done during one full execution of the collector. That is, any initialization necessary,

the identi�cation of garbage, and the reclamation of the identi�ed garbage. A system based

on a traversing collector must execute the collector repeatedly, i.e., one garbage collection

cycle after the other. Whereas a system using reference counting does the work incrementally

while the system is running.

The algorithm may work on the total object space or divide the storage in areas. If the
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partitioning is complete, i.e., no objects contains references across area boundaries, each of the

areas may employ their own independent garbage detection algorithm. If an area (somehow)

knows about incoming references, it may still run its own garbage detection although non-

garbage must not be moved unless the objects where the incoming references originate is

informed about the move.

We classify algorithms, that reclaim all garbage as comprehensive, in contrast to partial

collectors, that only reclaim some garbage. A conservative collector is a collector which

may identify some garbage as non-garbage. Because area collectors often use a conservative

estimate of the root set, they are usually classi�ed as partial collectors.

1.3 Garbage Collection as a Graph Problem

We now present garbage collection as a graph problem and use this formalism to describe

some of the main obstacles encountered when implementing garbage collection.

1.3.1 The Garbage Collection Problem

As illustrated in Figure 1.1, an object-based system may be viewed as a directed graph of

objects connected by references. The objects are vertices and each reference from one object

to another is an arc in the graph. The purpose of garbage detection is to identify sub-graphs

without any incoming arc from the live part of the graph. The live part is the reachable

objects recursively de�ned as those objects that have at least one incoming arc originating in

an already live object, starting with the root set as the live objects. By using the arcs as the

relation between the objects, the transitive closure of the root objects identi�es the reachable

objects, and the complement to the transitive closure of the root set identi�es the garbage.

An implementation of object-based systems must be able to identify the non-reachable

part of the graph to reclaim the resources occupied by those objects for recycling. Our

implementation is concerned with e�cient garbage collection of these objects by marking the

graph of reachable objects (doing the transitive closure of the root set), and then sweeping

through all objects to reclaim the unmarked (the complement).

Consider the objects shown in Figure 1.1. The objects A, B, C, D, E, F, G, L, and M are all

reachable, thus leaving the rest, i.e., the sub-graphs labeled 1, 2, and 3 as garbage.

1.3.2 Complication caused by Distribution

In distributed, object-based systems objects are distributed among the nodes in the system.

The graph of objects and references spans several nodes, and sub-graphs of reachable or

unreachable objects may also cross node boundaries. Figure 1.2 illustrates our example

graph of Figure 1.1 for a distributed system of 6 nodes.

Inter-node references are often represented by two sets (or tables) on each node. The

incoming set contains incoming references to objects on the node, i.e., objects on this node

pointed at by an arc from an object on another node, e.g., O on Node 6 (Figure 1.2). The

outgoing set contains the references from objects on the node to objects on the other nodes,

i.e., objects on other nodes pointed at by an arc from an object on this node, e.g., N on

Node 6 (Figure 1.2). The two sets may be augmented to work as translation tables between

a node-local and a system-wide representation of object references in systems with a two

.
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The distributed 
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Figure 1.2: An object graph distributed on 6 nodes

level addressing mechanism. We classify the garbage objects on a node as either distributed

garbage if they are known in the incoming set, or local garbage if they are not.

In distributed systems each node is an area candidate, thus a natural distribution of

the garbage collection work is a local collector per node, i.e., an area collector. Thus it is

possible to run a local area collector that collects all garbage on the node except distributed

garbage. For this purpose, the root set of the local collector must be extended with the

objects referenced from other nodes, i.e., the incoming set.

If each of the six nodes on Figure 1.2 employs a local garbage collector, the local root set

is extended with the local incoming set. Thus the local root sets of the nodes on Figure 1.2

become: 1(D,J), 2(A), 3(B,F,L), 4(C,G,M), 5(N), and 6(O). Running a local collector in

each node will collect object H and K only.

To use this technique we have to determine how and when inter-node references should

be registered and deregistered in one or both of the two sets. The comprehensive collection

may be accomplished by a mechanism that adds this service to the local collectors or by a

distributed collector, that works on the total distributed object space.

1.3.3 System Requirements

A mark-and-sweep garbage collector needs to know its root set and must be able to mark

these objects and the objects identi�ed by following the arcs from the objects already marked.

Finally it must be able to sweep the object storage and reclaim the unmarked objects.

This requires that the system using the collector cooperatively:

� identi�es the objects in the root set(exactly),

� for each object, identi�es the references to other objects(exactly), and

� allows an exhaustive search through the object storage.

.
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In distributed systems this includes the ability to follow the references across node bound-

aries and to cope with node failures. Furthermore, it would be very inconvenient for the user

of a distributed system if the collection may stop the system, i.e., pausing user computation

while the collector is running. Thus the collector must be able to traverse the object graph

consistently although the graph may be changing concurrently.

Some of the main obstacles due to concurrency and distribution are discussed more de-

tailed in the following sections.

1.3.4 Concurrent Collection

The annoying pauses in user computation, while a garbage collector is running and blocking

the user processes, are often raised as a general argument against automatic garbage collection

by the system. To limit this latency the collection may be interleaved with user activity. Such

collectors are known as on-the-
y collectors or concurrent collectors. The process of detecting

and reclaiming garbage without pausing user activity is important to gain real-time behavior

and thus meet the critiques. An incremental garbage collector does this either by doing

a partial collection at a time, e.g., area collection of smaller areas, or by interleaving the

garbage detection with the user processes. As an example, interleaving is accomplished on a

very �ne grain by reference counting, where the garbage detection is done for each reference

update.

The obstacle, when introducing concurrency between mutators and collector, is that the

collector is faced with a dynamically changing object graph. On the abstract level this

obstacle is overcome by specifying a set of invariants that must be respected and preserved

by all processes.

1.3.5 Distributed Collection

As mentioned, distribution introduces several challenges to garbage collection:

Cross node reference graph

The sub-graph spanning all reachable objects may cross node boundaries several times.

Thus the algorithm must work in a distributed fashion, i.e., on all nodes in the dis-

tributed system.

Partial failures

Distributed systems may be partitioned by break-downs of nodes or communication

links. If each node and link are either working or failed in a fail-stop manner, i.e., no

Byzantine failure, the garbage detection should be robust to such behavior. To cope

with these failures, we demand our algorithm to be able to complete as long as all

nodes of the system are at-least pair-wise available (and able to exchange messages)

su�ciently often.

Recovered and lost objects

After a node failure, some objects may be recovered based on a checkpointed (older)

version of their state while others may be lost forever.

Older references in recovered objects may suddenly become alive again, thus, a travers-

ing algorithm must also traverse the checkpointed copies of live objects to prevent

.
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objects referenced only in those copies from being deleted. The same yields for collec-

tion based on reference counting. Checkpointed copies must be managed as real objects

in garbage collection contexts.

Lost objects may leave references to them dangling in the object graph, thus the garbage

collector must be able to detect that a reference is dangling. For example, if node 1 in

Figure 1.2 fails and looses the objects D and J permanently, the arcs from A to D and K

to J represent dangling references.

Long-term unavailable nodes

A temporarily failed node may not recover immediately, thus preventing a comprehen-

sive detector from terminating. Meanwhile garbage may �ll-up the non-failed part of

the system. This makes it important to be able to reclaim some garbage while the com-

prehensive garbage detection waits for a failed node to be available again. The solution

may be to introduce non-comprehensive independent area-collectors that run concur-

rently to the distributed collector and reclaim the area-local garbage. More than one

concurrent collector does, however, introduce the need to synchronize their behavior

without long term blocking of any of them.

1.3.6 Towards a Distributed Garbage Collection Scheme

Based on the proposals for garbage collection in [Jul 87, Jul 88a, Jul 88b], we design and im-

plement a garbage collector that does a comprehensive detection in a distributed, object-based

system, robust to failures in communication and partial machine availability. Supplementary,

we implement a node-local area collector that collects local garbage, i.e., objects which have

never been known by objects outside the node. This collector is not comprehensive as it may

contain global garbage in its root set. Both garbage collectors run concurrently with the

weakest possible synchronization. In both cases, concurrency with mutators is obtained by

separating the object store in two; one for mutators and one for the collector, and by using

a garbage collection fault to trap from a mutator to move the an object from the garbage

collector domain into the mutator domain before the mutator access the object.

1.4 The Emerald system

The Emerald system is used as the general testbed for our garbage collection algorithms.

Emerald is a distributed object-based system with support of objective expressiveness, con-

current execution, and object mobility. The Emerald system is an implementation of the

Emerald programming language [Hutchinson 87b, Raj 91] by means of the Emerald compiler

[Hutchinson 87a] and run-time system [Jul 88a].

This section presents a brief overview of the system. A detailed description may be found

in [Hutchinson 87a, Jul 88a]. The features interesting from a garbage collection implementa-

tion point-of-view is described in Appendix A.

1.4.1 Emerald System Overview

The Emerald system is distributed, i.e., the run-time system supports the execution of Emer-

ald programs across a network of node computers. The system consists of nodes fully inter-

connected via a network (see Figure 1.3). The run-time system supports inter-node commu-

nication by the cooperation of the Emerald kernels running on each node.

.
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Figure 1.3: The network of Emerald nodes

A distributed Emerald system runs on a set of workstations interconnected by a local-area

network of the Ethernet type using Internet protocols for communication. The Emerald tools,

the compiler and kernel, are implemented on top of Unix. Due to the lack of a dedicated

programming development environment, Emerald programs are developed using standard

Unix tools. The Emerald compiler delivers native machine code to be executed by the run-

time system. When the code of a compiled program is submitted to the run-time system on

a node, the Emerald kernel on that node takes over. The kernel runs in a Unix process and

loads the submitted code into the address space of this process. The code may include calls

of, and traps to, the run-time services provided by the Emerald kernel, e.g., input/output,

cross-node communication, synchronization, and run-time type checking.

Our Emerald prototype runs on a set of VAX-, SPARC-, or Motorola 68000-based comput-

ers connected by a local-area network. The implementation runs on top of various versions of

the Unix operating system, all 4.3bsd compatible. The local-area network is a thin-Ethernet

on which the nodes communicate via sockets (4.2bsd Unix) using the UDP protocol.

Each computer runs a process, the Emerald kernel, which emulates the concept of a node.

A node is either down or up and running. A running node is fully connected with the other

running nodes. Thus, the network is never partitioned. Still a node may restart with part

of its old state recovered after a failure. Whether to recover an object or not is, however, a

global decision as the checkpoint used for recovery of the object may be duplicated on many

nodes and/or their stable (backing-) storage.

1.4.2 A Vocabulary of some Emerald Implementation Concepts

The Emerald implementation uses a speci�c vocabulary for many of the Emerald concepts.

Some of these are also used in general through out the thesis. Their de�nition in the Emerald

context is given here.

Node is the Emerald concept of a computer, i.e., a computing en-

tity with its own storage and optional stable storage unit and

input/output-system.

Local/global describes the potential distribution of accessibility to an entity in

Emerald, i.e., whether the entity may be known node-local only

or network-wide.
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Resident/non-resident describes whether a given entity in Emerald is locally present or

not. A global object in Emerald may|but need not be|resident

on the node it is used from.

Immutable denotes objects with a constant state, i.e., an object that never

changes its instance variables (they are all constants).

Replication describes the ability to maintain multiple copies of the same

object on di�erent nodes. Immutable objects may be repli-

cated without consistency problems in a distributed system as

all replica contain the same information all the time.

1.4.3 The Emerald Language

Emerald is an imperative, strongly-typed, object-based programming language [Black 86,

Black 87, Jul 88b]. It supports a uni�ed object model independent of object size, use, and

distribution, with a special emphasis on distribution and concurrency. Objects are highly

mobile and distribution is made transparent to other facilities.

An object in Emerald is de�ned as a named entity with:

� an encapsulated data structure, i.e., references to objects,

� an exported list of operations,

� the implementation of internal and exported operations,

� an initial section, and

� an optional process.

An object may also contain special sections to handle failure-like exceptions, e.g., if another

object, invoked1 by this object, is unavailable or has failed.

When an object is created, the initial section is executed before any operation can be

invoked and the optional process started. Only exported operation can be invoked from other

objects. Data and operations may be protected by a monitor providing mutual exclusion on

this part of the object.

Objects may be moved between nodes in the network. Explicit move statements and call-

by-move for invocation parameters are part of the Emerald programming language. Objects

may be classi�ed as immutable by the programmer, if they do not change their state over

time. Such objects will be copied when asked to move in the current implementation as

copying in this case does not introduce any inconsistency. These copies are named replica.

Furthermore, the language contains a rich variety of constructs to ease distributed object-

based programming. The main construct is the object invocation. An object may invoke an

operation on another object, if it is able to address the other object. Invocations may take

parameters on both call and return, and looks like conventional procedure calls. Object

1Language purists will �nd our description a bit sloppy. An invocation, e.g., is done by invoking an

operation or function in an object which exports that operation or function. Still we will simply write invoke

an object instead of the longer invoke an operation in an object. Object-oriented programmers may read this

as sending a message, operation, to an object. In all cases, the underlying semantics is essentially an ordinary

procedure call.
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invocations are location transparent. If an object invokes a non-resident object, the call is

said to be a remote invocation and look like a remote procedure call.

1.4.4 Why Emerald needs Garbage Collection

Conceptually, after it has been created, an Emerald object persists forever. In cases where

no other object in the system has a reference to the object, the resources occupied by the

implementation of the object, e.g., the storage used to store its state, may be reused for other

purposes. Thus unreachable objects must be identi�ed and their resources recycled. As the

Emerald language level abstracts away the possibility to do explicit storage management at

the user level, the system must do automatic garbage collection. This may be done either by

a compiler inserted recycling call, if the compiler knows where the last reference is deleted

or by a garbage collector for objects with a more dynamic (not compile-time determinable)

lifetime.

The Emerald compiler makes a great e�ort in reducing the amount of dynamically created

objects that must be garbage collected. Still, many objects are created dynamically with

unpredictable lifetime. It is the obligation of the Emerald garbage collector to identify and

reclaim the unreachable of these objects. To do so the garbage collector must know about

the language concepts of an object, a reference, and a process.

The references inside the data area of an Emerald object point at other objects. As

mentioned in Section 1.2, all the objects and their references together constitute an object

graph. Starting from a root set of objects, the garbage collector must identify the reachable

objects and reclaim the rest.

In the Emerald system, the root set is made of some "always useful" objects and the

objects containing an active process. The �rst kind is implementation dependent and given

by the run-time system itself. The active processes are those unblocked processes that are

ready to run. In Emerald, each process originates in the process section of an object from

where it spawn its thread-of-control through other objects following its actual sequence of

nested invocations. Thus, each process is represented by a chain of activation records. A

blocked process is non-garbage, if an active process knows the object on which the blocked

process is blocked, and thus has the potential of unblocking it.

1.5 Goals

The primary goal is to present a working implementation of a comprehensive, concurrent and

robust garbage collector for the Emerald system.

The requirements to functionality and performance are presented below. Though sepa-

rated in presentation these are not separated when designing the solution. Most emphasis is

placed on functionality.

1.5.1 Functional Requirements

A Comprehensive Garbage Collector

Reclamation of garbage in the distributed system must be comprehensive. By this we

demand that all garbage will eventually be collected and nothing else. Our collector will

collect everything which were garbage when the collector was started, but it depends

on the availability of all nodes in the distributed system.
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A Concurrent Garbage Collector

The pauses introduced by the garbage collector must be kept small, so the garbage

collection is done on-the-
y, i.e., while user activity progresses concurrently.

Robustness

Distributed systems has the ability to fall apart, i.e., partial failures may occur. Our

collector scheme must be robust to such failures. The collection progresses during partial

failures and may �nish a comprehensive collection even though the whole system has

never been available concurrently. The robust collector will succeed, if the participating

nodes pair-wise have been available often enough.

It must also preserve checkpointed copies of live objects and objects reachable from

these, to enable smooth recovery of checkpointed objects after failure.

A Node-Local Collection

In general, a simple job should be kept simple, and a local job should be done locally.

By de�ning an area collector for each node in the distributed system, we are able

to conservatively collect local garbage, i.e., garbage, that has been known outside the

node, is considered alive, as we do not know locally whether a reference exist somewhere

outside the node. Thus an area collector should run independently on each node in the

distributed system. This further serves the purpose of being able to collect garbage

when the comprehensive global collector is blocked, i.e., waiting for a failed node to

recover.

1.5.2 Performance Goals

Although performance is a secondary concern in this work, the collector need not be in-

e�cient. At least, the collector must keep pace with the allocating application, i.e., reclaiming

objects soon after they become garbage and not later than when the space is needed for

new allocations. Another concern is to limit the overhead by garbage collection, i.e., the

consumption of time and storage due to the collector, should be kept small both in the short

(instantaneously) and long run (overall performance).

The performance goals for our collector are:

� to be e�cient (low total cost), and

� to work with low latency (introducing only very small pauses in other activities).

Emerald is not a real-time system, so the latency should just be small compared to user

activity, i.e., we do not have to meet real-time dead-lines. It should also be noticed that

expedience is not our goal, as the collector has to wait for failed nodes to be available again.

Some expedience may though be achieved by the local area-collector as it is not delayed by

inter-node communication nor by unavailable nodes.

1.6 Design Criteria

The design and implementation relies on some underlying assumptions. These are mainly

�rm requirements to the behavior of our implementation. Some may though be seen as

restrictions on the implementation.

.
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Distribution

The underlying system model is that of a distributed system, i.e., a set of computer

nodes interconnected by a local-area network. The nodes behaves like normal computers

with one processor and own primary memory, that may be visible as a larger virtual

memory using secondary storage. The system is characterized by relative slow cross-

network communication (103) compared to node-local communication.

Our focus is on storage recycling by doing garbage collection at run-time, thus allocation

and the many important issues on compile-time garbage collection are not described in this

thesis. The same holds storage management in general.

The integration of garbage collection in the run-time system of a programming language

raises several semantic issues. These are discussed below.

Transparency

If garbage collection is to be accepted by users in a system already running without it,

the semantics of programs must not change. Furthermore, garbage collection must be

added without changes in the current de�nition of the programming language.

Furthermore, we restrict the garbage collector implementation to the run-time system.

The compiler is not changed and thus, synchronization between mutators and collector

is done solely in the run-time system; mutators are not changed.

Mobility

Objects that moves very fast in distributed systems may move faster than the chasing

garbage collector. They must, however, not out-perform the garbage collector. Thus

they are handled when they are moved and marked as live, i.e., objects that move

around are|by de�nition|not garbage.

Concurrency

It is an overall requirement that our collector runs without stopping the system at-large.

Garbage collection is made concurrent by using the faulting mechanism. The garbage

collection fault is used to handle a protected object before a user process gains access

to the object.

The latency while initiating a garbage collection or handling a garbage collection fault

must be kept short. The distributed collector may run for days until all nodes has been

enough available, but it is not allowed to block a node-local garbage collector nor user

processes for the whole period.

The Emerald prototype

By using Emerald as a testbed for our collector scheme, we rely on the characteristics

of Emerald. Emerald is strongly typed and all storage management in Emerald is an

issue for the language implementer. Thus, the Emerald programmer has no explicit

control on storage allocation, deallocation etc. and the use of references is under full

control by the run-time system with help from the compiler.

1.7 Work Done

The main e�ort in this work has been on the implementation of our proposed garbage col-

lection scheme. Our proposal has been applied to the Emerald system.

.
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A new Emerald prototype has been built that extends the Emerald kernel with:

� A global garbage collector that works distributed by using cooperating sub-collectors on

all nodes.

� A local garbage collector to reclaim node-local garbage on each node.

� A garbage collection fault mechanism that enables both collectors to run concurrently

with user processes.

� A robust synchronization scheme to detect global termination for the global garbage

detection.

� Routines to identify object references in both user de�ned and system objects.

� A new level of parallel processing inside the kernel, the garbage collector dispatcher,

which enables quasi-concurrency between user processes and garbage collectors on each

node.

Further work has been concerned with:

� Test of the implementation of our garbage collection scheme on a network of four VAX-

station 2000 workstations.

� Measuring the performance by executing arti�cial as well as more realistic Emerald

programs using the prototype.

� Cooperation between the checkpoint system and the garbage collection is designed.

� Investigation of garbage collection techniques in general.

1.8 Evaluation Methods

Our ideas are evaluated by implementing the proposed garbage collectors and using them by

running Emerald programs.

Implementation

We want to show that the comprehensive and faulting garbage collection algorithm

works in a distributed, object-oriented system by implementing the collectors and fault-

ing mechanism in the Emerald prototype.

Measurements

By measuring the time used in our Emerald prototype with and without garbage col-

lection we want to evaluate the e�ciency of the algorithm and the implementation to

determine the overhead introduced. The latency introduced by garbage collection and

the overall cost in time and space is measured as well.

Synthetic Garbage Creator

The synthetic garbage creator generates a variety of objects with di�erent size and

internal references to each other. Some are generated as local, some as full-
edged

global objects. Also the distribution may be varying.

The structure of the object graph, i.e., the way objects and their references are dis-

tributed may vary from local sub-graphs to long linked lists crossing node boundaries

each time.

.
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Distributed Applications

Real applications gives us a less arti�cial benchmark. The evaluation is thus extended

with applications written in Emerald. We have measured distributed applications like

the Emerald Mail System.

1.9 The Thesis

1.9.1 Research Contributions

In summary, the major contributions of this thesis are:

A Comprehensive Garbage Collector in a Distributed System.

The implementation of the comprehensive garbage collector in Emerald works concur-

rently with user activity. To our knowledge, it is the �rst working implementation of

comprehensive and concurrent garbage collection in a distributed systems.

Robust Garbage Collection in Distributed Systems.

Our implementation works even in the case of partial failures of nodes in the distributed

system. We demonstrate that distribution does not need a central control unit nor

complete concurrent availability of the whole distributed system. Instead, our robust

garbage collector works with distributed control, i.e., no master, and it only needs

pair-wise availability of the participating nodes.

Implementation of the Faulting Mechanism.

We have applied the idea of faulting on object invocation to garbage collection by intro-

ducing a garbage collection fault. The concurrency between our garbage collector and

user processes is obtained by protecting objects not traversed from being invoked. User

processes resume their activity when the garbage collector has marked and traversed

these and protected the new referenced but not traversed objects.

A protected object will get a garbage collection fault, if one of its operations is invoked.

The faulting mechanism resumes the invocation after the object has been marked and

traversed and its references protected if necessary.

1.9.2 A Guide to the Thesis

The remaining part of the thesis consists of three main parts and a conclusion.

I. Background

Chapter 2 presents an overview of garbage collection techniques from early computer

history, list-processing in the 1960's, up to recent 1990's developments. Background

information on the Emerald system is presented in Appendix A. Thus, readers familiar

with these ideas may skip either or both.

II. The Main Contributions

The design of a comprehensive and concurrent garbage collector for a failure-free, dis-

tributed, object-based system is presented in Chapter 3. The issues of garbage collection

in distributed systems with temporary and partial failures are discussed in Chapter 4.

III. Implementation and Evaluation

The implementation of our garbage collection proposal in the Emerald prototype is

.



{ 18 {

discussed in more details in Chapter 5. Also, the garbage collection fault mechanism

is described here. Measurements and evaluation of the implementation are given in

Chapter 6.

After the conclusion follows a bibliography of literature on garbage collection. In Ap-

pendix B the algorithms used by the implementation are speci�ed together in more details.

Appendix C characterize the systems running the Emerald prototype and presents a short

overview of the changes applied to the source code of the Emerald kernel. Finally, a summary

of the thesis is given in Danish as Appendix D.

.



Chapter 2

Garbage Collection Techniques

The need to use the same storage more than once, i.e., recycling storage, has existed since

the �rst computer. Rebooting the computer does solve the problem in many situations,

whereas others require more advanced methods to let the system run non-stopped or at

least nearly uninterrupted. This thesis is concerned with recycling techniques taking e�ect

while the system is running. Both the basic and more advanced techniques for detection and

reclamation of no longer used storage, i.e., garbage collection, are surveyed in this chapter.

The �rst section presents a background on storage management, to motivate the use of

garbage collection (Section 2.1). The second section identi�es the historical roots of garbage

collection, that is, the basic techniques that may be identi�ed inside any garbage collector:

Reference counting, mark-and-sweep collection, and copying collection (Section 2.2).

The following section surveys more advanced techniques, i.e., concurrent collection, real-

time collection, incremental collection, area collection based on storage partitioning, traversal

of the object graph, how storage reclamation can be done, and the cooperation with a recovery

system for non-volatile storage (Section 2.3).

As this thesis is mainly concerned with distributed systems, collectors for such systems are

surveyed separately in the last section of this chapter. The distributed collectors are based

on various combinations of the non-distributed techniques extended to cope with distribution

(Section 2.4).

2.1 Storage must be Recycled

Storage management is concerned with the allocation and deallocation of storage. This

section describes the interaction between storage allocation and garbage collection. The

main obligation of the garbage collector is derived from this.

In systems with dynamic allocation the storage manager delivers chunks of storage to the

application on request. If the application does not return chunks of storage to the storage

manager, the entire storage will sooner or later be allocated and no further allocation request

can be met. The growing storage consumption by an idealized application with linear growth

is illustrated by the curve (a) in Figure 2.1, where the maximum available storage is shown

as line (b). If no deallocation is done explicitly by the application, nor automatically by the

storage manager, the intersection of (a) and (b) in Figure 2.1 shows the time after which no

more storage can be allocated.

To prolong the life time of the running application its allocated, but unused, i.e., unreach-
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Storage

(a)

(c)

(d)

Time

(b)

(a) The total amount of allocated storage.
(b) The maximum available storage.
(c) The total amount of no longer useful storage (garbage).
(d) The actual claim of storage, if garbage is recycled.

Figure 2.1: E�cient storage management

able storage, should be used again. The no longer used storage is exempli�ed by curve (c) in

Figure 2.1. Thus by recycling this, the actual claim is reduced to the di�erence between the

two curves, (a) and (c) as illustrated by (d). To do this, the application may either imple-

ment its own storage manager internally or cooperate with the general storage manager by

telling which chunks of storage, it does not use any more. When moving storage management

into the application, we have to solve the same set of storage management problems for each

application, instead of solving them once in the general case. Thus, we have chosen to discuss

the general case only.

The general storage manager must at least include:

� An internal representation of storage, where it is possible to identify the chunks that

are not allocated, e.g., a free-list.

� An allocation routine which returns allocated storage to the requesting application.

� An allocation strategy which chooses a chunk of storage in response to a given allocation

request.

� A garbage detection strategy about where, when, and how to identify chunks of storage

as garbage.

� A storage reclamation routine which moves garbage from the application domain back

to the storage manager.

The scope of this thesis is garbage collection in object-based systems, thus the chunks of

storage allocated are either user or system objects. By shifting to this more abstract level

of description, the obligation of garbage detection may be rephrased in terms of this higher

level. The recycling of objects may also be viewed at this level of abstraction. Any kind of

resource, that is modeled by an object, may be recycled, if that object is dead. The main

resource and our primary concern remains, however, the storage.

.
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2.2 Fundamental Garbage Collection Algorithms

The goal of garbage detection is to identify when an object is no longer reachable from the

root set.

As mentioned, essentially two basic approaches to garbage detection exist:

1. Reference counting focuses on the individual object and count the number of external

references to the object. A zero counter denotes a garbage object.

2. Graph traversal focuses on the object graph and traverse the object graph by following

references to identify all objects reachable (directly or indirectly) from the root set.

The reachable objects are live while the remaining are garbage.

The main di�erence between these two approaches is due to the perspective, a local versus

a global view of the object graph. Graph traversal algorithms have traditionally been based

on either a mark-and-sweep or a copying collection. The di�erence between them is a matter

of how reclamation is done; their garbage detection techniques are essentially the same.

In the next section reference counting, mark-and-sweep collection, and copying collection

are described, analyzed, and compared. A more exhaustive survey of these methods (up to

1980) is given in [Cohen 81].

2.2.1 Reference Counting

Reference counting associates a counter with each object to count the number of references

to the object. Objects with positive counters are considered alive, while a zero counter

identi�es a dead object. Reference counting was �rst described by [Gelernter 60, Collins 60,

Weizenbaum 62, Weizenbaum 63].

A system using reference counting must update the reference counter for an object each

time a reference to that object is copied or deleted. Objects, that are part of the root set,

have their reference counters incremented by one to simulate an invisible external reference

to each of them. Objects are otherwise initialized with a zero counter when allocated, but the

counter is immediately incremented as the reference to the object is given to the application.

An implementation of reference counting needs at least the subroutines increment and

decrement . The reclamation of garbage, i.e., zero count objects, is done from the decrement

subroutine when it decrease a counter to zero. When a reclamation takes place, all objects

referenced from the dead object must also decrement their counters, as the references in the

dead object are now \deleted".

Example: Object Graph with Reference Counters

Figure 2.2 illustrates our example graph of objects and their reference counters during various

updates of references, starting (a) with the graph of Figure 1.1. From (a) to (b) the object

H is created by C, and thus H's reference counter is incremented to 1. Next, a reference to

G is copied to a variable in H, thus the reference counter of G is incremented from 2 to 3.

Similar the deletion of a reference results in the reference counter of the referenced object

being decremented. On Figure 2.2 (c) the reference from object A to object F is deleted, thus

the reference counter of object F is decremented from 3 to 2.

.
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(a)  The initial object graph

(c)  Deletion of a reference from A to F (d)  Deletion of two references with reclamation

(b)  Creation of a new object and new references

A A reference
1

An object, A with reference count = 1 The root set

Figure 2.2: Reference counting in a graph of objects

As object C in Figure 2.2 (d) deletes its reference to H the reference counter of H becomes

0 and object H is reclaimed. Note that object G got its reference counter decremented to 2 as

H was reclaimed (d).

The deletion of the one and only reference to the head of a long singly linked list results

in a recursive reclamation of each of the list elements. Such deletions are also known as

cascade deletions, as the deletion of the last reference to a group of objects results in a burst

of successive storage reclamation. A small example of this is illustrated by (d) in Figure 2.2.

When the reference from D to K is deleted, K reaches a zero count. During its reclamation

the counter of object J becomes zero also. Thus both are reclaimed, whereas the reference

counters for E and L are both decreased from 2 to 1.

Evaluation

Reference counting is inherently incremental, but the overhead introduced on each reference

assignment makes it ine�cient [Ungar 83, Baden 83]. Each implicit or explicit assignment of

references in the application results in one or two reference counters being updated. Given

two variables X and Y, then the assignment X  Y results in an incremented counter for

Y's object and a decremented counter for the object originally referenced by X. Furthermore,

.
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reference counting does not collect cycles of garbage (self-referential groups of garbage), e.g.,

the objects I, N, and O in Figure 2.2 are never detected as garbage in pure reference counting

systems. As reference counting may fail to detect all garbage, the undetected garbage may

also prolong the life of other objects, i.e., objects only reachable from undetected garbage are

also kept alive.

+ Advantages:

� Concurrency with mutator, i.e., very �ne-grained interleaving.

� Disadvantages:

� Non-comprehensive because it does not collect cycles of garbage.

� Ine�cient because of the large overhead on each assignment.

2.2.2 Mark-and-Sweep Collection

The classical mark-and-sweep-algorithm may be used in a stopped system to collect garbage

including cycles of garbage. As indicated by the name, the garbage collection is done in two

phases. First, all live objects are marked, then the unmarked, garbage objects are reclaimed.

Only the mark-phase depends on the temporary stop of the system. The sweep-phase may

reclaim the garbage objects in parallel with the running system, as these two activities do

not interact. The mark-and-sweep algorithm is usually attributed to independent work by

Deutsch and by Schorr and Waite, although [Schorr 67] attributes the ideas to [McCarthy 60].

The algorithm uses a mark-�eld in each object. All objects are marked either white

(potentially garbage), gray (alive with references under consideration), or black (alive with

references considered). Furthermore, a root set of objects is given, i.e., the active processes

and those \always present" objects.

Initially, all objects are marked white, i.e., they are potentially garbage. If they cannot

be reached during the traversal of the object graph starting from the root set, they will stay

white and be considered real garbage, when the mark-phase is �nished. The mark-phase is

initialized with the root set. Each of theses objects is marked black and each of the references

in these objects are shaded: If the reference is to a non-black object, that object is marked

gray. We use the term to shade a reference at least gray for this operation. Each gray object

is alive but has not yet been traversed to get its references shaded. Thus to ensure that

all reachable objects are �nally marked black, the mark-phase proceed as long as there are

gray objects. Each gray object is marked black and its references are shaded at least gray.

When the mark-phase terminates, all objects are either black or white. The live objects have

been marked black due to their reachability from the root set and the garbage objects are

not touched, i.e., they are still white. The sweep-phase may now traverse the whole object

storage to reclaim all white objects.

Example: Mark-and-Sweep in the Object Graph

Figure 2.3 (a) shows the example from Figure 2.2 with an object graph of 15 objects, where

object A, B, and C are the root objects. Initially, all objects are marked white (a). After

marking the objects in the root set: A, B, and C, the objects D, E, F, and G becomes gray (b).

Next, in the example, object D and E are marked black immediately as they does not

contain references, and F and G are marked black while their references to L and M are shaded.

Finally, L and M are marked black as they have no references to white objects. The result is

.
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(a) After initialization (b) The root set marked and traversed

(c) The mark-phase is finished (d) After sweep-phase is finished

Figure 2.3: Mark-and-sweep collection in a graph of objects

illustrated by (c), where no gray objects are present. This terminates the mark-phase, and

the sweep-phase may now reclaim all white objects (d).

Evaluation

Mark-and-sweep collection has to traverse all live objects once and to sweep the entire object

storage twice. The �rst sweep clears all mark-�elds to white, and the second reclaims the

white objects in the sweep-phase. Further complexity is added to identify all gray objects

for traversal. The basic algorithm repeatedly scans the object store from top to bottom for

gray objects. During each scan, objects located between the top and the current position

may become gray, thus a new scan is needed.

+ Advantages:

� Collects all garbage including cycles of garbage.

� The main work is proportional to the live objects.

� Disadvantages:

� Needs to traverse entire object storage for reclamation of garbage.

� May lead to storage fragmentation.

� Stops all other activities in the system while running.
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2.2.3 Copying Collection

Copying algorithms use more or less the same traversal mechanism as mark-and-sweep to

detect the live objects. The di�erence is mostly how dead objects are reclaimed.

The basic stop-and-copy algorithm separates the object store in two halves: toSpace and

fromSpace. All objects are allocated in the fromSpace until garbage collection is started and

the user processes suspended. Like the mark-and-sweep algorithm the objects in the root

set are traversed and their references shaded . Instead of marking traversed objects black,

they are copied to the toSpace and internal references updated accordingly. For translation

purpose a forwarding address is left behind from the old version in fromSpace to the new

copy in toSpace. When all the live objects have been copied, and their external references

updated, the complete fromSpace may be reclaimed.

Copying techniques need a closer cooperation with the object manager as all objects must

be allocated in the fromSpace. When the collector is �nished, all live objects reside in the

toSpace, thus at this point the two spaces may be swapped. The swap changes the role of

the two spaces, i.e., swap their names.

Stop-and-copy needs no mark-�eld as this information is implicit available. The toSpace

contains black objects only. Gray objects are those objects in the fromSpace for which a

reference in the toSpace exist. The backwards references identi�es the gray objects during

the traversal. Thus the shading of references need only register that these objects have to

be copied also, and that a reference in toSpace has to be updated when they are copied to

toSpace. Shading a reference to an object already copied results in updating the reference

immediately to point at the copy in toSpace.

Example: Copying Collection in a small Object Graph

Figure 2.4 (a) illustrates the partitioning of an empty object store in two halves: toSpace

and fromSpace. The situation at the start of a stop-and-copy collection is exempli�ed by (b).

Then objects of the root set are traversed and their references shaded (c). When traversed,

they are copied to the toSpace and internal references updated accordingly. A forwarding

address is left in fromSpace to forward old references to the new copy in toSpace (c). During

collection, the backwards references (c{d) identi�es the gray set. Finally, all the live objects

have been copied to the toSpace (e), and their external references updated. Then the complete

fromSpace is reclaimed (f).

Copying collection may also be done as a mark-and-copy collection, where the mark-phase

from the mark-and-sweep is completed �rst. Then all objects identi�ed as live (black) are

moved to toSpace. The �rst copying implementations were described by Minsky [Minsky 63],

and by Fenichel and Yochelson [Fenichel 69].

Evaluation

Copying algorithms have the advantage over reference counting and mark-and-sweep, that

they also compact the storage, thus preventing fragmentation, at the cost of updating refer-

ences and the loss of approximately half the storage due to the partitioning in a fromSpace

and a toSpace.

+ Advantages:

� Collects all garbage including cycles of garbage.

.
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Figure 2.4: Stop-and-copy collection in a simple graph of objects

� Work in time proportional to the number of live objects.

� Compacts storage, thus preventing fragmentation, and improving locality of ref-

erence.

� Disadvantages:

� Wastes 50 % of the storage reserved for the new toSpace.

� All references must be updated and/or indirect/relative references used.

� Stops all activities in the system while running.

2.2.4 Comparison of Basic Collector Complexity

The di�erence between the mark-and-sweep and the copying collection is mainly in the recla-

mation part. The di�erence between any graph traversal algorithm and reference counting

is their perspective. Graph traversal uses a global view, traversing from the root set to all

reachable objects. Whereas reference counting uses the local view, the object is reclaimed

when the counter is decremented to zero, as the last reference to the object is deleted.

The overhead introduced by these algorithms can be roughly estimated. We use n as the

total number of objects, and l denotes the number of live objects. Thus the goal is to reclaim

.
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Algorithm Time complexity Storage need

Mark-and-sweep collection O(l+ n) O(n)

Copying collection O(l2) O(n)

Reference counting O((n� l) + a) O(n)

Table 2.1: The basic cost in time and space of traditional garbage collectors.
n total number of objects.

l number of live objects.

a number of assignments.

n � l garbage objects. As the number of references in each object in
uences the complexity

added when traversing the individual objects, this number could also be given as could the

almost proportional number that indicates the size of each object.

To estimate the complexity of the three basic algorithms and do comparison we must,

however, look at the main factors of a large system, i.e., the number of garbage and non-

garbage objects: (n� l) and l. Thus the estimates are given in O(n).

Time Complexity

The time complexity of the three algorithms are:

Mark-and-sweep collection

A traversal that identi�es the live objects by the repeatedly scanning method may cost

O(n2) in the worst cases. By adding a simple structure that contains references to gray

objects during the mark-phase, the traversal is limited to O(l). In all cases, a storage

sweep needs to look at all objects, i.e., O(n). Thus mark-and-sweep collection has a

run-time complexity of O(l+ n) � O(2n) = O(n).

Copying collection

The copying collectors need only traverse the live objects, a work proportional to the

references in the live objects, l, plus copy the live objects, a work proportional to l, plus

update the references between the copied objects, a work proportional to l2. In total a

copying collection has a run-time complexity O(l+ l + l
2) = O(l2) � O(n2)

Reference counting

Reference counting slows down all computation that updates references by at least two

memory references to update a counter. When a garbage object is identi�ed, additional

costs are paid to update the counters of its references. Reference counting has a run-

time complexity proportional to (n � l) for reclamation, plus a cost proportional to

the number of reference updates (assignments), a. In total reference counting costs

O((n� l)+a). To do comparison with the other algorithms, the number of assignments

is said to be proportional to the number of objects, thus reference counting has a

run-time complexity O(n).

These costs are summarized in Table 2.1 together with an estimate of storage overhead.

.
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Storage Overhead

The storage overhead due to the three algorithms are:

Mark-and-sweep collection

A mark-�eld per object, which is able to contain three values, i.e., 2 bits per object.

Thus the needed storage is O(n)1.

Copying collection

Half the storage is reserved for garbage collection (toSpace). Thus a maximum of

half the storage is available for the application, i.e., a cost of O(n). Furthermore,

translation tables may take up O(l) space during copying, thus the needed storage is

O(n+ l) = O(n).

Reference counting

A counter per object, which is able to accumulate values between 0 and n, i.e., log n

bits per object. The needed storage is thus O(n).

These basic algorithms are extensively described in the literature before 1980, an overview

in terms of list processing systems is given by [Knuth 68] and more thoroughly by [Cohen 81].

Since then, more advanced methods have been developed, but essentially they are all based

on these three basic techniques.

2.3 Advanced Garbage Collection

During the thirty years history of garbage collection, many terms have been used to de-

scribe the algorithms. Wilson describes in a lengthy survey [Wilson 92] the di�erent trends

in modern garbage collection techniques for non-distributed systems since Cohen's survey

[Cohen 81].

Beside the three basic algorithms, focus may be on concurrency to achieve real-time

behavior and storage partitioning. Various techniques for concurrent garbage collection is

surveyed in Section 2.3.1. The following Section 2.3.2 proceeds by describing how techniques

to partition the storage into areas has in
uenced garbage collection techniques. Our interest

in methods coping with a partitioned storage stems from the physical partitioning of storage

in a distributed system. Further techniques in advanced garbage collection are also surveyed.

Section 2.3.3 describes how the object graph is traversed to identify the garbage objects, and

Section 2.3.4 how storage reclamation is done. In Section 2.3.5 garbage collection and the

aspects of robustness to failures in connection to transaction oriented systems using non-

volatile storage are described by recent examples. Finally, a chronology of distinguished

algorithms is given in Section 2.3.6.

Although the described garbage collection algorithms for non-distributed systems are

grouped according to their main characteristics: concurrency, storage organization, graph

traversal, garbage reclamation, and robustness, respectively, most of the algorithms do focus

on more than one of these. Furthermore, other important design decisions exist, e.g., internal

concurrency or reclamation of other resources.

1The cost of keeping a separate reference to each gray object during the collection adds a marginal O(l)

on the needed storage for both traversal algorithms. The mark-�eld needs only 1 bit in this case.
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2.3.1 Concurrency with Mutators

Concurrent collectors need to synchronize with mutators when accessing common data, i.e.,

the objects they work on. Concurrency between mutator and collector may be achieved by

constraining the allowed behavior of mutators during collection. Incremental techniques do

this by interleaving the garbage collector inside system calls that are used by the muta-

tor, whereas fully concurrent techniques need explicit synchronization between mutator and

collector processes.

The reference counting scheme usually stops the mutator while accessing the object (in-

crement/decrement the reference counter). By nature, reference counting is incremental as

an object is collected immediately when the last reference to the object is deleted. This may

still lead to cascades of deleted objects, when a deleted object causes the deletion of the last

reference to another object, and thus introduce latency to the mutator.

In [Deutsch 76], Peter Deutsch and Daniel Bobrow present a deferred, incremental refer-

ence counting scheme supplied with a global copying collector to reclaim cycles of garbage and

compact the live objects. Their reference counting uses tables of reference counts and defers

the table updates by putting all updates in a transaction �le. The �le is reduced by removing

sequences of reverse updates, e.g., increment follow by decrement of the same object. When

the �le has been applied to the reference counter tables, zero count objects may be reclaimed

if not in the root set. Two ideas are suggested for the transactions due to the reclamation.

Either they are applied immediately to the tables risking the mentioned e�ect of cascade

deletion, or they are put in the new transaction �le, thus deferring the reclamation of the tail

of such structures. Most of the work done by deferred, incremental reference counting can be

done concurrently with mutators, as their only interactions are:

� mutators put transactions in the tail of the �le,

� the collector reads the log sequentially from the head, and

� the collector reads a consistent snapshot of the root set.

The collector work can be done by a separate collector processor or by a process running

concurrently to mutators.

The �rst concurrent traversing algorithm described for a two-processor system was given

by [Steele 75]. It follows a mark-copy-translate-reclaim scheme with semaphores for synchro-

nization of access to common data between mutator and collector. The system described

is a list-processing system, where the list operations are extended with synchronization op-

erations. This strategy imposes many synchronization constraints on mutators during the

various phases. During the copy-phase, the mutator is faced with indirect references until

copying is �nished.

A more advanced incremental, copying collector is given by Henry G. Baker [Baker 78]. It

is the �rst real-time collector that moves a smaller subset of the live objects from fromSpace

at a time. The garbage collector is build into the primary operation of the system, e.g.,

the LISP primitives: Cons, Car, Cdr. The storage lay-out is illustrated by Figure 2.5.

During a collection the live objects are copied from fromSpace to toSpace and new objects

are allocated in toSpace. The toSpace is partitioned in four sub-spaces (1{4) by the pointers

S (scanned), B (bottom), and T (top) as shown on Figure 2.5. (1) and (2) contain objects

copied from fromSpace, and (4) contains the newly allocated objects, whereas the subspace

(3) is free. Thus the free space is decreased from both sides as objects are either copied or

created.

.



{ 30 {

fromSpace toSpace

S B T

(1) (2) (3) (4)

(1) moved and scanned objects.

(2) moved, but not yet scanned objects.

(3) free.

(4) newly allocated objects.

Figure 2.5: Storage lay-out for Baker's incremental copying collector

An object in (1) has been traversed and each of its references are now to a toSpace object,

i.e., the objects it references, have been copied or are copied immediately as the object in

(1) was traversed. New objects in (4) have the same characteristics. Only the objects in (2)

have not yet been traversed, thus they may contain references to both toSpace and fromSpace

objects. The correspondence to the three color mark-and-sweep collector is illustrated by the

indicated colors on Figure 2.5. In Baker's algorithm objects are not colored, but objects in

the sub-spaces hold the same characteristics as the color indicates, i.e., black � marked and

traversed, gray � marked but not traversed, and white � potential garbage.

The collector is initiated by moving the root objects to an empty toSpace and advancing

B accordingly. The S and T are still at the edges of the toSpace. The mutators ensures that

the rest of the job is done by traversing a number of objects in (2) before each allocation.

When all objects in toSpace has been traversed, i.e., S = B, all live objects must have been

copied and the fromSpace can be reclaimed. If the mutator access an object in (2), it may

get a reference to fromSpace. In such cases the referenced object is immediately copied to

toSpace and the reference updated before it is given to the mutator.

When T = B, no more free space is available for new objects and the next collection is

initiated by swapping toSpace and fromSpace. Note that it is crucial, that S = B is reached

before T = B. This is achieved by adjusting the number of objects traversed during each

allocation.

Dijkstra, Lamport, Martin, Scholten, and Ste�ens describe a concurrent mark-and-sweep

collector in [Dijkstra 78] to show how the synchronization can be proven correct. To simplify

reasoning about the correctness of the algorithm they regard all non-allocated objects, i.e., the

free-list, as part of the live objects. Thus the free-list is put in the root set, the consequence

is that non-allocated objects are traversed during the mark-phase. The mark-phase of the

algorithm marks live objects black by successive scans of the whole object store looking for

gray objects. Each time a gray object is found, it is marked black and its references shaded

by marking the referenced objects gray, if they were white. The scanning continues until

no gray objects are found during a complete scan. The reclamation is done by yet another

scan over the whole object store, where non-marked objects are reclaimed, i.e., doing the

traditional sweep-phase. As the algorithm was described to illustrate a technique to prove

the correctness of concurrent programs, the ine�ciencies were not considered further. Due to

its concurrency, the algorithm was named on-the-
y collection. The algorithm and its proof

has later been re�ned, e.g., see [Ben-Ari 84, Pixley 88].

Almost simultaneous to [Dijkstra 78], Kung and Song developed another concurrent mark-

and-sweep collector with lower overhead [Kung 77]. They does not put the free-list in the

root set, and use a dequeue to hold information about gray objects that must be traversed

.
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Figure 2.6: Storage partitioning during the mark-phase

during the mark-phase. In this way, much of the overhead paid by Dijkstra's algorithm is

removed at the cost of storage overhead to contain the dequeue, which could be problematic

as garbage collection is usually done when a shortage of storage has occurred. They use a

fourth color, o�-white, denoting non-allocated objects to circumvent traversal of the free-list.

With a traversing collector the �nal result of the collection is the reclamation of garbage

objects, while the mutators only access live objects. Their critical interaction happens when

the mutators change the object graph while the collector traverses the graph. An impor-

tant observation, which may be used to limit this synchronization overhead, is the virtually

partitioning of storage during the mark-phase by the colors of the objects. Figure 2.5 and

2.6 illustrates this partitioning during copying and mark-and-sweep collection respectively,

where three sub-spaces are present. The collector moves white objects to the gray space, and

gray objects to the black space. It never change the graph of objects during the mark-phase.

Meanwhile mutators may work in the black space as long as only black objects are changed.

Thus only black and gray references are copied or deleted. By restricting mutators to update

only black objects, the graph traversal by the collector is never disturbed.

A protecting mechanism to prevent mutators from accessing objects and violating the

invariants of the collector is useful as illustrated by Baker's collector, where synchronization

is implemented by added translation and copying for each reference to fromSpace. A general

solution includes a way to protect the object, trap the mutator, and unprotect the object

again [Juul 91]. This should all be done without changing the code for mutators while still

preserving any mutator invariant. The use of a faulting mechanism for garbage collection

was �rst proposed by Jul in [Jul 87, Jul 88b] for the Emerald system. Strictly speaking, we

need only to prevent mutators from updating gray objects, reading them is okay. Thus the

protection scheme is sometimes characterized as holding the write-barrier from the black to

the gray objects.

Appel, Ellis, and Li present in [Appel 88] a real-time, concurrent copying garbage collector

implemented on the DEC Fire
y shared-memory multiprocessor. The collector uses virtual

memory hardware to protect references to fromSpace objects. Before such a reference can be

used by a mutator the hardware will generate a page-fault, thus invoking the collector to copy

.
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the live objects on this page to toSpace. The needed features of the hardware underneath

this and other faulting collectors are discussed in [Appel 91].

Such protection schemes could work with a broad range of protection grains. From coarse-

grain protection of the whole storage space or semi-spaces, via page protection as above,

to �ne-grain protection on individual objects or object parts. In any case, concurrency is

achieved by holding the write-barrier between di�erent parts of the storage. Recent works

by Sharma and So�a [Sharma 91] and by Boehm, Demers, and Shenker [Boehm 91] use a

variety of page-protection and dirty-bit respectively to achieve concurrency for generational

as well as conservative collectors.

2.3.2 Storage Organization

The system imposed organization of storage may be utilized by the garbage collector and

the garbage collector may impose further organization constraints on the storage. We have

already mentioned copying collection, which impose a partitioning of the available storage in

at least a toSpace and a fromSpace. Further garbage collection techniques are:

Area collection

This strategy takes advantage of a given partitioning in nearly independent semi-spaces

or makes such a partitioning to do independent collection in each semi-space. Each

semi-space is an area and its root set is extended with the table of entry references.

Peter Bishop [Bishop 77] describes a partitioning of a large LISP system, where area

collection has been applied.

Generational collection

An extension to area collection is to move live objects from one area to the next as time

passes. Thus young objects are in the nursery area, whereas older objects get promoted

to an older area. The common name for these areas are generations, as they re
ect

the lifetime of the objects in them. The �rst algorithm of this kind was presented by

Lieberman and Hewitt in [Lieberman 83]. These algorithms are also called generational

scavenging and di�erent techniques may be applied to determine when to promote an

object [Ungar 84, Ungar 88]. Also the ephemeral copying collector by Moon [Moon 84]

for garbage collection in a large heap for the Symbolics 3600 LISP implementation

uses a storage partitioning based on the lifetime of objects. Both mark-and-sweep and

copying algorithms may be extended with generations. A comparative study [Zorn 90]

shows that the CPU overhead using mark-and-sweep instead of stop-and-copy is 3�6%

whereas the physical storage requirement is 20 � 40% less while achieving the same

page-fault rate (the simulations where done in a paged system).

Group collection

Applied to reference counting, areas may be used to form groups of objects, that are

strongly inter-connected, thus making it possible to perform reference counting on

groups instead of on the individual objects [Bobrow 80]. This extend reference counting

to be able to identify cycles of garbage, if such cycles are the only objects in a group.

The algorithm is known as group reference counting.

\Don't do it" collection

When the available storage is extremely large, garbage collection could be postponed

for years. This does, however, need some kind of computation to ensure locality of the

.
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live objects. Jon White [White 80] purpose a copying collector, that takes advantage

of a next to in�nite tertiary backing storage for seldom used objects.

2.3.3 Graph Traversal

The graph traversing algorithms partition the object storage according to the color as il-

lustrated on Figure 2.6. The sequence in which gray objects are selected has an impact on

performance. In large address spaces, supported by virtual memory paging on secondary stor-

age, the di�erent objects have very di�erent access time depending on their current position

in- or outside the primary memory.

Boehm and Weiser [Boehm 88] de�ne a collector, which does a conservative collection,

i.e., not a comprehensive collection. This collector does not depend on identi�cation of

references neither in root set nor during the traversal. Every item in storage, which looks

like a pointer, is treated as such. While potentially preserving too much, e.g., preserving

a garbage object pointed to by an integer, the collector cannot be allowed to move objects

between spaces2. Thus the conservative collector is based on mark-and-sweep. According to

[Wentworth 90], conservative collection may introduce large leakage as they preserve garbage

from being collected.

The conservative approach is taken a bit further by Joel Bartlett [Bartlett 88, Bartlett 89],

who de�nes a mostly copying collector based upon ambiguous roots. Still the algorithm is

not comprehensive. The conservative collection has recently been combined with generational

collection by Demers, Weiser, Hayes, Boehm, and Shenker [Demers 90]. This conservative

generational mark-and-sweep collector is based on implicit generations due to the lifetime of

objects.

The conservative approach may even work in language independent systems where point-

ers are un-tagged in storage. However, even a conservative collector may fail to preserve a

live object if the reference to the object is hidden, e.g., by encoding the pointer as the reverse

bit pattern or if o�sets and pointer arithmetic is used. Thus conservative collectors may be

fooled to collect to much.

2.3.4 Garbage Reclamation

After the garbage has been identi�ed, it must be reclaimed. At least three topics are of

interest here, i.e., when, how, and what to reclaim. The scheduling of the method and the

method itself are two sides of the same coin. The decision on what to reclaim, e.g., other

system resources than storage, may kick-back on the detection process also.

When and how to reclaim garbage

The reclamation of storage may be done incrementally on a per object basis, as in

reference counting or for small groups of objects as in area-collectors for small areas.

The reclamation process may also be more or less relaxed from the garbage detection. In

mark-and-sweep collectors, as well as in multi-generational collectors, the reclamation

process can be detached from the garbage detection process as long as the reclamation

process gets information about the detected garbage.

2Moving an object, requires a translation of the references pointing at the old address. If any of these ref-
erences are really some valid data, i.e., not a pointer, the translation will change data values, thus invalidating

the whole program.

.
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By applying concurrency to the garbage collector itself, a mark-and-sweep collector can

be turned into a mark-during-sweep as described in [Queinnec 89] which interleaves the

mark and the sweep-phases. The scheme takes advantage of the property, that garbage

stays garbage by doing the sweep-phase of one collection while the next mark-phase

proceeds. Instead of using a simple mark-�eld, the scheme may be extended to use

a counter of the last collection, which identi�ed the object as living. After the k'th

mark-phase, all objects marked k � 1 or less may be reclaimed during a sweep, thus

relinquish the reclamation process further from the individual mark-phases.

What shall be reclaimed

Algorithms for collection of unused storage may be equally applicable to collect unused

processor power, i.e., executing processes, which will never a�ect the system by other

means than using processor cycles. We call such processes, orphans. The importance of

this issue is raised by systems where call-by-future evaluation is used extensively. Baker

and Hewitt describes an incremental algorithm for the uni�ed collection of storage and

process in [Baker 77].

An orphan may be detected by an inverse traversing algorithm using the process as

root. Processes, that has no connection to the outside world, i.e., to i/o channels, are

traversed and if the traversing reaches a live object this root is a live process, not an

orphan. [Kafura 90, Washabaugh 90] describes a combined algorithm, named push-pull,

where the root set is de�ned dynamically to be the processes, that reach a live object.

It is worth noting that any system resource, exclusively reserved by a garbage object,

should be released as the garbage is collected.

2.3.5 Robustness, Recovery, and Transactions

In object-based systems that work on long-lived data, e.g., object-oriented databases and

persistent programming languages, where recovery and robustness to failures are important,

the garbage collector must respect and cooperate with the system according to its model of

failure and recovery. These systems may use transactions for consistent updates of the non-

volatile storage. An atomic collector is a collector that preserves correctness of the recovery

system, the state of the non-volatile storage, and the collector itself, across failures of these

systems.

Elliot Kolodner de�nes in [Kolodner 89] an atomic, stop-and-copy collector for a stable

heap (a persistent heap where computation on shared state occurs within atomic transac-

tions). The atomic garbage collector is coordinated with the recovery system (of the trans-

action system) to retain correctness of both the garbage collector and the recovery system.

Due to the pause introduced by "stopping the world", the collector is useful in small sized

heaps only. In [Kolodner 90, Kolodner 92a, Kolodner 92b], this ine�ciency is removed and

an atomic, incremental garbage collection scheme for large stable heaps is described. The

scheme is based on [Appel 88] to be incremental.

A similar collector was also presented by David Detlefs, [Detlefs 90]. His scheme is a

conservative collector for a transaction system integrated with C++. Detlefs presents a con-

current mostly-copying collector for C++, which employs the read barrier of Appel [Appel 88],

and then shows how to make it atomic. Detlefs's atomic collector is likely to be less e�cient

than Kolodner's because it is not as well integrated with the recovery system.

.
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2.3.6 Chronology of non-distributed Collectors

The Tables 2.2 and 2.3 give an overview of the surveyed sequential garbage collection tech-

niques. The overview is sorted by publication dates, to serve as a chronology of garbage

collectors.

Year Name Characteristics References

1974 Deferred incremental ref-
erence counting

Reference counting using a trans-
action �le and separate tables.
[2.3.1]

Peter Deutsch and Daniel
Bobrow [Deutsch 76]

Multiprocessing compact-
ifying collection

A parallel, mark-and-copy collec-
tor. [2.3.1]

Guy L. Steele [Steele 75]

1975 On-the-
y collection Mark-and-sweep garbage collec-
tor, that works concurrently with
mutators. [2.3.1]

Dijkstra, Lamport, Mar-
tin, Scholten, Ste�ens [Di-
jkstra 76, Dijkstra 78]

1976 Incremental garbage col-

lection of processes.

Collection of both storage and ir-

relevant processes. [2.3.4]

Henry G. Baker, Carl He-

witt [Baker 77]

Incremental, real-time
garbage collector

A concurrent copying collection,
using semi-spaces and a protec-
tion of the fromSpace [2.3.1]

Henry G. Baker [Baker 78]

1977 Area copying collection Large address space partitioned
in areas with separate copying
collections. [2.3.1]

Peter B. Bishop
[Bishop 77]

On-the-
y collection Mark-and-sweep garbage collec-
tor which work concurrent with
mutators.[2.3.1]

H. T. Kung, S. W. Song
[Kung 77]

1979 Group reference counting Reference counting applied be-
tween groups of objects instead of
individual objects for reclamation
of cycles of garbage. [2.3.2]

Daniel Bobrow
[Bobrow 80]

1980 \Don't do it" collection In gigantic LISP systems the
adding of a third level back-
ing storage may be used for old
unused objects instead of doing
garbage collector. Bakers copying
collection is used to move the old
objects out of primary and into
tertiary storage.[2.3.2]

Jon L. White [White 80]

Real-time collection based
on object lifetime

Generation-based semi-spaces
[2.3.2]

Henry Lieberman, Carl
Hewitt [Lieberman 83]

1984 Generational scavenging Copying between multiple semi-
spaces, de�ning objects to belong
to semi-space according to their
current lifetime. [2.3.2]

David Ungar, Frank Jack-
son [Ungar 84, Ungar 88]

Ephemeral copying collec-
tion

Large heap collection for Symbol-
ics 3600 LISP. [2.3.2]

David Moon [Moon 84]

Table 2.2: Garbage collection schemes from 1970 { 1984 (part 1)

.
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Year Name Characteristics References

1987 Faulting collection Mark-and-sweep collector for
Emerald using object protection
to achieve concurrency. [2.3.1]

Eric Jul, Norm Hutchin-
son, Andrew Black, and
Hank Levy [Jul 87,
Jul 88a, Jul 88b]

1988 Conservative collection Conservative mark-and-sweep
collection. [2.3.3]

Hans Boehm and Mark
Weiser [Boehm 88]

Mostly copying collection Copying collection with ambigu-
ous roots. [2.3.3]

Joel Bartlett [Bartlett 88,
Bartlett 89]

Real-time concurrent col-
lection

A concurrent two-space copy-
ing collector using page-fault for
synchronization with mutators.
[2.3.1]

Andrew Appel, John Ellis,
and Kai Li [Appel 88]

1989 Mark-during-sweep Mark-and-sweep collector with
parallel execution of the mark-
phase while the sweep-phases of

the previous cycle is done. [2.3.4]

Christian Queinnec, Bar-
bara Beaudoing,
and Jean-Pierre Queille

[Queinnec 89]

1990 Atomic incremental col-
lection

Atomic, robust, and concur-
rent copying collector cooperat-
ing with the recovery system for
transactions in a persistent heap.
[2.3.5]

Elliot Kolodner [Kolod-
ner 90, Kolodner 92a,
Kolodner 92b]

Concurrent atomic collec-
tion

Atomic, concurrent, mostly-copy-
ing collector for C++ including co-
operation with the recovery sys-
tem for transactions in a persis-
tent heap. [2.3.5]

David Detlefs [Detlefs 90]

Conservative generational
collection

Conservative mark-and-
sweep collector based on implicit
generations due to the lifetime of
objects. [2.3.3]

Demers, Weiser,
Hayes, Boehm, Bobrow,
and Shenker [Demers 90]

Push-pull collection A push-pull mark-and-sweep col-
lector with dynamic de�ned root
set based on the processes' abil-
ity to access their environment.
[2.3.4]

Dennis Kafura,
Doug Washabaugh, and
Je� Nelson [Kafura 90]

1991 Parallel generational col-
lection

Generational copying with collec-
tion in multiple generations con-
currently. [2.3.2]

Sharma and So�a
[Sharma 91]

Mostly parallel collection Using dirty-bits to do concurrent
collection with either conserva-
tive mark-and-sweep or a gener-
ational copying collector. [2.3.2]

Boehm, Demers and
Shenker [Boehm 91]

Table 2.3: Garbage collection schemes from 1986 | 1992 (part 2)

.
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2.4 Distributed Collection

In distributed systems inter-node references complicates garbage collection, especially when

some nodes are temporarily unreachable. However, many references tend to be short lived

and local [Lieberman 83, Schelvis 88, Jul 88b, Rudalics 86]. Thus partitioning the storage in

node-local areas and applying garbage collection locally to each, should collect a large part

of the garbage.

Most distributed collectors, whether based on local area collectors or not, are satis�ed

with the collection of most of the garbage [Bevan 89, Goldberg 89, Lester 89, Shapiro 90,

Mancini 91]. For many practical purposes this is enough, though memory leakage is a long

term threat to such solutions.

To make a comprehensive collection, the system must extend the local area collectors with

a global collector. Such a collector can be made by letting a collector on each node cooperate

[Augusteijn 87, Schelvis 89]. Or, as Lieberman and Hewitt suggest, by moving objects to a

node that needs them or the creator node, when no local reference exist on the current node

[Lieberman 83].

The distributed collectors may be classi�ed by their basic algorithm. This does not say,

that they may not use a mixture of algorithms. In general, there is no constraint between the

internal algorithm used locally on a node, and the global algorithm used to make the local

collectors cooperate as one global collector.

Abdullahi, Miranda, and Ringwood survey distributed garbage collection techniques at

large [Abdullahi 92]. In the following, we present some of the main techniques used in

distributed collection. A variety of local/global cooperation schemes are described mostly

independent of their basic algorithm, followed by how distributed systems have achieved

garbage collection using reference counting and traversing collection respectively. Finally, a

chronology of distributed collectors is given.

2.4.1 Partitioning Collectors

In Bennett's version of Distributed Smalltalk [Bennett 87] an existing local collector on

each node perform its own collection. To prevent globally known objects from being locally

collected, each node has a table of remotely accessed objects, which are part of the root set.

We call this the InTable. The global collector removes globally detected garbage from these

tables, thus leaving the reclamation to the local collectors. In general, this may be done by

removing the global garbage from the local root set.

Another version of Distributed Smalltalk by Marcel Schelvis [Schelvis 88, Schelvis 89] is

based on local collectors which cooperate by exchanging messages with timestamps. Thus

the basic algorithm may be either traversing or counting.

Barbara Liskov and Rivka Ladin describes in [Liskov 86] a collection scheme, where in-

dependent local collectors work independently according to their own algorithm. Their co-

operation on collecting, what is only globally detectable as garbage, is achieved by utilizing

a general mechanism of the system, i.e., they use a logical centralized, but physically dis-

tributed, service to reveal cross-node references. The service makes the global collection

robust to failures and limited availability of the individual nodes of the distributed system.

Mohamed Ali presents a number of distributed collection schemes [Mohamed Ali 84].

The simplest schemes do stop-mark-and-sweep on the entire distributed heap, managed by a

coordinator node. The distributed local scheme consists of independent local collectors with

.
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incoming references in their root set. The result of each local collection is local reclamation

and an update of the incoming references on the other nodes. The last scheme does distributed,

real-time, copying collection by combining the area-collector idea [Bishop 77] and Baker's

real-time copying collection [Baker 78]. Still, neither schemes collect distributed cycles of

garbage.

2.4.2 Distributed Reference Counting

In true parallel systems, e.g., distributed systems, locking or synchronization is necessary

to ensure the correct serialization of reference counter updates. When extending reference

counting to cope with distribution, two problems must be solved. First, cyclic garbage needs

to be detected by other means. This is a general defect of reference counting, although it is

even harder to solve in the distributed case. Second, non-garbage may be reclaimed when a

decrement message arrives before an earlier increment message. This may happen when the

counter update messages arrive out of order when transmitted across node boundaries, i.e.,

a counter may be decremented to zero, and the object reclaimed, though a reference exist,

but the increment message indicating this has been delayed.

A variety of solutions to overcome the later problem has been published [Watson 87,

Bevan 87, Bevan 89, Piquer 91]. The key feature to prevent decrement messages from over-

running increment messages is to send one type of messages only. This is achieved in weighted

reference counting by associating a counter with both the object and the references to the

object. Initially, during, and after collection, the sum of counters on references to an object is

equal to the counter with the object. When a reference is copied, its counter value is divided

between the new and the old reference so that the sum of the two is equal to the counter of

the original reference, e.g., by associating half of the original value with both references. Such

a division of a counter in two halves can be done locally, where the reference is copied, thus

no update messages need to be transmitted across the network. A deleted reference results

in a decrement message being sent to the object. Thus objects are born with a large count

value that becomes zero, when the last reference is deleted. To overcome problems dividing

counters with small values, e.g., 1, indirection objects are introduced. An indirection object

replaces the reference with the small value, still associated with that reference. The indirec-

tion object contains a large value itself which is divided among the references to the object.

Piquer shows how the indirection object may be avoided at the cost of an additional counter

�eld in the objects [Piquer 91].

Goldberg has proposed a similar scheme called generational reference counting in [Gold-

berg 89, Goldberg 91], which classi�es the references according to the number of times they

have been copied. Eckart and LeBlanc describes in [Eckart 87] a proposal for a distributed

reference marking algorithm. References are classi�ed as either de�ning or borrowed as pro-

posed in [Spector 82]. Instead of reference counters in objects references are supplied with

information of their origin and use. This resembles a reference counters with values 0 or 1 on

the reference and ordering of references to an object in a tree. To collect cycles of garbage

restrictions are imposed on how applications may update references.

The deferred reference counting scheme proposed for sequential systems may also be

applied to distributed reference counting to limit the communication costs.

.
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2.4.3 Distributed Traversing Collectors

A global traversing garbage collector must handle all the potentially cross-node references

and detect garbage not referenced from any node, even if the nodes do not run simultaneously.

The marking-tree collector [Hudak 82] does a distributed mark-and-sweep collection with

real-time performance and reclamation in parallel with mutators. It prevents to use central-

ized data and control, other than a logical rendezvous between the phases of the collector.

The scheme is based on forking o� a marker task incrementally for each referenced object,

which has not been marked yet. Each marker task keeps a counter on the marker tasks it

has initiated, and reports back to its initiator, when it has received reports from all its own

marker tasks. The marker tasks represent a distributed marking-tree. The mark-phase is

�nished when the tree is empty, i.e., when the root of the marking tree receives a report from

the last of its marker tasks. Thus, the overhead due to communication is fairly large. The

collector does orphan collection also.

POOL [Bronnenberg 89] is a family of parallel object-oriented programming languages to

be executed on a distributed system architecture, DOOM. The object model, the language,

and the underlying architecture are all very similar to the Emerald approach [Beemster 90,

Wester 90, Spek 90]. The garbage collector for POOL [Augusteijn 87] consists of cooperating

local mark-and-sweep collectors. Its concurrency with mutators is achieved by traversing

and marking incrementally at invocation time. The end of the mark-phase is detected by

messages exchanged between the nodes and a synchronizer on one of the nodes.

Especially distribution introduces the need to survive failures, as failures may a�ect only

part of the system. The following two schemes let cooperating local collectors adapt to

the current availability and complete in the available part of the system, using conservative

estimates for the non-available parts.

Marc Shapiro, David Plainfoss�e, and Oliver Gruber propose in project SOR [Shapiro 90,

Shapiro 91] a low level, language independent system collector. The conservative local tracing

collectors are extended with tables for incoming and outgoing references. A protocol for table

updates based on previous local collection results and another that detects distributed cycles

of garbage make the scheme robust to node failures and recovery, but it is not comprehensive.

The proposed scheme was tested in a distributed LISP system (Transpive) [Plainfoss�e 92].

Luigi Mancini, Vittoria Rotella, Simonetta Venosa describe in [Mancini 91] a similar col-

lector for Galileo to collect objects on non-volatile storage. The collector is a stop-and-copy

type, which may not be the best solution in a distributed system, if it stops the mutators for

too long a period. The authors propose a fault-tolerant adaption when nodes become unavail-

able. The scheme enables a non-comprehensive collection, based on conservative estimates of

the root set to complete while part of the system is unavailable.

Also Lang, Queinnec, and Piquer describes distributed collection schemes [Lang 92], which

eventually reclaims all inaccessible objects. They further re�ne a scheme based on indepen-

dent node collectors, like that used in the project SOR to cooperate for various groups of

nodes. The scheme is expected [Lang 92] to be comprehensive eventually, if each distributed

(interconnected) graph of garbage objects is contained in a group of nodes, which do not fail

during the group collection.

2.4.4 Current Issues in Research on Garbage Collection

The recent development of robust collectors for distributed systems are even richer than

described here. The problems in distributed garbage collection are currently an ongoing

.
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research �eld. Further proposals may be found in [Hughes 85, Lermen 86, Vestal 87, Tel 87,

Tel 91] and in the survey of Abdullahi, Miranda, and Ringwood [Abdullahi 92] as well as

other papers in [Bekkers 92].

One of the challenging problems is to combine partial collectors and comprehensive col-

lectors to achieve both robustness to failures and expedient collection of some garbage. As

an algorithm approaches comprehensiveness it becomes more and more dependent on the

availability of the entire distributed system, thus robustness is traded-o� for expedience.

Furthermore, a comprehensive collection depends on all nodes in the distributed system,

thus, the mere presence of communication delays in distributed garbage collection often rules

out the possibility of ful�lling the goals of comprehensiveness and expedience by a single

collector. Thus, a trade-o� between comprehensiveness and expediency is necessary.

By trading o� comprehensiveness, we achieve a partial collection, i.e., only part of the

garbage is collected. Figure 2.7 describes the various degrees of partial collection, from collec-

tion of nothing, to collection of all garbage, with a broad variety of partial collectors, which

are able to collect only part of the garbage, in between. From the most partial distributed

collectors like independent node collectors with conservative root estimates to comprehensive,

distributed collectors like the ones implemented for POOL [Augusteijn 87] and described by

[Hudak 82, Mohamed Ali 84]. In between, we �nd collectors which collects more or less

distributed garbage, by cooperation of local node collectors. The degree of cooperation may

range from a few nodes, over a group of nodes, to nearly all nodes. The Galileo and SOR

projects are examples of such cooperating node collectors [Mancini 91, Shapiro 90]. [Lang 92]

describes a distributed collection scheme, which reclaims all inaccessible objects in a group

of nodes, and adapts the de�nition of the group of nodes according to current availability of

nodes.

General Implications

Last but not least, we also note that distributed collectors face the same problems as does

any distributed concurrent application. Thus the study of distributed garbage collection has

a merit both as an important case in garbage collection and as an interesting distributed

application in its own right.

The systems described in this section, their garbage collection schemes, and references to

further descriptions are shown chronologically in Table 2.4.

.
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Year Name Characteristics References

1982 Marking-tree collector A parallel, distributed marker
task per reachable object is cre-
ated, representing the tree of
reachable objects. [2.4.3]

Paul Hudak and Robert
M. Keller [Hudak 82]

1984 Distributed real-time
copying collection

Independent node-local Baker
collectors with InTables in roots
and removal of garbage entries
from remote InTables. [2.4.1]

K. A.-H. Mohamed Ali
[Mohamed Ali 84]

Replicated garbage collec-
tion service

Independent local collectors and
a global logical centralized (but
distributed) service for cross-node
references. Robust to failures and
limited availability. [2.4.1]

Barbara Liskov and Rivka
Ladin [Liskov 86]

1987 Local/global collection Dual collector scheme with InTa-
bles for Bennetts version of Dis-
tributed Smalltalk. [2.4.1]

John Bennett [Bennett 87]

Local collection with co-
operation

Local collectors cooperating by
exchanging messages with time-
stamps for another Distributed

Smalltalk. [2.4.1]

Marcel Schelvis
[Schelvis 89]

Cooperating local collec-
tors

Local incremental mark-and-
sweep and cross-node marking at
invocation time. The \no gray
object" state is the global termi-
nation point detected by message
exchange between the nodes and
a synchronizer on one of the node.
[2.4.3]

Lex Augusteijn, Ben Hul-
shof, Marcel
Beemster [Augusteijn 87,
Beemster 90]

Weighted reference count-
ing

Decrement from a positive count
associated with both the object
and its references as references
are deleted. [2.4.2]

Watson and Watson, Be-
van, Piquer [Watson 87,
Bevan 87, Bevan 89, Pi-
quer 91]

1989 Generational reference
counting

References classi�ed by the num-
ber of times they have been
copied. [2.4.2]

Benjamin Gold-
berg[Goldberg 89, Gold-
berg 91]

1990 Adaptive local tracing Low level, language independent
local tracing collectors with ta-
bles for incoming and outgoing
references. [2.4.3]

Marc Shapiro, David
Plainfoss�e, and
Oliver Gruber [Shapiro 90,
Shapiro 91]

1991 Non-volatile storage col-
lector

Global stop-and-copy collection
of objects on non-volatile storage
with adaption to the current set
of available nodes. [2.4.3]

Luigi Mancini, Vittoria
Rotella, and Simonetta
Venosa [Mancini 91]

1992 Adaptive group tracing Local tracing collectors cooper-
ating for dynamically identi�ed
groups of nodes with tables for
incoming and outgoing references

for each group. [2.4.3]

Bernhard Lang, Christian
Queinnec, and Jos�e Piquer
[Lang 92]

Table 2.4: Distributed garbage collection schemes

.
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2.5 Summary of Survey

We have surveyed traditional garbage collection techniques and described the basic schemes:

� reference counting,

� mark-and-sweep collection, and

� copying collection.

Furthermore, the techniques to make traversing collections concurrent is described. An

overview of further re�nements to the basic collection schemes is given, including techniques

for:

� real-time collection,

� incremental collection,

� area collection, and

� conservative collection.

Garbage reclamation and recovery in transaction system is mentioned with current solutions

like:

� mark-during-sweep, and

� atomic collection.

The non-distributed schemes are used as building blocks in distributed garbage collection

proposals. Recent schemes and current issues in the �eld of distributed garbage collection have

been presented to further motivate our goals towards an implementation of a comprehensive,

concurrent, and robust garbage collection scheme for distributed systems.

.



Chapter 3

The Design of a Comprehensive

Distributed Garbage Collector

This chapter discusses problems in comprehensive and concurrent garbage collection for

failure-free distributed systems. The basic assumptions and our requirements to a garbage

collector, i.e., comprehensiveness, concurrency, distribution, and e�ciency, are rephrased

(Section 3.1). Algorithms and invariants concerning e�cient garbage collection in a dis-

tributed environment are developed by step-wise re�nement (Sections 3.2-3.8).

The �rst algorithm is a distributed, but centralized, sequential, and blocking mark-and-

sweep algorithm (Section 3.3). This generic algorithm forms the basis for the later re�ne-

ments. It is �rst constrained with the requirements (Section 3.4) and each of the de�ciencies

found is then analyzed and circumvented (Sections 3.5-3.7). The chapter concludes that a

comprehensive, concurrent, distributed, and e�cient garbage collection algorithm has been

achieved in a distributed system where all nodes are fully available (Section 3.8).

In this chapter, we have assumed a failure-free distributed system. Chapter 4 discusses

garbage collection and robustness with respect to temporary and partial failures in the dis-

tributed system. Chapter 5 discusses the actual implementation of our garbage collector in

the Emerald prototype.

3.1 Garbage Collector Goals Revisited

Before developing our collector algorithm, we will rephrase our requirements to a collector in

the current environment, i.e., a failure-free, distributed system. The requirements are based

on the goals set forth in Section 1.5.

Example: A Distributed Graph of Objects

In the following, we use the graph described in Section 1.2 and �rst illustrated in Figure 1.1

as an example. The distributed graph of 15 objects on 6 nodes is shown as Figure 3.1.

Under the assumption that the distributed system works without failures, the goals may

be rephrased: The collector must be comprehensive, concurrent, and distributed without in-

troducing unnecessary ine�ciencies. Of course, the collector must never collect a live object,

i.e., it must be correct. A closer look at the revised goals and their consequences reveals:

43
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Figure 3.1: A distributed graph of objects

Comprehensiveness

As all objects, that were garbage before the garbage collector is started, must be col-

lected, the collector cannot be based on conservative techniques like [Boehm 88] or

partial collections like [Shapiro 90]. Both the root set and the live references must be

determined exactly. Comprehensiveness also demand collection of cycles of garbage,

even cycles spanning several nodes.

The Example: The objects I, N, and O on Figure 3.1 constitute such a distributed

cycle of garbage, which must be collected by our collector.

Moreover, comprehensiveness restricts the solution from using traditional reference

counting techniques, i.e., a comprehensive collector must traverse the graph of ref-

erences.

Concurrency

Our collector must work \on-the-
y", i.e., concurrently with user processes (mutators).

The blocking period should be kept small enough to be almost insigni�cant to the

mutators, e.g., on the order of the time slice used by the CPU scheduling algorithm.

The maximum time should be bounded, i.e., not dependent on the number of objects.

Thus blocking collectors like stop-and-copy cannot be used. As the collector may run

concurrently with mutators, there is a need to synchronize their access to the common

object store.

The Example: If the root set of Figure 3.1 consist of three mutators originating in

A, B, and C, these are able to execute in object A, B, C, D, E, F, G, L, and M while the

collector is running concurrently.

To further minimize the blocking period, the collector may be designed as a set of

concurrently running, cooperating processes (coroutines). The concurrency inside the

collector introduces further, yet more �ne-grained, synchronization constraints.

.
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Distribution

In a distributed system the graph of references may cross node boundaries. Also in-

terconnected garbage may be distributed. Thus, comprehensiveness and distribution

together demands that up-to-date global information on the graph of references be-

tween objects is available.

The Example: As an example, Node 1 on Figure 3.1 cannot determine whether

objects D and J are alive or not without information from the other nodes.

E�ciency

E�ciency is one of the design constraints, but expedience is not always achievable. To

be comprehensive, we tolerate that the garbage collector may run for a very long time

before all parts of the distributed system have been checked. Thus, the collection must

be done concurrently with other activities and each pause introduced by a garbage

collection-step must be kept short. Furthermore, the total number of steps should

summarize to the smallest possible grand total. To take advantage of the parallelism

available in the distributed system, our collector should be partitioned into node collec-

tors, one on each node. Also, concurrency inside each node collector introduces means

of exploiting parallelism and keeping each step small, and thus limiting the period the

mutators are blocked.

To summarize, e�ciency can be achieved by letting the garbage collector exploit natural

parallelism, cut down pauses, and limit the total overhead.

3.2 Plan for the Development of a Distributed Collector

A garbage collector, that meets the revised goals, is developed during the rest of this chapter.

First a generic algorithm, which does not meet all requirements, is presented in Section 3.3.

This sequential mark-and-sweep garbage collector is distributed, but centralized, sequential,

and blocking. This generic algorithm is held up in Section 3.4 against the revised requirements

to analyze and describe each of its de�ciencies.

The following three sections contains a step-wise re�nement where each of the de�ciencies

found is circumvented and more advanced algorithms developed through the Sections 3.5 to

3.7. First, the collector and mutators are allowed to run concurrently by means of the garbage

collection fault mechanism (Section 3.5). Second, the collector is distributed, i.e., partitioned

in node-local collectors that cooperate (Section 3.6). Third, the algorithm is made more

streamlined by detailing how the invariants and color coding may be implemented including

asynchronous inter-node communication and interleaving of the mark and sweep phases on

each node (Section 3.7). Finally, the algorithm developed in this chapter is evaluated (Section

3.8). It is comprehensive, concurrent, distributed, and e�cient, but depends on full node

availability.

Throughout the presentation, invariants that maintain a consistent system during garbage

collection are also developed. An assumption, underlying all these collectors and invariants,

is that garbage stays garbage. This is, however, a natural assumption in object-based systems

where unreachable objects never become reachable again.

.



{ 46 {

3.3 The Generic Garbage Collector

A generic algorithm is described as Algorithm 1. It is based on the traditional mark-and-

sweep collector, but di�ers from the classic version described in Section 2.2.2 in that it works

in a distributed system where all mutators are stopped during the whole collection. The

collector is centralized, i.e., it runs on one node in the distributed system and reaches all the

other nodes by synchronous communication.

As usual when doing a mark-and-sweep garbage collection, we use a mark-�eld in each

object. The �eld may take one of the three colors white, gray, or black, as value. The mean-

ing of the colors are:

white The object may be garbage. When garbage collection starts every object is regarded

potentially garbage (white) until the collector has reached it by a reference from a live

object. When a garbage detection terminates all white objects are really garbage.

gray The object is reachable, but the marking of objects, referenced by this one, has not

been �nished yet, i.e., the traversal of the object has not �nished yet.

black The object is reachable, and all objects referenced directly from this object are gray

or black.

The color of an object is changed from the initial white to the intermediate gray|and

from gray to the �nal black|by means of two functions. The functions which may be applied

to the object during the mark-phase are:

Shade marks a white object gray.

Mark-and-traverse marks a gray object black.

Moreover, Mark-and-traverse takes the object it marks black and Shade all the objects it

references. Thus Mark-and-traverse is applied to an object, whereas Shade may be view as

being applied to a reference to an object.

The algorithm depends on the following invariants and rules about coloring.

Invariant 1 : Monotone shading

During one garbage collection cycle (except during the initialization of the mark-�elds) objects

never get a brighter color, i.e., the coloring is a monotone function that shades the live objects

(white 7! gray 7! black). I 1

Invariant 2 : No black to white references

A black object never contains a reference to a white object, i.e., when an object is marked

black, then every other object it references is marked at least gray, i.e., gray or black. I 2

The algorithm can be described as eight steps grouped in three phases as indicated in

Algorithm 1. These phases are found in all version of the algorithm. The tasks of the

individual steps must also be present, but their ordering and/or grouping in phases may be

di�erent. Thus, one garbage collection cycle is equivalent to one execution of these eight

steps.

.
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Algorithm 1 (Generic)

The centralized garbage collector:

Initialize 1.1 For all nodes, all mutators are suspended.

1.2 For all nodes, all objects are marked white.

1.3 The root set of all root objects from all nodes is established, thus

de�ning the global root set.

Mark-Phase 1.4 The global root set is marked black, i.e.:

For each object in the global root set , Mark-and-traverse1 the object

on the node hosting the object.

1.5 The gray set is marked black, i.e.:

While there are more gray objects, choose one and Mark-and-traver-

se1 that object on the node hosting the object.

Sweep-Phase 1.6 For all nodes, the run-time system is updated to re
ect the fact that

white objects are now considered garbage.

1.7 For all nodes, the storage occupied by white objects is reclaimed.

1.8 For all nodes, the suspended mutators are resumed.

Subroutine Mark-and-traverse:

Traverse the object to Shade1 all its references to other objects and mark the

object black.

Subroutine Shade:

Shade an reference at least gray, i.e., the referenced object becomes gray, unless

it was black (or gray) already. Thus the net e�ect is, that a white object is

marked gray on the node hosting the object.

A 1

3.4 De�ciencies in the Generic Algorithm

The generic algorithm, Algorithm 1, does not meet all the requirements of Section 3.1. Its

main de�ciencies are discussed here. First, it suspends mutators during a whole collection

cycle, i.e., no concurrency with mutators and thus longer pauses. Second, it does not employ

any parallelism internally. Moreover, due to the distribution of objects, a large overhead is

introduced by the synchronous communication with other nodes in all steps. Thus many

delays are introduced by time consuming communication between the nodes. The algorithm

needs to be optimized to diminish the latency and provide a more e�cient collection. Algo-

rithm 1, though simple and ine�cient, does, however, collect all garbage correctly, i.e., it is

comprehensive.

1The exact de�nition of the functions Mark-and-traverseand Shade are given at the bottom of the algorithm.

.
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Now, consider each of these de�ciencies in turn:

The garbage collector is not interleaved with the mutators

The mutators are suspended during the whole collection. This should be changed

without changing the mutators, as correct user programs working without garbage

collection must work with garbage collection without change. Section 3.5 presents a

solution to this.

No distributed concurrency achieved

The centralized garbage collector does its actions on the other nodes in a remote proce-

dure call fashion. Thus only one node is executing at a time. The available processing

power should be utilized by distributing the execution of the garbage collector to con-

current processes, at least one on each node. Moreover, mutators and collectors should

also be allowed to run concurrently on di�erent nodes. Section 3.6 and 3.7 present

solutions that cope with these problems.

Further ine�ciencies

The above mentioned de�ciencies are our primary concern. Further optimizations may

be obtained by also interleaving di�erent parts of the garbage collection cycle. Both the

mark-phase and the sweep-phase may be implemented as separate processes. Thus step

1.5 of the current garbage collection cycle and step 1.7 of the previous cycle may both

progress concurrently with mutators, i.e., mark-during-sweep is achievable in parallel

with running mutators. Also the encoding of colors by mark-�elds and/or sets of

references can be optimized. A solution to these problems is discussed in Section 3.7.

The �rst steps: Some quick �xes

Besides the optimization obtainable by taking the above mentioned de�ciencies into account

the two traversals of the whole object storage (step 1.7 and 1.2) may be interleaved. This

optimization are applied immediately by removing step 1.2 from Algorithm 1. Instead the

obligations of step 1.7 is changed to do the tasks of both steps during the traversal of the

object storage. For each object, i.e., each allocated object, we look at the color of the mark.

A white object is recycled, i.e., returned to the object manager. The mark-�eld of a black

object is changed to white, i.e., made ready for the next garbage collection cycle.

New objects allocated before the �rst garbage collection cycle and between the revised

version of step 1.7 and step 1.3 of the next garbage collection cycle must be initialized with

white in their mark-�eld also. Thus we constraint the object manager to allocate all objects

white. Such an initialization may come for free, if made in cooperation with the default

object initialization.

3.5 Concurrency with Mutators

The next step is to limit the length of the period where mutators are blocked by the collector.

A much shorter latency than available in Algorithm 1 may be achieved by not suspending

the mutators during the whole garbage collection cycle, i.e., narrowing the gap between the

task of the �rst and last step (1.1 and 1.8). Mutators and collector do, however, interact as

they use the same storage. Thus restrictions in their concurrent execution are implied. To

identify the restrictions needed, we describe the characteristics of the two types of processes.

.
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Figure 3.2: Mutators in the graph of objects before, during, and after a garbage collection

On this basis, our concurrent algorithm is presented. It takes advantages of the atomicity

of certain garbage collection operations, as viewed from the mutators. Furthermore, the

mutators are allowed to execute in only a small part of the object graph. When a mutator

extends its execution outside this small part, a run-time mechanism ensures that the graph

is kept consistent as viewed from the garbage collector.

Example: A Graph of Objects with Mutators

The interference between mutators and the collector is illustrated by the various stages of the

object graph in Figure 3.2. The initial state of the graph of objects (a) follows our general

example from Figure 3.1 with the addition of two mutators 1 and 2, executing in object A

and C respectively. (Example to be continued later)

.



{ 50 {

3.5.1 Mutation of the Object Graph

A mutator is characterized by its position in its own life cycle: birth, life, or dead. A mutator

is created by another mutator and a mutator may (but need not) cease to exist, e.g., if

it terminates. While alive a mutator may be characterized as either active or passive, i.e.,

either running, or blocked by another mutator. An active mutator may cause the shift from

passive to active of another mutator and from active to passive of it self, e.g., by waiting for

a synchronization signal from another mutator. Furthermore, an active mutator may mutate

the object graph by:

� create a new object or mutator,

� copy a known2 reference,

� delete a known2 reference, and

� delete or otherwise invalidate an object known2 by a reference.

Implicit copying of a reference occurs when a mutator invokes an operation in another object.

The mutator continues in the invoked object, which gets an implicit reference to the previous

object, i.e., the return address.

Continued Example: Mutators working in a Graph of Objects

In the example of Figure 3.2, when mutator 2 does an invocation from C to G (b) an implicit

reference G ! C is added. However, when mutator 1 forks another mutator 3 to start run-

ning in object B (c) by using the reference A ! B, no implicit reference is added from B !

A as processes do not return. (Example to be continued later)

3.5.2 Where Collectors A�ect Mutators

As seen from the mutators, the collector is characterized by its execution of the tasks in

Algorithm 1. The interference from the collector is best described by the three types of

interference: directly, by the use of the object graph, and by the use of data structures in the

run-time system.

1. Mutators are a�ected directly by the suspension of active mutators, and the resump-

tion of the suspended mutators.

The goal is to limit the interval between these two tasks.

2. The object graph is read to identify references between objects and the mark-�eld is

read and updated by the collector while:

� All root objects are marked black and their references to white objects marked

gray.

� Each gray object is marked black, and its references to white objects marked gray.

� White objects are recycled and the mark on all other objects is reset to white.

The creation of new objects falls into this category also. The object graph must retain

a consistent coloring of the individual objects and protect the invariants.
2A known reference is a reference available|explicit or implicit|in the current object.

.



{ 51 {

3. The run-time system data structures are read while the root set is gathered and

updated when tables containing \weak-pointers" are adjusted, e.g., references to white

objects are deleted during the sweep-phase.

The main purpose here is to keep the run-time system consistent and to deliver a

consistent snapshot of the system to any mutator.

We now have to decide when to suspend the mutators explicitly, or implicitly by providing

synchronized access to the common data (critical regions).

3.5.3 Mutators Enabled during most of a Garbage Collection Cycle

As noted previously, garbage stays garbage. Thus, once it is identi�ed, the mutators are unable

to interfere on this part of the object graph, i.e., the white objects. Thus the sweep-phase

may be done independent of the resumption of the mutators, which may be moved from the

bottom to the top of the sweep-phase. Synchronized access to tables in the run-time system

by step 1.6 and the creation or deletion of objects by mutators is still needed. We demand

these operations to be atomic.

During the initialize-phase the collector gets informed about the \system state" at-large.

Thus a mutator that changes its own state (active/passive), is born, dies or creates new

mutators, must be suspended at least during creation of the root set (step 1.3) and during

its ownMark-and-traverse (step 1.4). This enables mutators to be resumed individually after

their Mark-and-traverse has completed.

The remaining interaction is that mutators may now change the graph of references while

the rest of the root set and later the gray set is Mark-and-traverse. Our solution to this

problem is inspired by the logical partitioning of the object graph by the color of the objects

as illustrated on Figure 2.6 and by Figure 3.2(d-h). The mark-phase of the garbage collector

moves an object from:

� white to gray, when reachability is detected, and

� gray to black, when all its references are at least gray.

The garbage collector does no further change to black objects during the mark-phase; only it

might need to read the mark-�eld when trying to shade the object from another object. Thus,

mutators may execute in black objects without problem and that is where they are resumed.

Invariant 2 (page 46) ensures that mutators executing in black objects has references to black

or gray objects, but never to white ones.

To prevent mutators from executing in objects other than black ones, the gray ones are

protected. When the mutator tries to access a protected object, a garbage collection fault is

caused. The scheme is similar to a page-fault caused by a processor issuing a memory request,

if the memory page is not available. Like a page-fault handler ensures that the needed page

is made available, the garbage collection fault handler ensures that the object is executable

by doing a Mark-and-traverse on that object, removing the protection and resuming the

mutator. Thus, the invoked object is moved from the gray to the black set of the virtually

partitioned storage.

Continued Example: Mutators and Collector working Concurrently

In the example of Figure 3.2, a garbage collection is started after (c). The initial root set, i.e.,

the objects where mutators are running currently, are marked black and referenced objects

.
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at least gray (d). While the collector runs, mutator 1 invokes a gray object, F from A which

causes a garbage collection fault. The invocation results in a temporary reference from F

to A, and the garbage collection fault ensures that object F is traversed and marked black

(e). When mutator 2 returns from G to C (f), it returns to a gray object. Here a garbage

collection fault on return ensures that C is Mark-and-traversed before execution of mutator

2 is resumed in C. (Example to be continued later)

3.5.4 The Faulting Collector

The concurrent collector is presented as Algorithm 2. It is based on the two previous men-

tioned (page 46) invariants and the following two, i.e., Invariant 3 and 4.

Invariant 3 : Gray objects are protected

A gray object is protected against any use, i.e., invocation of its operations. I 3

Invariant 2 on page 46 and Invariant 3 above ensure, that when a mutator wants to do

something with a non-black object, that object is gray and protected.

The faulting garbage collector is outlined as Algorithm 2. The mutators are constrained

in this scheme without applying changes in the mutator program. Instead, the run-time

system ensures that the invariants are maintained.

Algorithm 2 (Faulting)

The Garbage Collector:

Initialize 2.1 For all nodes, each mutator is suspended including mutators arriving

from other nodes.

2.2 For all nodes, the root set of all root objects is established, thus

de�ning the global root set.

Mark-Phase 2.3 The global root set is marked black and mutators resumed, i.e.:

For each object in the global root set ,Mark-and-traverse the object on

the node hosting the object. If the object was a suspended process,

i.e., one of the suspended mutators of step 2.1, the process is resumed.

2.4 The gray set is marked black, i.e.:

While there are more gray objects, choose one andMark-and-traverse

that object on the node hosting the object.

Sweep-Phase 2.5 For all nodes, the run-time system is updated to re
ect the fact that

white objects are now considered garbage.

2.6 For all nodes, the storage is traversed sequentially: Each white object

is reclaimed and each black object is marked white.

The Object Manager (allocation):

New objects are allocated with the same color in their mark-�eld as the object

(mutator) creating them, i.e., black or white.

(Algorithm continued on next page)
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The Garbage Collection Fault Handler:

Suspend mutator while the object causing the fault is marked (black) and

traversed to Shade its references at least gray, i.e., Mark-and-traverse. Finally,

the object is unprotected and the mutator resumed.

Subroutine Mark-and-traverse:

Traverse the object to Shade all its references to other objects and mark the

object black.

Subroutine Shade:

Shade a reference at least gray, i.e., the referenced object becomes gray, unless

it was black (or gray) already. Thus the net e�ect is, that a white object is

marked gray on the node hosting the object.

A 2

Invariant 1, 2, and 3 must be maintained by the garbage collector. Our faulting mechanism

supports this maintenance and all together this ensures correct garbage collection if mutators

are executing in black objects only during the mark-phase.

Invariant 4 : Mutators only work inside black objects

A running process is always executing in a black object during the mark-phase. I 4

This invariant is initially maintained when mutators are resumed in step 2.3. The Mark-

and-traverse of a mutator includes its current stack frame and the object in which it will be

resumed. The other invariants ensure that Invariant 4 is maintained.

During garbage collection mutators are only able to execute in black objects, and they

have no access to white objects. When they progress, they may either:

1. Continue execution in the current object.

2. Invoke an operation in a referenced object.

3. Return from current object to the object, from where the current invocation was made.

The �rst does no harm to the invariants. The second and third moves the thread-of-control

forwards (Figure 3.2 (b and e)) and backwards (Figure 3.2 (f)), respectively, to a gray or

black object. In the case of a gray object (Figure 3.2 (e-f)), the invoke or return causes

a garbage collection fault to ensure that the object is black. For reasons of e�ciency, the

Emerald garbage collector ensures that the whole call stack of a mutator is made black in

step 2.3. Thus mutators never return to a non-black object3.

A new object may only be created by a mutator. Mutators may, however, execute during

most of the garbage collection cycle. To preserve our invariants, especially Invariant 2, new

objects must be born with the same color as their mutator. Thus a new object becomes ei-

ther white or black depending on the mutator that creates it and the status of the concurrent

3However, due to distribution, we later relinquish this constraint to only ensure, that the node-local part

of the call stack is black. Then the Mark-and-traverse must be applied to the local part of the stack, when a

mutator returns from another node. In general, the restriction may be completely removed when shading the

invoking object, and thus using faulting on return to a gray object.

.
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garbage collector. The object becomes:

white if the mutator has survived the previous sweep-phase (step 2.6) and not yet reached

its suspension in the next garbage collection cycle (step 2.1), or

black if the mutator is resumed, i.e., between the start of the mark-phase (step 2.1) and

the survival test of the sweep-phase (step 2.6).

Continued Example: Finishing the Collection

Figure 3.2 illustrates how Algorithm 2 works concurrently with mutators. The progression

of marking is ensured both by mutators through the garbage collection fault mechanism (e

and f), and by the collector itself (d, g, and h). When no more gray objects exist (h), the

mark-phase is �nished and the sweep-phase executed resulting in (i).

Algorithm 2 ful�lls our requirements to enable mutators and collector concurrently and thus,

limiting the latency introduced on the mutators by garbage collection. The mechanism used

to achieve this is the garbage collection fault mechanism on both invocation and return from

invocation across node boundaries.

3.6 The Distributed Garbage Collector

The next step is to let the garbage collector utilize the true concurrency available in a dis-

tributed system by distributing parts of the garbage collector. Though working concurrently

with mutators the previous Algorithm 2 does not take advantage of the natural parallelism in

a distributed system. Instead, its centralized collector waits for each remote shading to com-

plete, where the number of shadings is on the order of the number of cross-node references.

The next re�nement distributes the whole garbage collector by running parallel garbage col-

lectors, one on each node. Algorithm 3 (page 55) shows how the collector on each node is

de�ned. These node collectors cooperate, e.g., synchronize, as discussed here.

The individual steps of the algorithm has been re�ned accordingly. Note how global

synchronization is applied to ensure that the individual node collectors run in-step at 3.1,

3.5, and 3.6. The synchronization in step 3.5 is hidden inside the wording until the global

gray set is empty. Step 3.6 must be done immediately after the termination of step 3.5. It

is done as an atomic update on each node, thus it works like a global atomic update also.

The rest of the sweep-phase may run independently on all nodes. However, the next garbage

collection cycle cannot be started by step 3.1 until all nodes have completed their previous

sweep-phase.

Algorithm 3 present a garbage collection scheme with one local collector on each node and

a coordinator process on one node. The coordinator ensures a simple way to achieve global

synchronization, at the start and end of a new collection (step 3.1 and 3.7) and between the

mark-phase and the sweep-phase (the end of step 3.5). Furthermore, the distributed concur-

rency in the garbage collector of Algorithm 3 is achieved by synchronous request messages

send to shade objects from the node referencing the object to the node hosting the object.

The handling of the remote request to shade a resident object is done while the collector is

progressing with its resident gray set.
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Algorithm 3 (Distributed)

The Garbage Collector on each node:

Initialize 3.1 Synchronize nodes and approve a coordinator node. This ensures that

all collectors are started in their initialize-phase, no matter which

node took the initiative.

3.2 All mutators are suspended including arriving mutators from other

nodes.

3.3 The resident global root set is established.

Mark-Phase 3.4 The resident root set is marked black and mutators resumed, i.e.:

For each object in the resident root set , Mark-and-traverse the ob-

ject. If the object has a suspended process, i.e., one of the suspended

mutators of step 3.2, the process is resumed.

3.5 Until the global gray set is empty:

While there are more gray objects on this node, choose one andMark-

and-traverse that object.

Sweep-Phase 3.6 For all nodes, the run-time system is updated to re
ect the fact that

white objects are now considered garbage.

3.7 For all nodes, the storage is traversed sequentially: Each white object

is reclaimed and each black object is marked white.

The Object Manager on each node:

New objects are allocated with the same color in their mark-�eld as the object

(mutator) creating them, i.e., black or white.

The Garbage Collection Fault Handler on each node:

Suspend mutator while the object causing the fault is marked (black) and

traversed to shade its references at least gray, i.e., Mark-and-traverse. Finally,

the object is unprotected and the mutator resumed.

Subroutine Mark-and-traverse:

Traverse the object to Shade all its references to other objects and mark the

object black.

Subroutine Shade:

If the reference is to a resident, white object, put it in the resident gray set and

protect the object. If the reference is to a white, non-resident object, a remote

shade call is issued on the node hosting the object.

Remote Shade Handler on each node:

Mark-and-traverse the object and return an acknowledgment to the caller.

A 3
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3.7 Re�nements of the Distributed Garbage Collector

The �nal re�nements of the garbage collection algorithms of this chapter are done now.

The garbage collection presented by Algorithm 3 did not explain the role of the coordinator

node. Nor has the implementation of the colors been discussed. Solutions to these problems

and further re�nements to do more e�cient, distributed, concurrent garbage collection are

discussed here.

3.7.1 Asynchronous Shading of Non-Resident Objects

As objects are recognized as living by Mark-and-traverse, they get shaded by the task Shade

described in Algorithm 3. Due to the constraints implied by the Invariants 2 and 3, the shad-

ing was done immediately, even in the case of a non-resident object, i.e., shading a reference

included access to the object referenced. Thus shading was done as a remote procedure call

to the node hosting the object, which introduced pauses on the calling node. We want to

investigate ways to prevent this blocking of the caller node, and to batch such asynchronous

remote shading requests, to enable the shading of a reference without accessing the object

referenced while still working correctly. As the invariants may be violated temporarily, such

situations must be limited and made invisible to those depending on the invariants.

Asynchronous exchange of remote shading request and reply messages between collectors

on di�erent nodes removes the blocking period from the requesting collector. However, until

the reply is received, either of the invariants 2, 3, and 4 may be violated by a mutator

accessing the remote object before the shading has taken e�ect.

The violation may only be possible from a mutator on the node that issued the request,

as it is here we pretend that the shading has taken place. We may, thus, either withhold

mutators from accessing objects currently being remotely shaded:

� on the requesting node (until a reply is received), or

� on the remote node (until the shading has taken e�ect).

Moreover, a mutator may cause objects and references to be moved or copied from one node

to another. Thus the inconsistency introduced by delayed remote shading must be restricted

to time intervals in which mutators do not communicate. This way consistency is achieved

again before any mutator is able to recognize, that it has been violated.

An object moving between nodes must either be the top of an executing thread-of-control,

i.e., a mutator, or an object known by a mutator. In the �rst case, the object is black and

its references at least gray on the node it comes from. In the second case, the moving object

was at least gray, but its references could be of any color. A remote invocation and a return

from a remote invocation may be viewed as a moving mutator, with the parameters as part

of its references. The remote object invoked or returned to is expected to be at least gray.

From the perspective of the receiving node, an arriving object must be alive, as it is

actually moving. The object invoked or returned to from remote is also alive. Thus the

receiving node need not receive an explicit shade request for these objects. During the mark-

phase a Mark-and-traverse may be done for each arriving object and for each non-black

object, invoked or returned to from another node.

All references moved across node-boundaries are at least gray, as they reside inside a

moving object that is black. Due to the delayed shading of non-resident objects, an arriving

reference may denote a resident object still not shaded here. Thus an explicit Shade of

.



{ 57 {

received references to resident objects must be done during the mark-phase to ensure that

the object is at least gray.

Both the Mark-and-traverse and Shade must be done immediately when the object or

reference is received, and before the requested action takes place on the receiving node. To

facilitate e�cient shading the Mark-and-traverse is also applied to the non-black moving

objects on the sending side. Thus immediately shading the resident objects known by the

moving object on the sending side also.

If the communication of objects and references between nodes during the mark-phase

causes Mark-and-traverse or Shade automatically on both nodes, no mutator is able to see

any inconsistency. The remaining shaded references to non-resident objects may be batched,

as they do not violate the invariants, i.e., the mutator does not see them. To complete the

mark-phase they must be shaded on the node hosting them. For this purpose, a register

of references to these non-resident gray objects must be kept on each node. It needs to

be adjusted when the non-resident objects become black. For each object, which is still

registered, an explicit shade request must be sent to the node hosting the object. This node

will reply if/when shading has taken place, thus provoking the reference to be de-registered.

The non-resident object is then considered black by the requesting node.

Implementation of the Gray Color

The local collectors mark a reachable resident object gray and protect it when the �rst

reference to the object is found. Non-resident reachable objects cannot be marked locally

but a non-resident gray set of references to reachable, non-resident objects may hold this

information until the asynchronous remote shade request/reply has succeeded.

Beside protection of a resident gray object, we need not mark the object gray, as the gray

color is used only to identify objects that still need to be traversed. Therefore, a resident

gray set may be used instead to keep the references to the resident gray objects.

During the mark-phase, each node runs a collector and each collector traverse the reach-

able objects one after the other. Each reference to a white object is followed to mark the

object black and put the reference in the gray set as the object still needs to be traversed. The

references to resident objects are put in the resident gray set , the others in the non-resident

gray set . Furthermore, the objects of the resident set are protected.

3.7.2 No Gray Objects: Termination of the Mark-Phase

The mark-phase is �nished when all nodes have emptied both their gray sets. Until the all

gray sets are empty state has been reached, both the gray sets on each node may become

non-empty due to incoming remote shade requests. Thus, termination of the mark-phase is

not detectable locally, it requires global information. The status of the global gray set, i.e.,

the information about the cardinality of the union of all local resident and non-resident gray

sets, may be implemented centralized or distributed.

A centralized representation is achieved by collecting information at one node, e.g., the

coordinator node, about references that have been shaded. When their objects are Mark-

end-traversed, the references are removed again from the central gray set. A distributed

representation is achieved by collecting information about the gray objects on the nodes,

where they are shaded as illustrated by the use of two gray sets on each node. Still, the
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information must be forwarded to the node hosting the object and back again, when the

object is Mark-and-traverse in both cases as described in Section 3.7.1.

The centralized gray set may work as a clearing center to detect when the global gray

set is empty. To do this, it must be informed about objects changing color. In principle,

all changes of colors must be send to the clearing center. The previous mentioned set of

non-resident shaded objects on each node could be moved to this clearing center also. Thus

the explicit shade requests of non-resident objects would then be sent to the node hosting

the objects via the clearing center.

The centralized service has the advantage that global gray set empty is easily detected

when the last object is removed from the gray set. In case of a distributed gray set, a

distributed termination detection protocol must be added. [Liskov 86] describes that this

may be compromised by a logical centralized, but physical distributed, service. In a failure-

free system (the premise of this chapter), we may rely on a centralized mechanism. Thus we

use the approved Coordinator node and start a Coordinator process there.

A revised version of step 3.5 and the subroutine Shade of Algorithm 3 would then look like:

3.5 Until Coordinator is �nished, do:

3.5.1 While there are more gray objects on this node, choose one and Mark-and-traverse

that object.

3.5.2 Move the current non-resident gray set to the Coordinator.

Subroutine Shade:

If the reference is to a resident white object, mark the object black, put it in the resident

gray set , and protect the object. If the reference is to a non-resident object, put it in

the non-resident gray set , if it has not been put there already.

The role of the Coordinator process on the coordinator node could be expressed as:

Accumulate a global gray set of remotely referenced objects and forward remote shade

requests from nodes sending their non-resident gray set to nodes hosting the referenced

objects. Keep a list of nodes that have sent an empty non-resident gray set and have not

been given any shade requests since then. When all nodes are in the list, the Coordinator

process �nishes by requesting all node-collectors to terminate their mark-phase.

3.7.3 Mark-During-Sweep by Smart Encoding of Black and White

The encoding of white and black has been located within the object, i.e., using a mark-�eld.

ThusMark-and-traverse is able to update the color (to black), traverse the object, and remove

the protection by accessing nearby storage locations only.

The sweep-phase traverse the storage (presumably sequentially) to recycle the white ob-

jects and initialize the black objects for the next garbage collection cycle. During the sweep

a white object may be garbage or alive, depending on whether the sweep has passed it. We

may, however, choose not to reinitialize the color of the live (black) objects during the sweep.

Instead, the encoding of black and white may be swapped. Thus during the sweep white

objects are recycled, black objects are left unchanged and new objects are born black. When

sweep is �nished we simply swap the encoding of black and white. Thus all objects are now

considered white and new objects are born white, until the next garbage collection cycle is

.
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Figure 3.3: Mark-during-sweep scheme using a two-bit mark-�eld

instantiated. This scheme has the advantage that objects are born with a mark-�eld, which

is only changed one time for each garbage collection cycle the object survives.

Queinnec, Beaudoing, and Queille describes [Queinnec 89] how the sweep-phase of a

garbage collection cycle can be interleaved with the mark-phase of the following garbage

collection cycle. Such a mark-during-sweep scheme may be accomplished by a simple coding

scheme of the mark-�eld. Figure 3.3 shows an example of how the mark- and sweep-phase are

interleaved by using a two-bit wide mark-�eld. The algorithm never changes the mark-�eld

of garbage objects, thus the sweep process may work, even if it is delayed, and the next

garbage collection cycle started. As the interpretation of the mark-�eld is swapped after each

mark-phase, we need at least three values available, that may be interpreted as white, black,

and garbage (that is previous white), respectively.

When the mark-phase is �nished a concurrent Sweep process may run in parallel with the

two next garbage collection cycles. As the mark-�eld is limit, a pattern interpreted as old

garbage by a still running concurrent sweep process cannot be used as black in the following

mark-phase. Thus a new garbage collection cycle must wait until all nodes has a free bit-

pattern in their mark-�eld, that may be used for black. This is illustrated by the postponing

of the �fth cycle in Figure 3.3.

We may take this idea a bit further. Instead of marking an object black, we can mark

an object with the current garbage collection cycle number. Thus new objects and surviving

objects are all marked with the current cycle, whereas objects marked with a lower cycle are

garbage. Still the capacity of the mark-�eld limits the number of cycles the sweep-phase is

behind the mark-phase. If the mark-�eld is two-bit, the scheme looks like that illustrated

in Figure 3.3. It should be noted, however, that the swap of mark-�eld interpretation is

partitioned. A new black-value is de�ned when a new garbage collection cycle is initiated

and the previous black value is now white. The white value is changed to mean garbage when

the mark-phase is �nished. New objects are always allocated black.

Furthermore, instead of starting a new Sweep process each time a mark-phase is �nished,

we change step 3.7 of Algorithm 3 to update the interpretation of the mark-�eld and inform

the sweep process accordingly. The sweep process traverse the object storage repeatedly and

collects all garbage objects, i.e., objects marked with a cycle less that the cycle number of

the last completed mark-phase.
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Due to the limited width of the mark-�eld, the sweep process tells the collector when all

garbage marked with the oldest cycle number has been collected. This value of the mark-�eld

may then be reused. In the two-bit wide mark-�eld case, the collector must wait until less

than three cycles remain to be taken care o� by the sweep process.

Because garbage stays garbage, we may drop the sweep for the oldest garbage and reuse

this identi�cation as the new black mark. This enables the garbage detection to run whenever

it wants to. The drawback is limited; the oldest garbage may not be reclaimed during the

next two mark-phases, where the mark is reused; but after the completion of the second

mark-phase the sweep process will again reclaim objects marked like the oldest garbage.

On the other hand, it seems ine�cient to run a mark-phase without reclaiming the garbage

afterwards. Instead of doing two mark-phases without an intermediate sweep of any garbage,

the execution of the latest of the two mark-phases would give the same result, i.e., identi�es

exactly the same amount of garbage. Thus the mark-phase shall only be started, when the

sweep process is close to its completion or later.

3.7.4 The Re�ned Algorithm

The re�ned version of the comprehensive, concurrent, and distributed garbage collector is

shown as Algorithm 4. For completeness the processes, routines and handlers used by the

algorithm is described shortly here again:

The Garbage Collection Fault Handler on each node:

Suspend mutator while the object causing the fault is Mark-and-traversed . Finally the

object is unprotected and the mutator resumed.

The Remote Shade Handler on each node:

Mark-and-traverse the object and return an acknowledgment to the caller, which then

removes the reference from its non-resident gray set .

The Sweep Process on each node

Traverse the object storage (sequentially) and reclaim objects marked as garbage, i.e.,

mark with a cycle value less than the current value, cycle.

Coordinator Process on Coordinator node

Accumulates a global gray set of remotely referenced objects and forwards remote shade

requests from nodes sending their non-resident gray set to nodes hosting the referenced

objects. Keeps a list of nodes, which have sent an empty non-resident gray set and

have not been given any shade requests since then. When all nodes are in the list, the

Coordinator �nishes by requesting all node-collectors to terminate their mark-phase.

Mark-and-traverse an object

Traverse the object to Shade all its references and if it is referenced from the gray set,

remove that reference from the gray set.

Shade a reference

If the reference is to a resident, white object, mark the object black, put it in the

resident gray set, and protect the object. If the reference is to a non-resident object,

the reference is put in the non-resident gray set, if it has not been put there previously.

.
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On the mutators the algorithm imposes one restriction:

Whenever a reference or object is crossing a node-boundary during the mark-phase, it

must be shaded.

Algorithm 4 (Comprehensive)

The Garbage Collector on each node:

Initialize 4.1 Synchronize nodes and approve a coordinator node, which initiate a

Coordinator Process.

4.2 Wait until Sweep Process of (cycle� 2) is �nished, then synchronize

with Coordinator Process. The current garbage collection cycle, cycle,

is incremented and the new black de�ned for marked as well as new

objects.

4.3 Suspend all mutators on this node and prevent arriving mutators from

other nodes from being started.

4.4 Enable Garbage Collection Fault Handler for resident and arriving

mutators, and Remote Shade Handler for incoming requests.

Mark-Phase 4.5 While there are more suspended mutators in the resident root set ,

choose one, Mark-and-traverse it, and resume it.

4.6 Establishing a set of all supplementary roots of the object graph for

this node and Shade these.

4.7 Until the Coordinator Process is �nished do:

4.7.1 While there are more resident gray objects, choose one and Mark-

and-traverse that object.

4.7.2 Move the current non-resident gray set to the Coordinator Process.

Sweep-Phase 4.8 Run-time system tables are adjusted to re
ect that white objects are

now considered dead.

4.9 Change the interpretation of the mark-�eld:

white 7! garbage of (cycle)

Inform the Sweep Process , that the marking of cycle, cycle, is �nished.

A 4

3.8 Comprehensive Distributed Collection Summary

We have developed a distributed garbage collection algorithm by step-wise re�nement of a

simple stop-mark-and-sweep garbage collector. The generic version (Algorithm 1) works in

a distributed system. It is comprehensive but neither e�cient nor expedient. By using a

faulting mechanism, concurrency is introduced (Algorithm 2). Thus, pauses in user processes

due to garbage collection are limited. The overhead in communication by using a sequential

garbage collector (even for the faulting version) is further limited by employing a sequential

collector on each node and letting the collectors cooperate via a Coordinator (Algorithm 3).

Finally, further optimizations have been thrown in to limit the storage traversal and doing

garbage detection and garbage reclamation in parallel. The last version (Algorithm 4) also

.
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optimizes the organization of coloring information. Still, it depends on a node appointed as

Coordinator that takes care of all live inter-node references.

Thus the �nal Algorithm 4 is:

Comprehensive by using mark-and-sweep to do a traversal of the entire graph

of objects.

Concurrent by using a faulting mechanism, a sweep process, and coop-

erating node collectors.

Distributed by using cooperating node collectors and a centralized coor-

dinator process.

The main de�ciencies are the dependency on a Coordinator node, and that all nodes must

be available all the time. The algorithm needs further re�nements to overcome these. A

solution which overcomes these and works in a system where partial failures may occur is

discussed in the next chapter. More details on implementation in the Emerald prototype is

presented in Chapter 5.

.



Chapter 4

The Design of a Robust Garbage

Collector

This chapter contains the discussion on robustness of our distributed garbage collection

scheme. Without giving up our goals in a failure-free distributed system (as described in

Chapter 3), we now drop the assumption about the absence of failures and accept that indi-

vidual nodes may be temporarily unavailable.

Our goal is to provide a robust collector that does not assume that all nodes are up

simultaneously, and progress despite notes repeatedly crashing and restarting. Our collec-

tor is even capable of completing its job even if it is never the case that all nodes are up

simultaneous, only pair-wise simultaneous up-time of the nodes is assumed.

First we describe in Section 4.1 the general failure model to which our garbage collector

is robust and the simpli�ed failure model adopted by our solution. The general goals of the

garbage collection scheme are rephrased in Section 4.2, this time with emphasize on robust-

ness. The garbage collection scheme that ful�lls these goals are described and discussed in

Section 4.3 and 4.4. The major design decision to make a robust, system-wide, distributed

garbage collector for comprehensive collection work is to use distributed control where ap-

plicable (Section 4.3). The detailed discussion on each of the sub-problems in this solution

is given in Section 4.4. A supplementary collector for more expedient collection, the local

collector for each non-failed part of the system, is presented in Section 4.5. Finally, the full

garbage collection scheme as proposed for the Emerald system is evaluated in Section 4.6.

As the previous chapter, solutions presented here are mostly applicable to any distributed

system. However, the discussion is restricted to our speci�c distributed system, the Emerald

system, where a concrete system is needed, e.g., where precise characteristics and require-

ments to the garbage collector from the surrounding system are needed.

4.1 A General Failure Model for Distributed Systems

Distributed systems may fail, like any system; but in contrast to ordinary sequential systems,

distributed systems may fail partially. In a network of computers, communication between

computers may introduce errors or failures, and computation on a single computer in the

network may produce false results or stop completely for shorter, longer, or in�nite periods.

The distributed system model, the failure model, and how robustness can be expressed

in this context is described next. The presentation is restricted to or exempli�ed by our
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Communication Network

A node computer, containing its 
own processing and storage unit. Node-to-network interface.

Figure 4.1: The distributed system model

Emerald prototype where applicable.

4.1.1 The Distributed System Model

Our model of a distributed system is shown at Figure 4.1. A distributed system is a

network of n nodes with self-contained computers as nodes. Each node is connected to the

other nodes by means of the network. The nodes have, however, no direct access to any part

of the other nodes. Communication between nodes is done by sending messages from one

node to another or by unreliable broadcasts from one node to all nodes in the network. An

example of this distributed system model is workstations connected by a local-area network

of the Ethernet-type on which they communicate by means of Internet-protocols.

Each node is a self-contained unit with at least:

� a processing unit (CPU),

� a virtual memory, based on primary memory and secondary disk storage, and

� a network interface, through which messages to/from all nodes may be communicated.

In addition, a node may have:

� a stable storage unit (disk), and

� a user interface (e.g. keyboard and display) or other means of interfaces to the external

world of the distributed system.

The network connects the nodes in a way that supports full connectivity between the

nodes in the absence of failures. The only assumption about the network is that connectivity

is an equivalence relation even in case of node failures. From the nodes, the network is visible

as a delay on node-to-node communication only. Thus, data may be in transit between two

nodes without being available on either nodes.

.
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4.1.2 The Failure Model

Our failure model is based on fail-stop semantics thus excluding more nasty failures like

Byzantine failures. Each functional unit will either deliver the correct result or no result at

all. Moreover, a failure may be permanent or temporary, thus a unit may be reset and start

functioning again after a failure.

The units that may fail in a distributed system are either the node computers or the

network connections between individual nodes. The network failures are modeled at each

node as the ability of the node to communicate with each of the other nodes. Thus, it has a

failure state for each of the n� 1 other nodes independent of their state. This independence

allows us to model that two nodes may both be running while being unable to communicate

with each other due to a failure partitioning the network.

For node i the following units are either running or failed:

� The processor and its volatile storage viewed as one unit.

� 8j 6= i : The communication link between node i and j.

The stable storage never fails, thus it may be used as a back-up media for the volatile storage

between failures.

The failure state of the whole distributed system can be described by the following state

variables:

8i 2 f1; 2; :::; ng : NodeState[i] = f running j failed g

8j 2 f1; 2; :::; ig : LinkState[j; i] = f available j unavailable g

Less than half of the matrix LinkState is needed because of symmetry, LinkState[j; i] =

LinkState[i; j]. The diagonal LinkState[i; i] is equivalent to NodeState[i]. Thus at any

time, t, the whole failure model can be modeled by a two-dimensional stochastic variable:

8i 2 f1; 2; :::; ng8j 2 f1; 2; :::; ig : Statet[j; i] =

(
false i.e., service unavailable.

true i.e., service available.

Two nodes i and j (i < j) may communicate at time t if neither node is failed nor the

communication link between them, i.e.:

Statet[i; i]^ Statet[j; j]^ Statet[i; j]

The Emerald system is based upon a further simpli�ed failure model. It assumes a reliable

network, thus only nodes may fail. This assumption is enforced by the implementation of

inter node communication by a reliable sliding window protocol. At any time, t, the simpli�ed

failure model is a stochastic variable per node:

8i 2 f1; 2; :::; ng : Statet[i] =

(
false i.e., node i has failed.

true i.e., node i is running.

4.1.3 Robustness of a Distributed System

When failures occur, it must be decide what services remain available. On top of the dis-

tributed system model described in Section 4.1.1, the actual distributed system may want to

.
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cope with certain failures. This yields for the distributed system as such, but also for any

supplementary application or extension like a garbage collector for the system.

A robust distributed system with our failure model should at least enable processing to

continue in non-failed parts of the system as long as relevant data is available. The availability

of data may be extended by having multiple copies of the same data on di�erent nodes. This

is not always possible, if data must be consistent. Another problem is failed nodes which

may restart using data from other nodes or from their own stable storage.

The Emerald system enables robustness according to the simple failure model by:

replica, i.e., objects with an unchangeable state (called immutable) are copied on demand

to all nodes that need the object.

checkpoint images, i.e., a snapshot of an object state is copied to one or more nodes and,

optional, to their stable storage. These checkpoint images are passive copies, one1 of

which may take over the responsibilities of the no longer accessible original.

To ensure progress of the garbage collection process in a distributed system, the collector

must be able to cope with node failures. Furthermore, it must respect the facilities that

makes the system itself robust. It is important to note that we do not use robustness as an

absolute term. A system robust to certain failures may not survive, if important data is lost.

Thus the goal is to be robust to certain failures.

The Emerald system itself survives failures according to our simpli�ed failure model,

speci�cally, it is robust to nodes that crash and restart later. The checkpoint system enables

Emerald applications to survive failures by using the special recovery and failure sections

available at the programming language level. The simpli�ed failure model ease the recovery

of inaccessible Emerald objects because the model ensures that an inaccessible object will not

become available by other means than recovery. In case of an unreliable network, during a

network partitioning, an inaccessible object could have survived at an isolated node while the

rest of the system decided to recover from an old checkpoint image of the object leading to

inconsistency problems when the network connection became available later. Such problems

must be solved when extending Emerald to run on wide-area networks, where our general

failure model applies.

4.2 Goals for a Robust Garbage Collection

The goal is to design a comprehensive and concurrent garbage collection scheme for a potential

robust distributed system, where garbage collection preserves this robustness while being

absolute robust itself . The collector must not be ine�cient and it must at least return

garbage to the allocator with the same speed as the allocator creates new objects (expedience).

Our goal with respect to robustness is to provide a garbage collector which is:

� robust to node failures and node recovery,

� assuming only pair-wise availability of nodes, and

� limited in assuming stable storage available.

1Recovery from a checkpoint image includes a protocol to ensure that only one copy of the most recent

checkpoint image is reinstantiated.

.
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4.2.1 Robustness Goals

To achieve robustness, con
icting goals may be compromised. In our case, it is possible to

achieve all functional goals (see Section 1.5), including robustness, if performance, especially

expedience, is sacri�ced. Our primary goal in this chapter is such a collector. Secondary, if we

compromise on comprehensiveness when faced with failures, we may achieve some expedience.

Our secondary goal is to always collect some garbage (expedient) without abstaining from

the primary goal, thus introducing a secondary, non-comprehensive|but more expedient|

collector.

1. Comprehensiveness and Robustness

Eventually all garbage must be collected. Thus information about the object graph on

an unavailable node must be made available before the collector may determine which

objects to collect. The garbage collector should, however, be able to progress as long as

the nodes become available even though all nodes are never available concurrently. The

garbage collector must be able to complete, if the nodes have been at least pair-wise

available often enough.

2. Expedience and Robustness

As comprehensiveness and temporary unavailability may delay the garbage detection for

long periods, supplementary collections not depending on the unavailable nodes must

be done to at least achieve some expedience in the delivery of reusable storage. This

supplementary garbage collection scheme must work independently of node failures,

and the two collection schemes must not block each other nor the running system. The

supplementary collection cannot be comprehensive as it is based on partial information

about the distributed object graph, thus it is supplementary to the comprehensive, but

potentially slower, garbage collector.

4.2.2 Robustness and Design Restrictions

While the garbage collection scheme is robust and applies to the functional requirements,

robustness must also be view with respect to the implementation of the collectors. Such

design restrictions to ensure robustness are concerned with:

Concurrency and Robustness

The garbage collection must not block the running distributed system while it waits

for access to a temporarily unavailable node. Thus it must preserve the concurrency

achieved by the distributed garbage collector of Chapter 3 although some nodes are

currently unavailable.

Respecting Facilities for Robustness

The facilities to enable robustness of the distributed system must be respected. Thus

facilities, like checkpoint, must have the same functionality with garbage collection as

they had without. The impact on garbage collection is that objects and references

in checkpoint copies remains alive as long as the checkpoint copy may be used to

reinstantiate an object. Thus, an object may be kept alive due to a reference originating

in a checkpoint copy of a live object, although no live objects reference the object. By

adding references from live objects to their checkpoint copies and the checkpoint copies

into the object graph, the garbage collector will be able to respect these facilities for

robustness.

.
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Robustness to Dangling References

During a traversal of the object graph, the garbage collector may be faced with refer-

ences to objects that are no longer available. If they are permanently lost|due to some

previous failure|the references are no longer valid. Any user process trying to access

the object will fail, e.g., in Emerald, such an invocation will return to the unavailable

section of the caller. The garbage collector must also handle this situation or the emp-

tying of the gray set will eventually be dead-locked by these references to unavailable

objects.

Robust Implementation

While the garbage collector is running on a node, the node may fail and information

about the state of the collection is lost. Thus, a robust collector must itself be dis-

tributed and avoiding centralized control. Furthermore, distributed control decrease

the risks of creating a central bottle-neck that may sequentialize the whole garbage

collector, thus loosing the potential concurrency available in a distributed system and

gaining lower performance.

The goals about robust, comprehensive, concurrent, and distributed garbage collection

have been achieved by extensions to the distributed garbage collector (Algorithm 4 in Section

3.7.4). The extensions are described in the next section. The expedience is due to our dual

collector approach which is presented afterwards in Section 4.5.

4.3 A Garbage Collector without Centralized Control

A �rst step to make our non-robust distributed garbage collector (Algorithm 4, page 61)

robust to node failures is the removal of the centralized control by the Coordinator Process

on a Coordinator Node. This is a \heel of Achilles" as all inter-node communication is

passed through the Coordinator Process. By applying distributed control we may, however,

completely circumvent such a centralized design. This section discusses the problems and

solutions when distributed control is used as the major design criteria to relinquish inter-

node dependencies as much as possible.

4.3.1 Using Distributed Control

The problems in using distributed control are related to the inter-node synchronization points

of the algorithm. According to the phases of the general mark-and-sweep algorithm these

occur in:

Initialize How to decide that a new garbage collection cycle is needed and achieve

consensus between all nodes when the decision has been taken.

Mark-Phase How to ensure that objects found via inter-node references are shaded con-

sistently within the entire system.

Sweep-Phase How to detect that the mark-phase is �nished globally and ensure consensus

between all nodes.

The initial coordination may be done at each node when the node is ready, i.e., when the

node has less than three outstanding cycles for sweeping by the Sweep Processes2. At this

.
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point, the collector informs all nodes about its ability to start a collection by broadcasting3

a Ready message. These messages are used, together with local information from the storage

allocator, to decide when a new garbage collection cycle is pro�table.

When a ready node decides to initiate a new garbage collection cycle, it just starts the

collection independently of the other nodes. A hint, about the decision, is, however, broad-

casted to inform the other nodes, who might be ready to start immediately. A node that

begins a new cycle on its own or remote hints, starts the collection by blocking all activities

on the node. Thus, all resident mutators are suspended and all communication from other

nodes are blocked. Blocking communication prevents unsuspended mutators at other nodes

from changing the object graph on the blocking node and thereby invalidating the invariants.

The establishing of an initial root set, the synchronization with the local storage allocator,

and the enabling of the garbage collection fault handler are all done as in Algorithm 4. The

whole initialize-phase is done atomically, i.e., as one indivisible operation on the node. At

the end of the initialize-phase, the mark-phase is started and soon hereafter concurrency is

available again.

The mark-phase starts by doing a Mark-and-traverse of the suspended mutators and

resume each of them, as they have been traversed. Any message sent to another node is

marked with the current garbage collection cycle number, which will ensure that the garbage

collector is initiated on the other node before the message is handled. See Section 4.4.1

for more details on how the incoming messages are screened to ensure initialization of the

garbage collector.

The blocked communication can be resumed with nodes in the same garbage collection

cycle. We simply pretend that all other nodes are in the same garbage collection cycle and

resume the blocked communication after having done a Mark-and-traverse of the objects in

transfer. The tagging of all inter-node communication with the cycle of the sending node

will ensure that the other nodes become aware of our pretension before the contents of the

communication is processed. Thus, a node receiving a message tagged with a greater cycle

than its own is forced to start its next garbage collection cycle to keep in pace. The cycle count

must not be incremented faster than the collectors complete their former garbage collection

cycles. The common synchronization point between the mark- and the sweep-phase ensures

that one node can only be one cycle ahead of the others.

The major work is done during the remaining mark-phase, where gray objects are marked

and traversed. As in Algorithm 4 the resident objects are marked and traversed locally as long

as there are more resident objects in the gray set. Each non-resident gray object, that needs

to be shaded, is processed by sending a Shade request to the node hosting it. Meanwhile

incoming Shade requests for resident objects are processed as if those objects were in the

resident gray set. In Section 4.4.2 the need to acknowledge each received Shade request is

discussed further. References to objects which are not resident on any node must be identi�ed

and deleted from the non-resident set.

The mark-phase of the garbage collector is �nished, when all nodes in the network have

an empty gray set. The nodes need not be reachable simultaneous, as long as every node has

been able to exchange its gray set of non-resident objects with the nodes hosting these objects.

Thus the termination of the mark-phase is a distributed termination detection problem, i.e.,

2The maximum number of outstanding Sweep Processes acceptable depends on the width of the mark-�eld.
Two is the maximum according to the chosen encoding in Algorithm 4.

3The semantics of a broadcast is an un-con�rmed delivery of the message to all nodes on the network.

Nodes are allowed to drop broadcasts, thus the sender knows nothing about what nodes received the message.

.
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we need to detect, that the distributed gray set is empty or contains lost objects only. Such a

detection can be done without centralizing the control. We present a variant of a distributed

termination protocol that uses two-phase commitment in Section 4.4.3 to solve this problem.

The sweep-phase of Algorithm 4 already has complete distributed control, thus its global

synchronization cannot be relaxed further. The garbage collection scheme is shown as Algo-

rithm 5 in the next section.

4.3.2 The Collector with Distributed Control

The garbage collection scheme presented in Chapter 3 concluded with a comprehensive, con-

current and distributed algorithm (Algorithm 4). This algorithm is now re�ned to work in

a distributed system with node failures and unavailable objects. The centralized control is

distributed and synchronization points relaxed. The suspension of mutators is made indepen-

dent of the availability of other nodes, thus the period a garbage collector is blocking other

tasks is limited and independent of failures. We now present this garbage collector algorithm,

Algorithm 5, as outlined in the previous section. Some of the details are discussed in the

next section (Section 4.4), speci�cally the distributed termination algorithm is presented in

Section 4.4.3.

For completeness, the processes, routines and handlers used by Algorithm 5 are described

shortly here also.

Screening incoming messages on the ith node:

Each received message,mess, is screened to ensure that cyclemess = cyclei. If cyclemess >

cyclei, the garbage collector is asked to start and the message is queued until the col-

lector resumes communication (step 5.5).

The Garbage Collection Fault Handler on the ith node:

Suspend the mutator while calling Mark-and-traverse for the object causing the fault.

Finally, the object is unprotected and the mutator resumed.

The Remote Shade Request Handler on the ith node:

Mark-and-traverse the objects in the request and return an acknowledgment to the

collector on the calling node.

The Remote Shade Reply Handler on the i
th node:

Remove the references from the non-resident gray set .

The Sweep Process on the ith node:

Traverse the object storage (sequentially) and reclaim objects marked as garbage, i.e.,

marked with a cycle less than the current white, if the collector is in its mark-phase,

or less that the current black, i.e., include the newly identi�ed garbage, otherwise.

Mark-and-traverse an object:

Traverse an object to Shade all its references, and remove the references from the

resident gray set, if it is in it.

Shade a reference:

If the reference is to a resident, white object, mark the object black4, put it in the

resident gray set, and protect the object. If the reference is to a non-resident object,

the reference is put in the non-resident gray set, if it has not been put there previously.

.
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Algorithm 5 (Distributed Control)

The Garbage Collector on each node, i:

Initialize 5.1 Wait until the Sweep Process of cycle�2 has completed, and someone,

including the storage allocator on this node, expresses its desire to

start a new garbage collection cycle. Then announce that a new

garbage collection cycle, cyclei+1, is started on node i (cyclei is not

incremented yet).

5.2 Suspend all mutators on this node and block incoming messages.

5.3 Enable Garbage Collection Fault Handler for resident and arriving

mutators and Remove Shade Handlers for incoming requests/replies.

5.4 Increment cyclei and de�ne the new black color to be used to color

marked and new objects.

Mark-Phase 5.5 While there are more suspended mutators, choose one, Mark-and-tra-

verse it, and resume it.

For each of the blocked messages, Shade its references, Mark-and-tra-

verse objects in the message, and unblock the message.

5.6 Establishing a set of all additional roots of the object graph for this

node and Shade these.

5.7 Until termination is detected do:

5.7.1 While there are more resident gray objects on this node, choose one

and Mark-and-traverse that object.

5.7.2 While there are more references to non-resident gray objects regis-

tered here, send a Shade request to the node hosting the objects.

Sweep-Phase 5.8 Run-time system tables are adjusted to re
ect that white objects are

now considered dead.

5.9 Change the interpretation of the mark-�eld, as white objects are

garbage now. Inform the Sweep Process , that mark of cyclei is �n-

ished.
A 5

4.4 Details in the Robust Garbage Collector Design

Algorithm 5 presented a robust garbage collection scheme. Some of its mechanisms have not

been discussed yet. This is done here together with an extension of the scheme to cope with

facilities for robustness inside the system, i.e., how the validity of checkpoint images, replica,

etc., is preserved.

The discussion is organized around the following issues:

1. Screening of incoming messages

2. Shading of remote requests

3. Distributed termination detection

4Gray objects may be marked black immediately as long their status of being gray is recorded by putting
them in one of the gray sets (performance optimization).

.
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4. Considerations for robustness facilities of the system

5. The use of stable storage

4.4.1 Screening All Incoming Messages

Incoming messages, containing moving objects or references, are all tagged with the garbage

collection cycle number of the sending node (cyclemessage = cyclesender). All messages be-

tween nodes are tagged independent of their level of abstraction (Emerald objects, system,

or garbage collector messages) and independent of the message being a request or a reply.

The received cyclemessage is compared to the garbage collection cycle number of the node

receiving the message (cyclereceiver) and used according to the current status of its garbage

collector to ensure that the two nodes share a common view on the garbage collection, i.e.,

running the same cycle. At least three di�erent situations may be identi�ed:

1. The receiver and sender are running the same garbage collection cycle

(cyclemessage = cyclereceiver)

This should be the case most of the time, both during and between garbage collections.

No special action is needed.

2. The receiver is running a newer garbage collection cycle than the sender

(cyclemessage < cyclereceiver)

This situation arises the �rst time another node sends a message to a node that has

initiated a new garbage collection cycle if the other node has not heard that the new

collection was initiated. The only action needed is to force the sender to run in step,

which will eventually happens by the �rst message send in the opposite direction. Thus,

the message is simply handled as if the sender was already running the same garbage

collection cycle.

3. The receiver has not started this garbage collection cycle yet

(cyclemessage > cyclereceiver)

The receiver may be waiting to start this (or a previous) garbage collection cycle, or

it may be running in a previous cycle. This is the situation that eventually brings the

receiving node to run in step with the sending. The action taken is simply to initialize

the garbage collection cycle number, cyclemessage on the receiving node.

It is important, though, that the initialization of a new garbage collection cycle in situation

3 is possible and done instantaneously, i.e., both fast and blocking, as it is done at the arrival

of a message which may need to be handled before the sender gets the impression that the

message has been lost. The initialization is blocking from step 5.2 to 5.5; but all actions taken

during this are fast. The remaining problem is to ensure that a new garbage collection cycle

may be initiated in the cases where it is not ready to start in step 5.1. This would be the case

if the Sweeper was more than two cycles behind or the collector was already running but in

a lower cycle. Sweeping of old garbage may be skipped as this garbage will be found again

later, but what if the collector is running an old mark-phase? Such a situation should not

appear as the mark-phase is terminated at a global synchronization point, and thus all nodes

have agreed that it was �nished. In any case, the old mark-phase may be skipped together

with the associated sweep-phase. The only problem would be if too many sweep-phases are

outstanding. Then the oldest sweep may be discarded as the mark-�eld of the objects has a

.
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limit �eld width and thus must be reused. This is, however, more a symptom of a too slow

implementation of the Sweep process than a problem of the algorithm in general. Under such

circumstances more storage is immediately reclaimable by the Sweep process, thus there is

no need to instantiate the next mark-phase from a node-local point of view. Still the next

mark-phase may be needed desperately by another node, in which case the oldest sweep can

be safely discarded to enable the other nodes to progress and terminate.

4.4.2 Remote Shading Requests

To limit the communication overhead each node accumulates Shade requests for non-resident

objects until all resident gray objects have been marked and traversed. Then the other nodes

are informed about the need to Shade and eventually Mark-and-traverse these references.

When all references to non-resident gray objects have been accumulated and the resident

gray set is empty, the remote shading protocol is initiated. The protocol is based on broad-

casting. Each node receiving the broadcasted gray set checks, if any of the references are to

a resident object. An immediately response, a Shade reply , is sent back to the broadcasting

node con�rming the shading of the resident objects. Furthermore, these objects are Shaded

to make sure that they become black eventually, and at least before they are used.

The broadcast protocol is made reliable by using the Shade replies as acknowledgments

and repeating the broadcasting of the non-acknowledged references, with increasing delays

between the repeats. This ensures that nodes not receiving the broadcast while they are

temporarily unavailable will get the message sooner or later.

The repeated broadcasting is continued until the last Shade reply has arrived. In this

way Shade requests that are not acknowledged at all, are broadcasted again and again until

a responsible node wants to take over the request. No request is lost, in the sense that the

requester holds the reference until another node takes over.

References to permanently unavailable objects may invalidate this protocol, if they slip

into the non-resident gray set, thus preventing the protocol from terminating. As references

may become dangling after their entrance into the non-resident set it is not enough to prevent

dangling references from entering the set. Thus either these references must be removed from

the non-resident set by special consideration, e.g., by checking their availability from time to

time, or the repetition of broadcast must be terminated by other means. By use of a standard

location protocol, references that are not removed from the non-resident set by Shade replies,

may be identi�ed as references to either lost or living objects. If lost, they are removed from

the non-resident gray set, otherwise we have to wait for a Shade reply, thus continuing the

broadcasts.

In most cases the Shade request is acknowledged immediately by the node hosting the

object. This node Shade the resident object after having send the Shade reply . The scheme

works independent of the actual color of the object, even for an already black object, the

node hosting the object will answer with a Shade reply. Moreover, Shade requests may also

be acknowledged with a Shade reply by a node that knows the object referenced as black

although the object resides somewhere else.

4.4.3 Termination of a Distributed Mark-Phase

Each node has two sets of references to gray objects, the resident gray set and the non-resident

gray set. Thus we have a distributed gray set represented by two sets on each node.

.
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Figure 4.2: The states and transitions of Algorithm 5 running on each node

During the mark-phase each node may be in one of four states depending on its two gray

sets:

State The resident gray set The non-resident gray set

1 non-empty empty

2 non-empty non-empty

3 empty non-empty

4 empty empty or dangling references only

During state 1 and 2, the local Mark-and-traverse continues (step 5.7.1 in Algorithm 5).

During state 3 remote Shade requests are send out (step 5.7.2 in Algorithm 5). When state

4 is reached the mark-phase may be �nished. However, the state is not stable, as another

node may send this node a Shade request, thus changing the state of this node. Still, global

termination is detectable, as the global state, all gray sets empty, is stable. The mark-

phase is �nished when all nodes have exhausted both their gray sets (state 4). A distributed

termination protocol is needed to detect this global state. The above states are illustrated

on Figure 4.2 with state 4 sub-divided into its three sub-states of the distributed termination

protocol. Each event which triggers a transition from one state to another is also illustrated.

The obligation of the distributed termination protocol is to detect the stable state, all

nodes have �nished , i.e., emptied both their gray sets. The task is complicated by the fact

that any node may be unavailable for any number of times in any length of time. Also, the

dangling references to permanently unavailable objects must be identi�ed (and removed from

the gray sets). Furthermore, the global state is built by combining the local states from each

node, while these local states are unstable.

.
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When looking for e�cient and robust solutions, the following observations are important

to stress:

1. The nodes, constituting the system, must be known to determine, what all nodes means.

2. Information from all nodes is necessary to detect the global state.

3. By using distributed control , we have precluded the use of a speci�c coordinator node.

4. Due to failures, the collection of information may be suspended anywhere in the process,

any number of times.

5. References to non-resident objects may become dangling at any time.

6. The object graph may include objects in a singly linked list crossing from node to node

any number of times up to the order of the number of objects. Thus the local state,

both gray sets empty , may be reached many times on each node (O(number of objects)

in worst case).

On this background we have decided to let the nodes exchange information in an anarchist

style. No leader is approved, nor elected. Due to the risk of loosing information, the com-

munication is based on retransmissions with increasing delays. The delays are prolonged or

diminished according to the local available information on each node.

Due to observation 5. above, we cannot just wait for the non-resident sets on each node

to become empty. Hence, the dangling references must be identi�ed and removed from the

non-resident set during state 3 or 4. This may be done when no more Shade replies is received,

or all nodes must agree on these references to be dangling. Whether to remove them from

the non-resident set or globally agree on their existence is a matter of implementation. In

the following, we assume that they are identi�ed as references to unavailable objects and

hence removed from the non-resident set. Furthermore, observation 6. above suggests that

it is not enough to collect the states of emptiness from all nodes once. A non-empty node

may become empty after it has \passed the buck" to a previous empty node, which now

becomes non-empty again. The communication scheme described in Section 4.4.2 ensures,

however, that the two nodes are never empty concurrently, while passing the buck (Shade

request/reply) between them.

This has lead us to a two-phase commit protocol. The protocol is illustrated by the division

of state 4 in three internal states: 4a, 4b, and 4c on Figure 4.2. It may be started by any

node, that has entered state 4 (4a), i.e., any node with both its gray sets empty. The protocol

takes advantages of a timestamp on each node. The timestamp counts the number of times

state 4 has been reached, i.e., it is a counter which is incremented each time both gray sets

are empty is reached. During the �rst phase (while in state 4a on Figure 4.2), we try to

reach a situation, where we believe that the global state has been reached, i.e., all nodes have

been empty and nothing seems to indicate that this is no longer true. The �rst phase must

collect information about the nodes including the timestamp from each node, to be used in

the second phase. The second phase checks (in state 4b on Figure 4.2), that all nodes have

stayed empty since the end of phase 1, i.e., for each node both gray sets are still empty and

their timestamps are unchanged. If this is true, the global state (state 4c on Figure 4.2) is

reached, otherwise a new phase 1, followed by 2, must be initiated.

It is important that the timestamps used for veri�cation in phase 2 are original, i.e., sent

from their node or origin. However, during phase 1, available information about other nodes

.
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may be send together with the timestamps originating from the sending node. This helps

new timestamps to be spread to the other nodes very fast. Thus the available space in the

message should be loaded with the most recently received updates of timestamps on this node.

During veri�cation in phase 2, the added timestamps from other nodes may invalidate the

veri�cation (if they have been incremented); but they cannot be used as the acknowledgment

from their node (if they are unchanged). The acknowledgment must be sent from the node

of origin.

4.4.4 Checkpoint Images Extend the Object Graph

From a garbage collection point of view a checkpointed object may exist in any number

of potentially di�erent passive copies of the same object, the checkpoint images . Thus a

reference to a checkpointed object is a reference to both the original object and the passive

copies. The copies are all alike, but they may be slightly out of date compared to the original

object.

The garbage collector needs to accept both the original and the copies as reachable when

meeting a live reference to such an object. Thus the references to the copies are all followed,

i.e., mark-and-traverse to ensure shading of all objects reachable from the checkpoint image.

Furthermore, unmarked checkpoint images are garbage, just like ordinary objects are garbage,

if they do not get marked.

No special action is needed to handle checkpointed objects, other than following these

extra references. The traversal of the checkpoint images needs special attention though, as

these objects are often represented in a linear and compact form suited for communication

among nodes.

The recovery of a failed object by using an old copy, i.e., a checkpoint image, must take

care of wrong marks in the mark-�eld of the copy. Thus the recovered object should be

marked like a new object when recovered.

4.4.5 A Failure-Robust Collector

An important property of our algorithm is that all nodes need not be available at the same

time as long as they are pair-wise available and able to communicate with each other when

needed. If one of the nodes fails and restarts during garbage collection, the global termination

detection ensures that we will wait for this node, but the node itself should also be aware

of its own status with respect to garbage collection when it is restarted. To ensure correct

restart, the garbage collector must store its own state information on stable storage and a

restarted node must read this information and recover the garbage collector before it interacts

with the other nodes.

The primary state information is the garbage collection cycle number and the position

inside that cycle. If the collector was started but had not reached the global termination

point, i.e., started the sweep-phase, it may simply be started from step 5.1 again. We only

need to guarantee that no object is reclaimed during this cycle and that all reachable, non-

resident objects are being shaded. At restart, all objects are black by default, thus the

re-instantiation of the garbage collector is just done to gather the non-resident gray set and

ensure that the other nodes do not collect these objects.

If the garbage collector was in the sweep-phase, when the node failed, the information

about which objects to reclaim is lost and the recovered collector terminates its current cycle

immediately. The failure has, however, made an almost complete storage reclamation as

.
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only recoverable objects are present after the failure. Thus no storage is lost from a garbage

collector point of view.

4.5 Supplementary Collectors

The temporary unavailability of some nodes may prolong the time where the global garbage

collection scheme must wait before it is able to reclaim garbage. To be able to collect garbage

on a node, when some of the other nodes are not available, we use a supplementary, local

collector.

The primary goal of the supplementary collector is relative expedience, i.e., it must be

able to reclaim garbage independent of long-term unavailable nodes. Such a collector could

run like the global collector of Section 4.4 but on a subset of available nodes only. References

to objects in the subset from other nodes must go into the root set, to prevent objects, kept

alive by such references only, from being garbage collected. These external references must

be available independent of the current availability of the nodes hosting them, and all nodes

in the subset of nodes must be immediately available.

The partitioning of the distributed system in such \independent" subsets must ensure

that each subset is inter-connected long enough to do a full garbage collection cycle and

reclaim garbage in a tempo comparable to the tempo of the allocator. As many references

tend to be short lived and local [Lieberman 83, Schelvis 88, Jul 88b], a good candidate to

such a partitioning is one node per subset. Thus each node should employ an independent

local garbage collector. In fact, the delay imposed by any inter-node communication suggests

the need for a single node supplementary collector on each node.

4.5.1 The Local Collector

The local collector is based on Algorithm 4 modi�ed to work independent on each node with

node-local information only. To prevent it from collecting objects only referenced outside

the current node, we extend the root set with objects, for which a reference has been given

to another node in the past. This information is held as a ReferenceGivenOut-bit in the

descriptor of those objects. The bit is set the �rst time a reference to the object is made

available outside the current node. There may not be any outside references to the object any

longer, i.e., the bit is never cleared as no global reference count is held for the object. Thus

it is not locally deterministic whether the object is still referenced from another node or not.

For the local collector, we use the conservative approach and regard potentially referenced

objects as reachable.

As the local collector works node-local only, references to non-resident objects have no

meaning and they are simply skipped when they should be shaded according to Algorithm

4. The objects referenced by these references will not be reclaimed due to this, as they are

already in the root set of the nodes hosting them. Moreover, no inter-node communication

is needed. The algorithm for the local collector is shown as Algorithm 6.

Besides a new, local variant of the Shade routine, the Sweep Process , routine Mark-and-

traverse, and the handler Garbage Collection Fault Handler of Algorithm 5 are reused in the

local collector also.

Shade a reference

If the reference is to a resident, white object, mark the object black, put it in the gray

set, and protect the object.

.
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Algorithm 6 (Local)

The Local Garbage Collector on each node:

Initialize 6.1 Wait until Sweep Process of (cycle � 2) has �nished and the global

collector has an empty gray set on this node.

6.2 The current garbage collection cycle, cycle, is incremented and the

new black de�ned for marked as well as new objects.

6.3 Suspend all mutators on this node and prevent arriving mutators from

other nodes from being started.

6.4 Enable Garbage Collection Fault Handler for resident and arriving

mutators.

Mark-Phase 6.5 While there are more suspended mutators, choose one, Mark-and-tra-

verse it, and resume it.

6.6 Establishing a set of all supplementary roots of the object graph

for this node including objects potentially known outside this node

(ReferenceGivenOut-bit) and Shade these.

6.7 While there are more gray objects, choose one andMark-and-traverse

that object.

Sweep-Phase 6.8 Run-time system tables are adjusted to re
ect that white objects are

now considered dead.

6.9 Change the interpretation of the mark-�eld:

white 7! garbage of (cycle)

Inform the Sweep Process , that the marking of cycle, cycle, has

�nished.

A 6

The local garbage collector will collect the \local garbage", i.e., objects, that has never

been referenced outside the node. We expect most garbage to be \local garbage", thus the

scheme supports an expedient collection of most garbage.

The local collector has no need to cope with failures in the distributed system. It is local

to each node, as each node runs this supplementary local collector. The main problem is

how the global and the local collector on a node can cooperate. We want neither to depend

on the other, speci�cally it is crucial that the local collector can run undisturbed while the

global is blocked, e.g., by failures.

4.5.2 Synchronization between Global and Local Collector

To achieve independence from the global collector, the local collector works with its own set

of mark-�elds for each object, but the garbage collection fault mechanism is used by both,

only the reason to protect is di�erent which is captured by separate protection-�elds as well.

As seen from one collector, the other collector is just another mutator. The collectors are,

however, not respecting the invariants, when viewed as mutators. They change the object

graph when they reclaim garbage. Thus we want to prevent one collector from reclaiming

.
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garbage, which|due to latency|is known by the other collector as non-garbage.

The two collectors on the same node must synchronize their actions

A simple synchronization between the global and local garbage collectors on each node may

be achieved by not reclaiming garbage in the sweep-phase of the global collector. Instead, the

global collector clears the ReferenceGivenOut-bit for the garbage objects [Bennett 87]. The

local collector will then be able to collect the garbage next time it runs. This is, however, not

enough as a delayed global collector may later try to mark-and-traverse an object already

reclaimed by the local collector. Thus a more secure scheme is needed.

In general, the problem is that the two collectors may both get a reference to an object,

regarded as garbage by the other. Both collectors consider objects reachable from their root

set as non-garbage. The local collector has a local root set only and runs locally only, thus

it has a comparably shorter run-time and it will not block due to failures or other external

events. With this in mind, we may allow the global collector to be blocked by the local, while

the local does its mark-phase.

During the mark-phase the global collector pulsates, i.e., its gray set of resident object

shifts between empty and non-empty. We name the period from the set becomes non-empty

until it is emptied again a pulse. The �rst pulse includes the gathering of all the local root

objects, whereas the rest of the pulses are triggered by an incoming Shade request. The local

collector is viewed as one such pulse also. Its work is equivalent to the �rst pulse of the global

collector.

To ensure that the two collectors do not get objects that are considered garbage by the

other in their gray set, only one pulse must proceed at a time. This means that while the local

collector is running its pulse, no new pulse of the global is allowed. Conversely a local collector

is not started while the global is working in one of its pulses. The underlying constraint here

is that objects already identi�ed as garbage by either collectors will not become member of

the root set of a future pulse. As garbage stay garbage, this constraint is ful�lled by only

initiating a root set of a pulse while the pulse of the other is done.

The delays introduced inside this scheme is limited, as both collectors depends on node

local information only during each pulse.

By only initiating the local gray set when the global is empty (from a node local point

of view) those other objects later traversed by the global collector must be reachable from

an object known externally. Thus not collected by the local collector, as these are already in

the extended local root set.

The local garbage collector will only collect garbage objects that has never been known

outside the node. The garbage collector uses the faulting scheme, so the system has only to

be stopped, during the initialize-phase. The marking-phase proceed in parallel with other

activities.

The reclamation must be synchronized also, but this is easily achievable by employing

a common Sweep Process. The Sweep Process is given information each time a mark-phase

is terminated about the bit-pattern of the mark-�eld that means garbage now. This works

for both the local and the global mark-�elds. Alternatively, we could revert to Bennett's

scheme, by making objects identi�ed as global garbage, local, thus only reclaiming in the

local collector.

.
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4.6 Robust Collection Summary

We have presented a robust solution to the distributed garbage collection problem. Our

solution does not sacri�ces the other goals of being comprehensive and concurrent. Moreover,

it is able to collect garbage in a partially failed system and even complete a comprehensive

collection without the entire system being available simultaneously.

As described the Emerald garbage collection scheme consists of a global mark-and-sweep

collector on each node doing a comprehensive garbage detection for the entire system. Algo-

rithm 5 describes how this is achieved in a concurrent fashion, robust to temporary unavailable

nodes. The garbage collection scheme further employs a local mark-and-sweep garbage de-

tection as described by Algorithm 6 on each node for expedient detection of local garbage.

Both detectors on each node use the same Sweep process to reclaim the detected garbage.

The global collectors constitute a distributed collector which is:

Comprehensive by using mark-and-sweep to do a traversal of the entire graph

of objects.

Concurrent by using a faulting mechanism and a sweep process.

Robust by using distributed control for the cooperating node col-

lectors and a distributed termination detection algorithm to

end the global mark-phase.

The local collectors are independent node-local collectors which collect garbage expedient

and concurrent, thus making the entire scheme more robust. Likewise, does the robustness

of the communication method of the global collection make the global collection extremely

tolerant to nodes crashing and restarting during the collection.

.



Chapter 5

The Implementation of Garbage

Collection in Emerald

The distributed, robust collector and its derived local version have been implemented, tested,

and measured. The main implementation problems and their Emerald solutions are discussed

in this chapter. The design of the Emerald garbage collection scheme was described in the

previous chapters. The implementation is based on the algorithms presented in chapter 4, i.e.,

the global garbage collector (Algorithm 5) and the node-local garbage collectors (Algorithm

6). An overview of the implementation and the garbage collection scheme is given in Section

5.1, whereas the full speci�cation of the implemented garbage collection scheme is given in

Appendix B.

Based on a description of the main problems encountered (Section 5.2), we discuss the

solutions applied to get a working implementation in the following sections. These are divided

into three groups:

Major policies implemented in the Emerald garbage collectors (Section 5.3).

Primary mechanisms implemented to do garbage collection in Emerald (Section 5.4).

Cooperation with the existing Emerald kernel, especially the storage allocator (Section 5.5).

5.1 The Modules of the Implementation

The full garbage collection scheme in Emerald consists of two sets of collectors. One set of col-

lectors cooperates on a global collection while the other set of collectors does an independent

node-local collection on each node. The global collection is comprehensive but potentially

slow, whereas the node-local is more expedient but conservative. The two collectors on each

node are called the global and the local garbage collector , respectively. Their basic algorithm

is the same; but the root set is larger in the local garbage collector, whereas the global must

facilitate inter-node cooperation and distributed termination detection.

Both collectors are divided into a marker and a sweeper process, plus additional processes

acting as event handlers driven by external events. Moreover the local and global sweeper

processes are put together as one process interleaved with the storage allocator on each node.

Thus on each node we have the same set of processes and event handlers constituting the

whole garbage collection scheme.

The modules on one node are illustrated on Figure 5.1 with arrows indicating their in-

teraction. Their algorithms have already been presented in the two previous chapters. To
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summarize, on each node the complete Emerald garbage collection scheme is based on these

modules:

Processes:

The Local Marker Process, as described by Algorithm 6 on page 78.

The Global Marker Process, as described by Algorithm 5 on page 71.

The Sweeper Process, as described by Algorithm 5 on page 70.

Event Handlers:

The Garbage Collection Fault Handler, as described by Algorithm 5 on page 70.

The Shade Request Handler, as described by Algorithm 5 on page 70.

The Shade Reply Handler, as described by Algorithm 5 on page 70.

The Termination Detection Handler, as described in Section 4.4.3 on page 73.

5.2 Implementation Problems

The implementation of the garbage collection scheme in Emerald has much in common with

implementation of distributed applications in general. The garbage collector needs concurrent

processing capabilities and associated mechanisms for synchronization and communication.

Also, inter-node communication with fault-tolerance and distributed termination detection

are needed to implement distributed garbage collection. Inter-node communication is needed

for the start and termination of the global collector and to shade remote objects during

the collection. The end of the mark-phase is found by a distributed termination detection

protocol using two-phase commitment.

Furthermore, a garbage collector must �t into the memory management scheme of the

system it serves. Objects on the basic allocation level (chunks of storage) must be identi�able

by the sweep process in its search for the reclaimable ones. Low level deallocation must also

be available to return the reclaimed objects to the allocator.

Cooperation on a higher level is also needed, as the graph of references between objects

must be exactly identi�ed. In Emerald, all allocated objects are tagged with information

about their implementation type. The storage layout of user de�ned parts of objects and

their activation records is also available in the form of templates associated with the objects

(see [Jul 88a]). We also need to de�ne the root set of objects and references among objects

exactly, and to determine how the traversal of the Emerald object graph shall be organized.

The implementation of garbage collection in Emerald is faced with three kinds of problems:

Implementation of policies, that is, adapting the policies inherit in the algorithms to the

run-time system of Emerald. This includes the inter-node communication protocols and,

especially, the distributed termination detection protocol used at the end of the mark-

phase. The exact identi�cation of references between objects, the order of traversal

through the graph of objects, and the amount of kernel data in the root sets are also

determined by implemented policies.

.
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Implementation of mechanisms, that is, adding or modifying internal functions inside

the kernel to support the garbage collectors. This includes augmenting the existing

faulting mechanism to take care of garbage collection faults, facilities for parallel pro-

cessing of garbage collection processes, and inter-node communication facilities.

Cooperation between kernel and collector, especially the cooperation with the storage

allocator, is needed to decide when to start and not to start a local or global collector.

The same holds when and what to sweep and the internal adjustment of tables in

the run-time system according to the result of the mark-phase. To start and stop a

global collector, knowledge about all nodes is needed. Thus the garbage collector must

cooperate with the existing host management system (HOTS) of Emerald to achieve

an up-to-date picture of the global state.

We discuss these problems in the following three sections.

5.3 Implementing Garbage Collection Policies in Emerald

The major policies implemented to do garbage collection in Emerald are concerned with ei-

ther global communication or the object graph traversal. We have implemented a protocol

for communication and synchronization between the global collector on each node. Commu-

nication is needed when the collection is started, to follow inter-node references, and to detect

when the mark-phase is �nished. The order chosen to traverse the object graph must take the

taxonomy of the implementation of the object graph into account also. The traversal takes

its o�set in the root set, containing the running Emerald processes and other always present

objects. To implement the collector in Emerald, we must identify these objects among all

those references available in the kernel, to �nd a small, yet large enough to be complete, set

of root objects.

5.3.1 Inter-node Communication Protocols

Inter-node communication is needed between the global collectors to:

� ensure synchronization between the collectors, as these must run in step, and

� exchange information about remote shading.

Furthermore, each collector may need to communicate with all other nodes to determine that

a reference is dangling.

Synchronization between the global collectors is not an absolute requirement; but they

have to run in step relative to a virtual global clock, i.e., two global collectors need only agree

when their nodes exchange information. Explicit synchronization takes place when:

� a node starts a collection (broadcasting its intention),

� shading information is exchanged,

� termination of the mark-phase is deleted.

.
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Figure 5.2: Synchronizing the start of the global collector

5.3.2 Synchronizing the Start of a Global Collection

The start of a global collection must not be a hard synchronization point, as a robust collection

shall be able to start even though some nodes are temporarily inaccessible. Thus each node

must be able to start its global collector independently, as long as those nodes started do

not communicate with those nodes not started yet. We achieve this by the tagging of all

communication with the value of the current garbage collection cycle of the sending node,

combined with screening of all received messages. By implementing this tagging and screening

of messages in the low level part of the message handling on all nodes, it is ensured that any

message from a started node to a non-started will be deferred long enough to let the receiving

node start its global collector before the message is handled.

Example: Communicating Nodes Forced to Synchronize

Figure 5.2 shows how the start of a new garbage collection cycle spreads slowly to all nodes

in the system in a case where the initially broadcasted information about the start of a new

collection never reaches the other nodes.

Node 2 initiates the cycle (1) and defers its processing of messages received from node 1

(2) and node 3 (3) at least until the mark-phase has started (4), i.e., along the thin-dotted line

from 2 to 4, and from 3 to 4. In Emerald, the incoming messages may be processed invisibly

to the sender, i.e., the acknowledgment is not sent back until the node allows mutators to

run in parallel with the marker (4). From a node that has started a cycle, any outgoing

message triggers the other still not initiated nodes (5, 6, and 7). At any moment, nodes that

have not started on this collection may communicate as if the global collection was still not

started, e.g., node 4 and 5 (8). All nodes must also synchronize at the end of the mark-phase

to detect termination, thus, if a node has not communicated with those started ones before

this point (9) it will be forced to start now, i.e., before global termination is detected.
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The exchange of shading messages between the nodes may|like any other messages|

ensure that a garbage collector is running on the receiving node in the same cycle as the

sending node. This loose node synchronization ensures that all nodes will eventually par-

ticipate in the same garbage collection cycle even in the case of temporary node failures.

However, the initial broadcasting of the intention from a node starting a new cycle will in

most cases|where the message is not lost|ensure full synchronization e�ciently and imme-

diately.

The protocol impose an overhead to all communication by adding the cycle value in all

send operations and testing the value of the cycle in all receive operations. The overhead

is, however, insigni�cant compared to the general cost of communicating across a local-area

network in the Emerald system.

5.3.3 Remote Shading Policies

The remote shading is needed during the mark-phase to ensure that references from an object

on one node to an object on another node is followed and the destination object marked and

traversed. Thus we must locate the destination of the object, e.g., by using the Emerald

location protocol, and send a remote shade request to the destination node.

For e�ciency reason, we chose to batch the remote shade requests on each node in a

non-resident gray set until the resident gray set is empty. Then all references in the non-

resident gray set are send to the relevant nodes. The used shading protocol bypasses the

location protocol by using one common broadcast from each node to all other nodes of all

non-resident object references as OIDs. Each node hosting any of these objects replies with

the OIDs of their resident part of the broadcasted OIDs. This way the non-resident gray set

is diminished as replies arrives. New references found after the exchange, e.g., by the remote

shading, may introduce new references to non-resident objects, thus requiring the method to

be repeated.

Failing to get replies for non-resident gray objects after doing multiple broadcasts indicates

that the object may not be available any more. Thereafter, the location protocol is used to

determine whether each of these objects are available or not. References to unavailable objects

can be safely removed from the non-resident gray set, whereas the available objects are send

a shade request to the node where they are located, using a reliable send.

5.3.4 Distributed Termination Detection Protocol

The end of the mark-phase is detected locally on each node as the two gray sets become

empty. The end of the global mark-phase is a distributed termination detection problem. As

discussed in section 4.4.3, this is solved by a two-phase commit protocol.

The termination criteria may be phrased as either of the following equivalent statements:

the global mark-phase has �nished

() all nodes have �nished the mark-phase of their global garbage collector

() all nodes have a global collector with an empty resident and non-resident gray set.

The protocol is entered by any node that believes that the goal has been reached (that it

is reached locally is a good hint). During the �rst phase (Phase 4a on Figure 4.2, page 74)

information is collected until it is true that all nodes have been locally �nished and are still

believed to be �nished. During the second phase (Phase 4b on Figure 4.2, page 74) each

.
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node veri�es that it is still �nished and has not been non-�nished since the end of the �rst

phase. Thus the second phase veri�es that all nodes have been �nished simultaneous, which

con�rms that the global mark-phase is terminated as no work is in transit from a �nished

node.

During the termination protocol, each node associates a timestamp (a counter) with each

state, i.e., each time a mark-phase is �nished (again) locally the timestamp is incremented.

Receiving the same timestamp from a node during the second phase, as was the result of the

�rst phase, veri�es that the node has been �nished during the whole period. Any node may

detect this by running the protocol, i.e., collecting the timestamps from the other nodes.

As it turns out, it is su�cient to use a simple timestamp namely a count of the number

of times this node has reached the empty state during the current garbage collection cycle.

During the �rst phase the protocol is realized by the exchange of status messages of the

form Node 1 has reached its empty state 5 times . We use tuples < 1; 5 > to describe such mes-

sages. These messages must be combined, thus each node must send the message to at least

one other node. For reasons of e�ciency, we want to limit the number of messages send out,

which impose a kind of structure on the inter-node communication. A �xed communication

structure should, however, be prevented to circumvent failures most gracefully.

We search for a solution between:

� a �xed communication structure, e.g., the organization of all nodes in a circular list or

a hierarchy, and

� a dynamic all-to-all communication pattern, e.g., everybody informs everybody on every

change of state.

A solution, which impose a dynamic structure on the inter-node communication pattern

based on current availability of nodes, would be a compromise, if the adaption of structure

is achieved without a large overhead.

In real systems, the many arti�cial situations, which we try to foresee, are rare. Thus

the simple solution will solve the whole problem most of the times. Such a solution can be

further backed up by more advanced methods in the rare circumstances, where it fails, if its

lack of success is detectable.

Our simple solution to distributed termination detection is based on repeated broadcasts .

By repeating the broadcasts, we turn the unreliable communication into a reliable one. Due

to the rather high cost imposed on all systems on the local-area network by broadcasts, the

frequency of repeats are halved each time, i.e., the delays between successive repeats are

doubled until the repeater is �nally canceled (See Section 5.4.1). Note, however, that this

solution is inappropriate in case of larger distributed systems on wide-area networks, where

broadcasts would be an intolerable burden.

Each node, i, holds a list of tuples < j; countj >, where j is a node and countj is the

number of times node j has reached its local termination state (both gray sets empty). A

handler on each node reads broadcasted tuples and adjust its own list of tuples to keep the

youngest tuple from each node. The handler is enabled during the whole mark-phase to

build the list of nodes which have �nished before the current node and, thus accumulating

full information fast. Each node, i, starts the termination detection protocol when the local

termination is detected. It increments its own timestamp, counti and schedules the �rst

of a series broadcasts of tuple < i; counti >. If the node leaves its own termination state

.
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Node 1 Node 2

Figure 5.3: A graph of objects crossing node boundaries by each reference

due to incoming messages (Shade request), the termination detection protocol is left and the

scheduled broadcast is canceled. The delay until the �rst message is broadcasted is chosen

long enough to capture new Shade request in the cases where a few nodes alternates between

�nishing, e.g., a singly linked list of objects crossing node boundaries between each object

(Figure 5.3).

When all tuples have been received at least once including a valid version of the tuple of

the current node, it is time to verify that the contents of the list of tuples is up to date. The

tuples received in the following period is used to verify, that each of the other nodes has been

stable since the period started. When the last tuple is veri�ed, the global termination point

has been reached. If a tuple with a newer timestamp is received during this period, the tuple

list is updated accordingly and the veri�cation period is started again. Thus we need at least

one message more from each node, to be convinced that nothing has changed since the new

period was started.

The second phase is thus entered and re-entered each time a node has got a new complete

list of tuples. As all nodes repeatedly broadcast their tuple, no polling from the node entering

the second phase is necessary to make the other nodes verify their tuples. Visually, we may

picture the implicit entrance of the second phase by setting a mark on a time line. After the

mark has been set, the node continues to send out broadcasts and collects the information

from other broadcast. Any new tuple value simply causes this mark to be moved forward,

i.e., reset to now.

Example: Global Termination Detection

Figure 5.4 shows an example on how the two-phase commit protocol is realized. The

protocol is initiated when the local termination is detected, e.g., on node 1 at the point

marked 4, on node 2 at the points marked 1 and 3, on node 3 at the point marked 6, on

node 4 at the points marked 5 and 9, and on node 5 at the point marked 8. The termination

detection protocol may be left again due to incoming messages (Shade request) as illustrated

at point 2 for node 2, and at point 7 for node 4.

.
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Figure 5.4: Detection global termination by repeated broadcasts

During the �rst phase each received status information for other nodes is accumulated

in the list of tuples associated with the nodes and illustrated on Figure 5.4 below the node

status lines. The second phase is entered when all tuples have been received at least once

including a valid version of the tuple of the current node, e.g., after the point 8 on node 5.

During the second phase the existing list of tuples is veri�ed. If a tuple with a newer

timestamp is received during this period as done by node 4 at point 9, the tuple list is updated

accordingly and the veri�cation period (the second phase) is started again. The second phase

is thus entered at point 8 and re-entered at point 9.

5.3.5 De�nition of the Object Graph

The traversal of the object graph during the mark-phase is done by following references to

other objects in the objects. The traversal algorithm makes use of a set of references to

objects, which shall be traversed, but has not been yet, i.e., the gray set.

The implementation of the traversal in Emerald must identify exactly which pointers in

the Emerald kernel that make up the root set. Furthermore, the traversal needs for each

type of object a precise de�nition of which references to follow. Those back-pointers that are

included to optimize the execution of Emerald are not followed.

In short, the root set includes the processes ready-to-run, where each process is im-

plemented as a chain of stack segments (SS). The user objects are implemented as local

(LOData) or global system objects (GOData), or the special-purpose condition objects

(Cond). Furthermore, the processes and user objects may have code associated with them.

The main work done by the mark-phase of the garbage collector is to follow the SSs in the

ready-to-run queue and mark these as well as all other objects directly or indirectly reachable

from these.

.
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objects contain user defined data, allocated 
inside the object as data or activation records (AR).

Xxx

Figure 5.5: System and user object references to be followed by the garbage collector

5.3.6 Traversal of the Object Graph

The objects in the object graph are all allocated in the distributed Emerald heap. The objects

are of either of the implementation types listed in Section A.4 and shown on Figure 5.5.

References are either absolute memory addresses or symbolic references (OIDs). Symbolic

references are used when crossing node boundaries, but may also be used internally on a

node. Each node maintains an object table, where OIDs may be looked up to �nd the absolute

memory address of the OD for the object, and thus the object itself if it is resident.

Figure 5.5 shows the system references which must be followed between system objects.

These system references ensure that the garbage collector may treat system and user objects

equally. The traversal of the user objects includes, however, a traversal of the associated

templates describing the layout of variables according to the internal types described in

Section A.4 also. The User(Data) and User(AR) contains the data and activation records

respectively. In the data areas, references to be followed in the traversal are internally typed

as either: ODP, Variable, or Monitor.

� The ODP references another system object.

� The Variable contains one or two references to system objects of the types (LOData

or GOData, and Abcon).

� The Monitor contains a list of SS.

In the activation record, references to be followed in the traversal have the internal types

ODP or Variable with the same contents as above. The templates describing the layout of

.
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both the data areas and activation records are found in the code associated the data area or

invocation.

The distributed traversal has already been partitioned in a node-local traversal and the

exchange of batched shade requests. Node-locally, the traversal must protect objects put in

the gray set for later traversal. As only some system objects have the protection mechanism

available, it is necessary to traverse the non-protected objects immediately, i.e., without

putting them in the gray set. The amount of immediately traversal must still be kept small

to limit the blocking period of mutators on the same node.

Between a depth-�rst and a breath-�rst traversal, we have chosen the intermediate so-

lution of a complete traversal of all non-protected objects, leaving the protected for later

traversal. If the local Emerald heap is residing in a paged virtual memory, the traversal has

to cooperate with the paging system to limit the number of page-faults1. The collector may

try to traverse all gray objects on an available page immediately to limit thrashing. The

garbage collection fault mechanism ensures that the traversal of protected objects is done

on pages made available in primary memory for execution already. Thus the access pattern

of pages by the collector follows the access pattern of the executing user processes. This

suggests that a tighter cooperation with the paging system is of lesser importance to the

mark-phase.

5.3.7 The Identi�cation of the Root Set

The root set is distributed. Each global collector identi�es its own part of the global root

set, thus the union of these root sets constitutes the distributed global root set. As with

any mark-and-sweep collector, the processes that are ready to run, must go into the root set.

Moreover, objects inherently available to the user of the Emerald system must also be part

of the root set. These objects are so persistent that they may not be reclaimed.

In the Emerald system, some objects are created at compile-time, i.e., the compiler cheats

the type system by pretending that these objects already exist. The Emerald kernel ensures

that they are created the �rst time they are needed. These objects should persist as long as an

Emerald program using them may be started in the future and therefore they are maintained

by the kernel as cheating created and put in the root set.

At any moment, some objects may be only partly instantiated. This yields objects moved

from another node or submitted from the compiler, if they are not yet fully translated. The

garbage collector may not traverse them, as their references are not correctly initiated yet.

Still their references must be shaded. The Emerald kernel maintains special lists of objects

in transit, i.e., objects awaiting completion of their translation and the correct values of

their eventual references. Objects in transit must a priori be alive, thus the mark-phase may

simply add these references to its root set. Moreover, it must do so repeatedly as further

references may arrive during the mark-phase. Thus, the mark-phase awaits termination until

all references in these lists have been followed also.

Not all the user processes are part of the root set. Those running or ready-to-run are of

course, but those waiting in other queues are alive only, if \someone" is able to change their

status from waiting to running. Thus, reachability de�nes their liveness, i.e., a waiting process

is alive (reachable), if and only if, the queue where it waits is reachable. This determines the

liveness of processes waiting for access to monitors or in condition queues. The traversal of

1A similar argument goes for the cache of a caching system, or any other level of a multi-level storage

organization.
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the running processes will ensure that these waiting processes are marked and traversed also

if their queues are reachable from the running processes. If they are not reachable, no one is

able to take them out of the queue, thus they should be and will be identi�ed as garbage. This

way orphan processes, i.e., processes waiting forever, will be collected after the last process

that was able to resume them has disappeared. Processes waiting in system queues, where

the kernel is able to resume them, must of course be treated as part of the root set. This

includes the processes waiting on an i/o-operation to complete or a timer to expire.

The establishing of the root set needs not be done completely at the start of the mark-

phase. Only the user processes are suspended and processed at start. The additional root

objects need not be protected, but may simply be added to the gray set during the mark-

phase.

5.3.8 Traversal of Mutators

The user processes identi�ed as non-garbage at start or during the mark-phase are suspended

until their stacks have been traversed and all contained references marked at least gray. A

process may, however, have a stack which is partitioned in several stack segments (SS's)

that might reside on di�erent nodes. Thus, the traversal of a process could be a large and

potentially distributed job faced with unavailable SS's.

To preserve robustness and correctness, and to limit the pauses introduced, only part of

a mutator is traversed at �rst. The representation of a mutator is a chain of SS's of which

the activation record at the top of the topmost SS is identi�ed as living when the process is

suspended. The traversal may be limit to:

1. the topmost activation record,

2. the topmost stack segment (SS),

3. the chain of SS's from the top until the chain crosses a node boundary,

4. the chain of SS's from the top, across node boundaries, until a SS on an unavailable

node is needed, or

5. the entire chain of SS's,

after which references to the rest is protected and gray.

The candidates �tting best with the implementation model of system objects are 2 and 3,

whereas no protection between activation records in the same SS is available, and potential

failures and inter-node communication delays rule out 4 and 5. The boundary between system

objects, i.e., SS's, delivers the most general solution, thus 2 is selected.

This requires that the reference from the bottom of a SS to the underlying SS is protective

and able to use the garbage collection fault mechanism, independent on whether the reference

are intra- or inter-node. The reference is protected and marked gray when the topmost SS is

marked and traversed. Also processes waiting in queues reachable from either user objects or

the kernel must be marked gray and protected when found reachable. The faulting on return

across SS's is further discussed in Section 5.4.2.

.
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5.4 Support for Garbage Collection in Emerald

Distributed garbage collection needs support for inter-node communication between the

global collectors using the protocols described in Section 5.3.1. The implementation of this

communication facility is described in Section 5.4.1. The requested concurrency between col-

lectors and mutators demands a parallel processing capability (Section 5.4.2) and the garbage

collection fault mechanism (Section 5.4.3) for protection of objects to ensure the garbage col-

lection invariants.

5.4.1 Inter-node Communication Facility

The Emerald kernel has builtin facilities for communication between the nodes. These are

build on top of Unix sockets using the UDP protocol. The available communication services

include reliable message delivery to the kernel at any destination node as well as out-of-band

broadcast messages delivered to all the kernels currently alive on the network of nodes. The

service de�nes a set of message types and associate handlers, i.e., routines called on arrival

of the corresponding message type.

During one garbage collection cycle a node needs the following communication with other

nodes:

1. Broadcasting once and unreliable a hint about the start of the current cycle at this

node.

2. Reliable multicasting of the batch of shade requests to all relevant nodes in the dis-

tributed system. Only the relevant nodes know, which are relevant, thus they must

reliably reply to the sender to notify the sender about which shade request that have

been serviced.

3. Reliable multicasting of termination detection messages at the end of the nodes local

mark-phase to all nodes in the distributed system combined with an acknowledgment

to all nodes when global termination is detected on a node.

4. Unreliable broadcasting of the readiness of a node to start a new garbage collection

cycle, i.e., a hint about the willingness of the node to participate in the next garbage

collection cycle due to the termination of the sweep-phase of a previous cycle.

The unreliable broadcasting of hints (1 and 4) is implemented by sending the message

once by the broadcasting mechanism available. The messages might be lost, i.e., unavailable

nodes do not get them. Both 2 and 3 above needs a reliable multicast to all nodes. This

may be accomplished by reliable point-to-point delivery of the message from one node to

each of the others or by turning the unreliable broadcasting service into a reliable service by

using repeated broadcasts until su�cient nodes have acknowledged. The use of the reliable

multicasting in 2 and 3 favors, however, the repeated broadcasting with exponential back-o�

until su�cient acknowledgments are received by reliable point-to-point reply messages.

The contents of the message in 2, is a batch of shade requests, where each request must

be acknowledged by at least one node in the system, e.g., the node hosting the object to

be shaded. Thus one broadcast would be enough if all nodes are listening. To achieve

robustness to failed nodes, the receiving nodes send back acknowledgments for those shade

requests they are able to handle. This way, the broadcasting node may send out a batch of

shade requests for the still not acknowledged requests a little later. If the designated receiver

.



{ 94 {

of the shade request is a failed node, the broadcast will be repeated until the node recovers,

which may saturate the network by useless broadcasts. Therefore, the repeated broadcasting

of the same message is delayed by doubling the time between each broadcast (exponential

back-o�). Eventually, the designated node will recover and the broadcasting node stops

broadcasting as all its shade requests have been replied.

We start with a minimum delay of n times the cost of handling a broadcast, where n is

the number of participating nodes. The delay may be advanced to a system constant, e.g.

30 minutes, at most. When the longest delay is reached the location protocol is invoked to

remove shade requests due to dangling references and the frequency of broadcasts are kept

constantly low until the needed nodes become available again.

The termination detection protocol (3) takes advantage of the same repeated broadcast-

ing method. Acknowledgment in this situation is only needed when a node detects the global

termination. The global state is stable, thus by broadcasting the termination message once,

the available nodes reach the same conclusion faster than else. It is, however, an optimiza-

tion not a necessity, as any message exchange hereafter implicitly contains the termination

information.

The distributed termination detection may be further optimized to limit the number of

broadcasts and the amount of communications, without compromising on robustness to node

failures. As mentioned in Section 5.3.1, the inter-node communication between any node and

all other nodes is needed at least twice. The second time, to con�rm that nodes still have

the same timestamp. Whereas the �rst time is needed to convince any node, that it is worth

trying to verify, that we are �nish. We want to limit the number of messages, which do not

contribute to the convergence towards global termination detection. Still enough messages

must be send to ensure liveness and achieve robustness to temporary node failures.

The following limitations on repeated broadcasts are thus applied:

� When a node is �nished, it schedules a message of its own new tuple and recently

received tuples for later broadcasting.

� As long as other nodes are broadcasting Shade requests or Shade replies this node

suspends its scheduled broadcast, i.e., it reset its delay, while the other nodes are busy.

� When the other nodes calm down, the scheduled broadcast will be send for real, and a

new broadcast with a longer delay scheduled.

� When a broadcast, containing the tuple of the receiving node, is received, the broad-

casting of the node is given a longer delay, as this indicates that our message has reached

at least one other node.

This way the broadcasts will be calmed done quickly. The resting problem is that we would

like the frequency to be enlarged when we think, we are done and need veri�cations. Such

a situation may, however, be hard to separate from the situation illustrated by Figure 5.3.

The only true indication that we are all �nished is when no one broadcasts anything, but

this may lead to a deadlock situation. Thus the simple scheme to schedule and reschedule

the current message is still the best to do, as this makes us complete robust to unavailability

of nodes. The cost is that we are broadcasting while there is no need for it, as someone do

not listen, i.e., an unavailable node.

.
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5.4.2 Parallel Processing in the Emerald Kernel

Concurrent execution of collector processes requires a new level of process scheduling in the

Emerald kernel between the kernel and the user level. The levels are described in Section

A.3 and summarized in Figure A.1. Figure 5.6 gives almost the same picture including the

new level of priorities described here as the Emerald Garbage Collector Dispatcher. The

added level allows garbage collector processes to be executed in parallel with other processes,

but on a separate priority level. The primitive dispatch system allows the garbage collector

processes to schedule them selves, and requires that they are self-preemptive and able to be

rescheduled by them selves, thus supporting a continuation passing style implementation of

the processes.

As described in Section A.3, the Emerald kernel supports three levels of processes:

interrupts, i.e., Unix signals, which are handled immediately on arrival

by scheduling an appropriate kernel task.

kernel tasks, which are short, indivisible executable jobs, e.g., handlers as-

sociated with external or internal events.

user processes, i.e., Emerald processes, with compiler inserted self-preemptive

behavior (
ick).

The user processes are scheduled round-robin in the ready-to-run queue if their time slice

is exceeded when they 
ick, or resumed running if they are otherwise able to continue.

During each 
ick, the kernel queue of kernel tasks is emptied completely. Thus kernel tasks

are handled with the highest priority|besides interrupt routines, which we do not consider

further.

One each node, the garbage collectors are largely implemented as:

� two mark processes (the local marker and the global marker),

� a common sweep process (the sweeper), and

� event handlers activated by incoming messages via the communication sub-system or

the garbage collection fault mechanism.

Both the markers and the sweeper must be able to run while user processes are running

also on the same node. This is achievable by quasi-concurrency only, which demands us to

multiplex the various processes. The event handlers are invoked by the system according

to the incoming events, and thus, handled like any other kernel task via the kernel queue.

When enabled at the end of the mark-phase, the sweeper may work rather independent of the

garbage collector, i.e., the markers. On the other hand, it is tightly connected with storage

allocation and thus hardwired into the allocation routines (see Section 5.5.2).

The markers may, however, run more independently. Their burden is to heavy to schedule

them as kernel tasks, and they are not user processes either. The Emerald kernel has thus been

extended with a new internal dispatcher. The Emerald Garbage Collector Dispatcher borrows

the CPU when the kernel queue has been emptied, but not each time it is emptied. At this,

rather well de�ned place in the kernel, the dispatcher will enable one of its queued processes

to run non-preemptive. The dispatcher may start at most one of its queued processes each

time the kernel has emptied its kernel queue. The amount of \stolen" CPU cycles used by

the dispatcher is tunable, as a counter enables the dispatcher to start a process each n
th time

.
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Priority Level Queue Processes on this level

1. Interrupt level | Unix signals results in an appropriate kernel

task (the corresponding event handler) being

inserted in taskQ.

2. Kernel level taskQ Actions to be done by the kernel due to in-

and external events including garbage collector

events.

3. Dispatcher level dispatchQ Marker processes scheduled for execution by the

dispatch system.

4. User level current The user process running or doing 
ick right

now.

readyQ The ready-to-run user processes.

Figure 5.6: The hierarchy of processes in the Emerald kernel

the kernel queue is emptied. When no user process nor kernel task is runable, i.e., both the

ready-to-run queue and the kernel queue are empty, and one or more collection processes are

pending, the dispatcher ensures that the collection processes are executed one at a time. The

new hierarchy of processes in the Emerald kernel is shown in Figure 5.6.

The dispatcher system lets garbage collector processes queue-in for quasi-concurrent ex-

ecution. It accepts a routine to be scheduled for later execution. The routine must do a

limit amount of work only, before it preempts itself by either rescheduling itself, scheduling

another routine, or simply removing itself from the dispatch system. Thus, the collection pro-

cesses are trusted by the dispatch system to perform cooperatively and in a friendly manner.

Scheduled collection processes are placed in a queue in the dispatch system (dispatchQ). The

dispatch system also allows removal of any process scheduled for execution from the queue

again. For simplicity and e�ciency the dispatch system does not include a private stack and

process description saved between successive executions of the collection processes. Instead, a

continuation passing style implementation of the collection processes is enforced. It is backed

up by global variables for simplicity and e�ciency.

The two markers are implemented as a set of routines executed sequentially for each

marker, by scheduling either the same routine again or the following, at the end of the

running routine. As the routines are not given their own private stack saved across successive

calls, the few necessary data structures are saved as global data instead.

5.4.3 The Garbage Collection Fault Mechanism

The synchronization between collectors and mutators is achieved by using a garbage collection

fault mechanism similar to the general Emerald fault mechanism used for remote invocation

(Section A.5). The synchronization is needed during the mark-phase to ensure that the user

processes access black object only even though they might reference gray objects also.

Invocation Faulting

As described in Section 3.5, the gray objects are protected (frozen is the term used inside

the kernel) similar to remote objects. When accessed, i.e., when a user process invokes an

operation in a protected object, the control is given to a general fault handler inside the kernel.

When appropriate actions have been taken, control is passed back to the user process, i.e.,
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the invocation of the operations in the (former) protected object is resumed or �nalized.

The appropriate actions done during the fault are selected according to the status bits in

the descriptor of the object (the OD). The two marker processes have their own status bits

(GlobalGCFrozen and LocalGCFrozen). The Frozen-bit of the OD is a logical-or of

these two bits and the other status bits, e.g., IsResident and SetUpDone. As more than

one reason may have caused the fault, each is inspected and the associated handler called

before the status bits including the Frozen-bit are reset. Thus, if both the local and global

marker have protected the object, the object will be marked and traversed according to both

the local and the global mark-bits.

Faulting on Return

The mutators are not only faced with protected object at invocation time. Also returning

from an invocation may resume action in a non-black object, if the entire stack of the process

has not been traversed and marked yet. Mutators are expected to be black, thus all their

references are at least gray. This requires that the entire stack of each mutator is traversed

and marked. The stack is, however, partitioned in stack segments (SS), each of which may

reside on another node. This was fully discussed in Section 5.3.5.

As the liveness of a mutator is detected at the topmost SS, the immediately underlying

SS is marked gray and protected, while the top SS is traversed and marked black. When a

mutator returns across the bottom of a SS, the underlying, protected SS forces the scheduler

of user processes to call the garbage collection fault handler �rst. Thus faulting on return

across stack segments is implemented, independent of whether a node boundary is crossed

during the return or not.

5.5 Cooperation Between Kernel and Collector

The garbage collector need to cooperate with the kernel, especially the storage management

routines. This is used to ensure that the relevant root set of objects are delivered to the

collector when started (Section 5.5.1) and to incorporate the reclamation, i.e., the sweep

process, in the allocator (Section 5.5.2). The kernel also delivers hints on when to start a

new collection as described in Section 5.5.3. The knowledge about all nodes of the entire

system is needed by the mark-phase to determine when a global collection is completed.

Section 5.5.4 describes how the kernel determine the global set of nodes.

5.5.1 Delivering an Accurate Root Set

To deliver an accurate root set at the start of a garbage collection as described in Section

5.3.5 on page 91, the kernel keeps information on certain objects.

First|and foremost|the queue of Emerald processes ready to run, i.e., the mutator list

is available in the kernel. This list is extended with Emerald processes waiting for external

events like i/o and timers, but not those processes waiting in a queue that is only known

by other Emerald processes. The liveness of the latter processes are solely de�ned by their

reachability|via the queue they are waiting in|from the processes in the root set.

Second, references to the objects generated at system start up are recorded inside the

kernel and put in the gray set at step 6.6 of the local and step 5.6 of the global marker process.

At this point, objects made by cheating creates , objects under translation, and other objects
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promised to be "always available" are also added. These have all been registered inside the

kernel when they were created. The objects potentially known from outside the node in focus,

i.e., those resident objects with ReferenceGivenOut-bit set, are also dynamically registered

inside the kernel. These are, however, only added to the local marker (in step 6.6).

When objects are found to be garbage, they are reclaimed, thus any reference to them

from inside any kernel table, set, list, queue, or other kernel data structure, must also be

removed. This is done in step 5.8 of the global, and in step 6.8 of the local marker process

for the above mentioned references inside the kernel and for the Object Table on the node as

well.

5.5.2 Cooperation with the Storage Allocator

The sweeper process is enabled on a node by either of the completed marker processes.

According to the coding of the mark-�eld of the completed marker process, the sweeper

traverse the storage to reclaim any object with a bit-pattern in its mark-�eld matching one

of the current garbage patterns.

The sweeper is parameterized to reclaim at least the given amount of storage, if possible

at all. Instead of forcing the sweeper to run as a separate process, it is called from the

run-time storage allocator. When enabled, the sweeper is asked by the allocator to sweep

cyclically through the entire heap. It is called to reclaim at least the same amount of storage

as was requested from the allocator.

For each possible garbage pattern to be reclaimed, the sweeper does a cyclically traversal

of the entire heap from its current position.

5.5.3 When to Stop and Start

The Emerald kernel has been instrumented to collect statistics, and to take action in certain

situations. This is needed to ensure that a new garbage collection cycle of either the local or

global kind is started at the right point.

A new garbage collection should be started before the allocator runs out of available

storage. Thus the local marker is enabled to run one more garbage collection cycle when

a certain threshold is meet. This way local garbage, which is expected to be most of the

garbage, is marked between the threshold and the maximum of available storage, where after

the sweeper is enabled to sweep the storage and reclaim the garbage. The distance between

the threshold and the maximum must be tuned to match the run-time used by the marker.

Should the tuning fail and the allocator e�ectively run out of available storage, its caller must

be delayed, and the marker made a high priority process, i.e., the marker must identify the

garbage in a hurry to enable the sweeper and the application calling the allocator again.

The global marker is triggered like the local but on other statistical values. One of the

indicators, that global garbage might be available, is that the number of objects on a node

potentially known from other nodes has grown large. Thus when the number of objects

with ReferenceGivenOut-bit set reaches a certain threshold on any node, the global marker

is enabled.

5.5.4 A Global view of the World

The global garbage collector stops the mark-phase when all objects are black or white, i.e., all

gray sets are empty. For this purpose it needs to know about gray sets on all nodes that have
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been available. An example is a previous active node which has checkpointed some objects

who refer to white object on the running nodes. When a checkpointed object is restarted in

the future, we shall guarantee all its references valid.

To do a global garbage collection we need to know about all nodes of the actual Emerald

system. Not only the nodes which are currently running. We need to know about all nodes,

who may have a reference to an object on any of the other nodes. For this and other purposes

we maintain a list of other nodes (HOTS) on each node. The list is updated as new nodes are

recognized by the node holding the list. We do only insertion of new recognized nodes (never

deletions). Thus as objects move around the list on each node gets a fairly good picture of

the world. Furthermore, each new node broadcast a message about itself at startup.

In a distributed system, like Emerald, it is often di�cult to maintain the same and realistic

picture of the state of the total system. Without centralized control the system state is only

retainable as the state of the parts, it consists of.

But before issuing a global garbage collection, we force the nodes to synchronize their

lists, i.e., exchange information until everybody have the same picture. This gives a global

picture when garbage collection starts. The mark-phase is the de�ned to be �nished when all

\start nodes" have empty gray sets. New nodes are of no concern as new objects and every

reference passing node boundaries hereafter will be de�ned living by the garbage collector as

they move between the nodes.

5.5.5 Additional Bene�ts

Emerald has a general mechanism to locate objects. The mechanism takes advantage of hints,

i.e., each node that has had a reference to an object maintains a hint, the most recently known

location of the object known here. Such hints may be old and useless if the object we want

to locate has been moving around a lot without passing this node and updating the hint. By

following the hints from node to node the object may at last be located, but this forwarding

chain may potentially be as long as there are nodes in the system.

As the mark-phase of the global garbage collector has to locate non-resident, living objects

during remote shading, it may as well update these hints as it becomes aware of more recent

information about the current location of an object. In this way, the length of the forwarding

chain is reduced, and better performance of this type of application expected.

5.6 Implementation Problems Surmounted

We have presented some of the more important problems surmounted in the implementation

of the Emerald garbage collection scheme. The scheme has been implemented in the Emer-

ald prototype, although it has not been integrated with the checkpoint/recovery system of

Emerald.

The inter-node communication scheme uses point-to-point messages and repeated broad-

casts with exponential back-o�. These are used for the exchange of gray sets and by the

distributed termination protocol which detects the end of the distributed mark-phase. A

simple synchronization scheme by tagging all inter-node messages ensures that the garbage

collectors on all nodes will always run in step.

The system objects and basic data structures of the run-time system have been analyzed

to de�ne which references to follow and to identify the root set for each garbage collection.

.



{ 100 {

The necessary mechanisms inside the Emerald kernel have been added including the com-

munication mentioned above, the intermediate processing queue, and augmentation of the

faulting mechanism for garbage collection faulting on both invoke and return. Further coop-

eration between the existing kernel and the garbage collectors is supported by hooks inside

the kernel to deliver the correct root set, interleave the sweeper with the storage allocator,

ensure that the collector is called before the allocator is unable to service its clients, and tells

which node the system is build of.

.



Chapter 6

Evaluation

The comprehensive, concurrent, and robust distributed garbage collection scheme described

in the previous chapters has been incorporated in the Emerald prototype. The scheme do

collect all garbage and works during long sessions without storage leakage. In contrast to most

distributed collectors, this collector do collect distributed cycles without any special e�ort.

The distributed collection will always complete even when node failures occur frequently.

The general overhead has been limited to less than 10%, and the pauses incurred on user

computation may be limited to the same order of magnitude as the current time slice used

for round-robin scheduling of user processes in Emerald. Furthermore, orphan processes are

collected and the scheme may be used to recycle any kind of resource represented as an object.

A set of evaluation methods was presented in Section 1.8. These are now used to see

whether the goals presented in Section 1.5 have been met. Measurements as well as estimates

of the collectors run-time behavior have been done to identify both the short and long term

overhead in space and time introduced. The measurements have been backed up by an

Emerald program that creates arti�cial garbage and by ordinary Emerald applications.

This chapter evaluates the implementation by investigating how the goals have been meet.

The �rst section shows that comprehensiveness has been achieved without introducing storage

leakages (Section 6.1). In Section 6.2 we show how the scheme survives node failures and are

able to progress in a system where node failures are the norm. Some structures of objects

may harass a garbage collector more that others. In Section 6.3 we show how the traditional

problem due to cyclic garbage is solved without any special e�ort, and in Section 6.4, how one

of the most challenging distributed structures of live objects, the zipper problem is overcome.

The overhead introduced by garbage collection has been measured and we show some of the

basic performance �gures in Section 6.5. The pauses introduced into normal execution by the

garbage collector have also been investigated and the measurements showing this is presented

together with estimates of the pauses in general (Section 6.6). Our scheme gives us orphan

detection at no additional cost (Section 6.7). We end this chapter with a description of the

implementation of the garbage collection scheme in general, quantitative �gures (Section 6.8)

and summarize the evaluation at last (Section 6.9).

The measurements have been done at the VAX implementation on top of Unix, ver-

sion 4.3bsd, on a network of four VAXstation 2000 workstations at DIKU, Department of

Computer Science, University of Copenhagen. Unless otherwise stated, all �gures given in

the following are based on this implementation. Further statistical information about the

implementation is given in Appendix C.
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Object type Data Code Object Process Total

basis contents of a new kernel 28 79 104 2 213

after program load, before it starts 68 111 174 3 356

after a full collection at this point 49 107 168 3 327

after program termination 4317 121 4213 8 8559

after a �nal full collection 56 116 190 4 366

Table 6.1: The number of objects in the object store

6.1 Comprehensive Collection

A key feature of the implemented collector is its ability to collect all garbage. To test that

the collector indeed does collect all garbage and nothing else, a mixture of user programs has

been run while garbage collecting. This shows that all the objects that were garbage at the

start of the collection are eventually reclaimed by the succeeding global collection.

We have conducted this test by inspecting the object store at four central points:

1. before the programs were executed,

2. between the termination of the programs and the start of the collection,

3. between the end of the mark-phase and the start of the sweep-phase, and

4. after a full collection is done.

After the user programs have �lled up the object store, the garbage collector must identify

and remove all these objects again. The test programs generate 4000 objects explicit known

to be garbage after termination, and provoke the system to generate further objects, that

may survive the test programs, as discussed later in this section.

A summary of this test is presented in Table 6.1. The columns show the current number

of objects in the object store. The total number of objects has been broken down into the

number of objects representing either of the four categories:

Data i.e., mostly objects containing user data.

Code i.e., the executables related to either system objects or the user

programs.

Object Management i.e., objects generated by the run-time system for the management

of all objects.

Process Management i.e., objects representing user processes and user de�ned process

queues.

The test shows that all 4000 user objects, as indicated by the reduction of 4317 to 56 in the

data column are reclaimed again by the collector. Some of the system generated data objects

persists longer. Note also that each of the user objects has been registered by the objects

management system as indicated by the object column, and that these are also collected by

.
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the collector. As the system generated representation of processes (Stack Segments) is usually

recycled internally, the reduction in the process column is due to the garbage collection of

four user de�ned Condition objects.

Due to this test and several other test sessions including long-running tests with several

garbage collections, we conclude that all garbage is collected properly. The conclusion is

based on careful inspection of the objects remaining in the object store after a collection to

ensure that it is exactly the right ones that survive.

To broaden the picture, it must be noted that some objects cannot be collected due to the

cooperation between the Emerald compiler and kernel. These are a priori known outside the

kernel, and thus, their references goes into the root set of any collection. The preservation

of such objects may lead to a growing number of objects. This is, however, not a memory

leak as the objects are promised to stay alive because the Emerald compiler may compile

new user programs with references to these objects included. An independent Emerald �le

system garbage collector determines which of these references the compiler will ever use

again by cleaning up the �le system of compiled code and saved references. By interfacing

this collector to our collector at run-time we expect to be able to diminish this problem even

further. Until now, it has not been a problem in practice. The extended storage picture given

in Table 6.1 seems to verify this.

To detect leakage and dangling references we have also implemented the mark-phase of

a simple, conservative collector. The collector inspect all cells and detect all objects in the

heap which either have no reference to them while alive, or have at least one reference to

them while already reclaimed. This Memory Analyzer was used during the debugging to �nd

leakage and dangling references in the entire heap which contains objects as well as kernel

allocated data structures. Among the later type, it was able to identify leakage in a standard

C-library routine supplied with the Ultrix, version 3.1 system used under debugging.

6.2 The Distributed Collection Overcomes Repeated Node

Failures

The distributed collector works also when faced with node failures. It will always complete

its collection although all the nodes are never available simultaneously. It is able to proceed

on the available nodes and even the distributed termination detection will eventually succeed

with few nodes available at a time. We have conducted several convincing experiments to be

sure that both termination detection and remote shading is achieved as described. On this

background, we conclude that the system works despite one or more node failures anytime

during the garbage collection cycle. In fact, experiments show that the system is extremely

robust to node failures.

To show how robust our implementation is to node failures, a scenario where only three

out of four nodes are available at any time during the distributed termination detection

protocol has been constructed. The test example behaves as follows:

1. Emerald is running on a four node network.

2. A global collection proceeds on all four nodes until the mark-phase has �nished on all

nodes; but the global state all nodes locally �nished is not detected by any node yet.

3. Furthermore, node 1 has reached a state where it has told all the other that it has

�nished.
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4. Then node 1 crashes, while the other three nodes continue collecting information about

the global state until all three is ready to terminate if they get commitment from node

1 (which they do not get, as node 1 is down).

5. Then node 2 crashes and later node 1 recovers and re-enters the termination protocol.

6. Node 1 is able to con�rm the last two node, that global termination is detected, but

it cannot be con�rmed itself as it need con�rmation directly from node 2 which is

currently down.

7. Node 3 and 4 terminates the collection and tells all other reachable nodes to do the

same. Thus node 1 terminates the collection also.

8. When node 2 recovers, it will|by its �rst communication with any other node|be

informed that the collection has terminated already.

This example has been simulated on the implementation by simulating the node crashes.

As failure recovery in the current implementation of the Emerald prototype has been disabled

we have not been able to restart crashed nodes with checkpointed objects. Instead the node

crash and later recovery is simulated by stopping the Unix process that execute the kernel

and later resume it as a recovered node. To succeed in the real world, the termination

detection mechanism must checkpoint its current state and restart from that state when the

node recovers. During any other point of the garbage collection, the recovered node simply

restart the current collection.

Other test examples are concerned with the distributed shading protocol. As each node

continues its remote shading until all its needs have been serviced, it may tolerate that any

of the other nodes are unavailable frequently often. As long as each pair of nodes that needs

to exchange a remote shade request and reply has been available simultaneously to service

the communication, the shading will progress and eventually terminate when the last request

has been con�rmed with a reply.

Robustness to node failures is achieved not only by the global collection scheme, but also

by the local collectors. The local collector survives failures of other nodes as it does not

bother about them. If a node crashes while a local collector is running, the local collector

may just be restarted after the recovery of the node itself.

6.3 Distributed Cycles of Garbage are Collected

Many collectors, e.g., those based on reference counting, fail to collect cycles of garbage.

There are "workarounds" to chase and identify if such cycles are garbage or not. In distributed

system, the "workarounds" are further complicated, and many distributed collectors based

on cooperating local collectors fail to collect distributed cycles of garbage.

Our implementation of the global collection scheme does, although it is based on a col-

lector on each node, collect distributed cycles of garbage without any special e�ort. The

implementation does essentially a global mark-phase, and can thus guarantee that any cycle

of garbage is collected. We have conducted several tests and observed how such distributed

cycles are reclaimed by the �rst global collector running after they became garbage.

As one of these tests, we have constructed a set of objects which constitute a cycle of

objects, where each references its two neighbors in the cycle (a cyclic double linked list). The

cycle spans over more that three nodes. As long as at least one live reference exist from a live

.
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object to any of the objects in the cycle the entire cycle survives garbage collection. When the

last reference is removed, the cycle still survives local garbage collection, as the elements in

the cycle is potentially known from other nodes. The global collector does, however, remove

such dead cycles without even knowing about cycle detection.

6.4 Termination Detection is Always Achieved

The protocol for remote shading is not only robust to nodes temporarily unavailable, it also

ensures that remote shade and reply messages lost during communication would be recovered.

Moreover, distributed termination detection of the global mark-phase is always deferred as

long as one single node has an outstanding shade request not acknowledged yet. We have

observed the actual behavior of the running system and concluded that the implemented

protocols work.

One of the distributed structures that complicate distributed collection is the zipper illus-

trated on Figure 5.3 in Section 5.3.1. During the mark-phase each reference in this structure

has to be done as a separate remote shade. Each time a shade request is con�rmed with

a reply the distributed termination detection protocol is entered but left again immediately

afterward as the other node sends a shade request in the opposite direction. Thus the dis-

tributed termination detection is harassed and all other nodes in the system will try to reach

a new agreement on global termination each time. The problem is partly circumvented in

the current implementation by delaying the re-entering of the termination detection protocol

a short while. The delay is kept small but long enough to capture simple forms of the zipper

problem.

The problem could of course be further complicated by introducing further nodes and a

spiral of references among the objects from node to node resulting in a linear list of objects

crossing node boundaries each time. It degrades performance of the global collector in the

sense that it takes longer to terminate it. Eventually, it terminates, and the outstanding

work does not add substantial overhead nor does it prevent a local collection from being

made on each of the nodes in between. Even a structure with 50 objects on each side of a

node boundary, and thus a requirement of 100 additional shade request, does not add any

visible delay to the termination protocol.

6.5 Performance Degradation Due to Garbage Collection

The overhead due to the added garbage collection has been measured by running various

Emerald programs on the Emerald prototype instrumented with our garbage collectors and

various counters holding statistics for each garbage collection cycle. The measurements in-

cludes:

1. Micro-timings by logging time-stamps on entry and exit of various garbage collector

segments of the Emerald prototype.

2. Counting instructions added for garbage collection purpose by code inspection of the

C source implementing the Emerald prototype.

3. Macro-timings by wall-clock and user/system time, comparing a run with and a run

without a garbage collector.

.
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The applications run are either arti�cial Emerald programs managed by the Synthetic

Garbage Creator or real user programs like the Emerald mail test program.

The main result is that typical applications are slowed down by 10% while a collection is

progressing simultaneous.

The time is mostly used to traverse the objects and identify the references to other objects

inside objects. Another signi�cant factor is the internal management of gray objects during

the mark-phase. These �gures are, however, bound to the number of live objects in the

system. The sweep-phase is bound to traverse the entire heap. Although the cost per object

(both the live objects and the garbage objects) during sweep is small, the total work of the

sweeper introduces a signi�cant overhead.

Part of the overhead due to both sweeper and markers are in the internal management

of these as parallel processes, running concurrently with user processes. This overhead pays

o� by limiting the length of the pauses introduced into user computation by the garbage

collection.

On the bottom-line, it should be noted that no matter how costly garbage collection is, it

enables programs to run although their accumulated consumption of dynamically allocated

storage is larger than the available storage. Programs that do not need the garbage collection,

e.g., because the accumulated amount of their dynamic storage allocation is limited, may run

full speed simply by disabling the garbage collection.

6.6 Limited Latency

As the garbage collection is implemented to work while user processes are running, it may

introduce pauses into user computation while the two are running concurrently on the same

CPU. Instead of introducing one unacceptable long pause in user computation while the

entire garbage collection is done, our collector does a smaller step at a time thus, introducing

smaller pauses only. The collector work is already partitioned in phases, and the mark-phase

is further partitioned into doing one object traversal at a time. As some of the simpler

implemented objects cannot be protected separately, these are each traversed together with

the traversal of the �rst object that references them.

Although it is possible to construct esoteric examples of a large group of objects that

need to be traversed together, the observed behavior is to traverse between 3 and 10 objects

at a time.

The length of the pauses introduced depends on the number of objects and the number

of references inside the objects. The average traversal time has been limited to 100�sec;

although for some of the more complicated objects the traversals may costs more. The

pauses are limited, mainly due to the limited amount of objects traversed at a time. If large

monolithic objects were constructed in a non-object-oriented sense, longer pauses introduced

from garbage collection would of course be the result.

The conducted experiments show that the latency introduced by garbage collection is

no worse than the latency already present due to timeslicing of the user processes. Thus

we conclude that garbage collection does not introduce new annoying pauses of the user

processes.

.



{ 107 {

Kernel Kernel GC overhead

without GC with GC Kbytes Percentage

Kernel code 273 Kbytes 351 Kbytes 78 Kbytes 28.6%

Static allocated kernel data 386 Kbytes 433 Kbytes 47 Kbytes 12.2%

Initially heap size 267 Kbytes 313 Kbytes 46 Kbytes 17.2%

Total storage reservation 926 Kbytes 1,098 Kbytes 172 Kbytes 18.6%

Unused heap space 10 Kbytes 14 Kbytes -4 Kbytes -40.0%

Storage usage 916 Kbytes 1,083 Kbytes 167 Kbytes 18.2%

Table 6.2: Storage usage for the kernel at boot time

6.7 Garbage Collection of Processes

Besides the fact that some processes are also part of the root set, processes are handled like

other objects. The processes are traversed as objects and marked as reachable as references

to them are found.

This result in orphan detection as a side-e�ect of garbage collection. Orphan processes

are waiting forever in a queue that no live process is able to reach because the object which

contains the queue is unreachable. Thus, neither the object nor the process will be marked

as living, and both will be garbage collected as unreachable objects.

We have tested orphan detection in a distributed system where the Condition queue could

be known from another node. When all processes were queued, a local collection on each

node removed most of the garbage, but the processes were still waiting on their queues, as

these were in the local root set. Then a global collection was issued and it detected that

the Condition and, thus the queue were garbage, and thus also the processes, that were only

referenced from these queues.

6.8 Kernel Boot Time Statistics

When the new|with garbage collector|extended kernel is running, the extensions for de-

bugging and monitoring is usually not executed while Emerald programs are executed. Thus,

these additions mostly in
uence the kernel by its additional consumption of storage and

the time it takes to compile and load the kernel. As an example, the storage overhead at

boot-time due to the extensions in the new kernel has been measured as shown in Table 6.2.

Measured at boot-time of the Emerald kernel, i.e., before any Emerald user programs

were loaded, the extended Emerald kernel initially uses 1,083 Kbytes of storage, a growth of

18% storage usage.

The initial heap size is the pre-allocated heap-space, i.e., inclusive the heap blocks avail-

able on the free-lists inside the kernel. At boot-time a lot of useful objects is loaded into the

kernel to be immediately available for the user processes. Thus the initially heap contains

these objects as well as dynamically allocated kernel data structures such as dynamically

expandable kernel tables. In general, the heap contains kernel date structures as well as data

and code of Emerald objects. The adding of garbage collection does not change the initial

contents of the heap with respect to the Emerald objects, only the dynamically expandable

kernel structures are extended as shown in Table 6.3. In the new kernel with GC, 95% of

the heap-space is in-use at boot-time (299 out of 313 Kbytes), thus there is almost no pre-

.
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Kernel Kernel GC overhead

without GC with GC Kbytes Percentage

Initially heap size 267 Kbytes 313 Kbytes 46 Kbytes 17.2%

Kernel data 143 Kbytes 183 Kbytes 40 Kbytes 28.0%

Emerald objects 108 Kbytes 108 Kbytes 0 Kbytes 0.0%

Available 10 Kbytes 14 Kbytes -4 Kbytes -40.0%

Heap usage 96.4% 95.4%

Used heap 257 Kbytes 299 Kbytes 42 Kbytes 16.3%

Table 6.3: Heap usage at boot time

Kernel Kernel GC overhead

without GC with GC Kbytes Percentage

User time 11.5 sec 14.0 sec 2.5 sec 21.7%

System time 10.1 sec 10.1 sec 0 sec 0%

Boot time 21.6 sec 24.1 sec 2.5 sec 11.6%

CPU-usage 60.4% 64.1% 3.7% 6.1%

Wall-clock time 35.6 sec 37.5 sec 1.9 sec 5.3%

Table 6.4: Boot time

allocated space immediately available for the �rst application requesting space. The total

size of the allocated heap, including available storage blocks on the free lists growth from 267

Kbytes to 313 Kbytes.

The booting of an Emerald kernel costs a little extra when garbage collection is included.

However, most of the time spend during boot of the kernel is due to pre-loading and initial-

ization of the standard build-in objects, i.e., waiting for the code to arrive from the disk and

translating, i.e., dynamically linking, it. Table 6.4 shows that the overhead|due to garbage

collection|is approximately 2.5 seconds additional user-time.

All costs due to the added garbage collector should also be viewed as a trade-o� between

being or not being able to run large "applications which are otherwise unable to run if they

cannot take advantage of the garbage collector. Thus the prize is paid for something|it is

not just an additional overhead|it makes it possible to run programs with higher storage

allocation and deallocation rates than else possible.

6.9 Evaluation Summary

The implementation has been tested and it has been shown that our collection scheme does:

1. a comprehensive collection of garbage,

2. complete a global collection while nodes are unavailable,

3. collection of distributed cycles of garbage,

4. progress while nodes are unavailable,

5. introduce a limited overhead on user computation,

.
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6. work concurrently with user computation with small latency,

7. collect orphan processes

As this work is mostly concerned with garbage detection, the reclamation part has only

been mentioned brie
y. This is an area where there has been left plenty of room for future

optimizations.

The fragmentation of the object storage indicates that more cooperation between allocator

and collector is needed. One way to achieve this is to move all live objects to one area of the

storage. In other words, a copying collector ensures a better compaction of live objects at

the cost of more translation.

It may be adequate to change the local mark-and-sweep to be generational and use a

copying collector for the young generation. The memory allocator currently in use runs a

quick-�t strategy. This allocation strategy|together with the copying techniques|has to be

tuned to operate in the virtual memory system of the actual Unix implementation used.

.
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Chapter 7

Conclusion

We have developed and implemented a distributed garbage collection scheme in the dis-

tributed, object-based system, Emerald. The scheme works in systems where failures are the

norm. It is robust to individual node failures while still collecting all garbage. The collection

scheme consists of a node local collector on each node and a global collector based on another

set of collectors that cooperate. The global collector may not be expedient as it depends on

pair-wise availability of all nodes, whereas the local collectors will always be able to identify

local garbage expediently. Moreover, both collectors may run concurrently with each other

and user processes while only introducing smaller pauses. The main contribution is concerned

with distributed garbage detection, whereas the reclamation of identi�ed garbage is solved

ad hoc. A bene�cial side-e�ect of the global garbage collection is that forwarding address

chains are collapsed.

7.1 Goals Revisited

The goal of this thesis has been to prove that garbage collection can be comprehensive in a

distributed system without loss of responsiveness. More precisely we stated our goals in two

parts:

� Functional requirements:

� Comprehensive and concurrent garbage detection in a distributed, object-based

system.

� Robustness to failures and temporary unavailability of nodes in the distributed

system.

� Ability to collect local garbage fast, also while the global collector is temporarily

unable to complere.

� Performance goals:

� Every part of the garbage collection process should be done e�cient and the total

scheme should introduce as little overhead as possible.

� The latency introduced by the individual steps of the garbage collectors must be

low to preserve responsiveness.

� The node-local collection also must be expedient (in contrast to the global collector

that depends on nodes which may be long-term unavailable).
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7.2 The Solution

The requirements to functionality and performance have been met by our implementation in

the Emerald system. Though performance is not our primary concern the garbage collector

is not in-e�cient. The functionality is achieved by our dual garbage collector scheme:

1. The Global Collector works across the distributed system and identi�es all objects,

that were garbage when the collector was initiated. It depends on pairwise availability

of nodes, thus it is robust to partial and temporary failures of nodes.

It is comprehensive, concurrent and e�cient though it may not guarantee expedience.

2. The Local Collectors work independently on each node, where they collect local

garbage immediately.

Both collectors may run concurrently with user programs on all nodes. The largest delay

introduced by a garbage collector is when it is initiated because all processes must be marked

and protected to ensure that they are traversed before they begin to execute. Synchronization

between the local and global collector on each node is kept to a minimum. The only situations

where the local collector is not allowed to run is when the global collector is doing some local

traversing. These situations takes a limit amount of time (always �nite!) after which the

global will allow the local to run. The parallellization of the mark-phase with one or more

sweep-phases on each node makes it possible to reclaim garbage incrementally.

The concurrency between collector and mutators has been achieved by the garbage col-

lection fault mechanism. This mechanism is also used for mobility purpose and remote invo-

cations in Emerald. The overhead in added code and data structures for garbage collection

purposes is paid by a static overhead due to the potential of having a garbage collector and a

small overhead per object. The later overhead is paid also when running without an initiated

garbage collection, but it amounts to a few bits per object descriptor and a common data

structure on each node only. When a garbage collection is initiated the work is interleaved

with mutators during the whole collection.

The garbage collector dispatcher, which schedules the concurrent mark-process, and sweep-

processes on each node, introduces a slow down in the user processes by stealing processor

cycles up to 20%. We have tuned the dispatcher to steal cycles mainly when the system is

otherwise idle. Thus the bare cost of a dispatcher call is only visible when garbage collecting

in a highly saturated system.

The global collector is further characterized by its distributed control mechanism. There

is no master-node in the system, and no master is elected during the collection. Any node is

able to determine when a synchronization point is met. Thus failures that could be hard to

handle in a system with centralized control, are easily handled here. Of course this robustness

has its drawback, some extra amount of work is done, though that would also be the case in

a centralized system, that took care of failures.

The recycling of Emerald system objects, e.g., stack segments, is automatically achieved,

as system objects are handled like any other object by the garbage detection mechanism. Not

only system objects, but also internal run-time resources, which are dynamically allocated,

may be recycled by our scheme. In Emerald, all kind of limited resources in the run-time

system are recycled this way. When garbage objects are detected all resources, not only

storage, may be recycled. In Emerald, garbage collection of objects representing system

resources, e.g., internal bu�ers and slots for �le- and i/o-descriptors, allows simultaneous

recycling of the system resources.
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In Emerald, processes may run forever without ever doing anything useful. Though they

are not able to interact with any live object in the whole distributed system, they possess the

ability to suddenly open an i/o-stream and begin using it. Thus we are not able to collect

such processes although they really do nothing useful.

Orphans, i.e., processes waiting in a queue forever, are, however, reclaimed. The waiting

forever state is detected when no live part of the system has a reference to the queue during

garbage collection. Thus our garbage detection identi�es orphans at no extra cost. The

recycling of such orphans is a bit more costly as they may themselves possess other system

resources that has to be recycled properly also.

The implemented garbage collection scheme is also transparent to the Emerald program-

mer. It is purely an implementation optimization of the run-time system, no changes have

been applied to the Emerald programming language. This is very much in contrast to the

problems when adding garbage collection to languages with low-level pointer manipulation

capabilities like C and C++.

7.3 Work Done

We have pursued our goals by investigating garbage collection, distributed systems and

object-oriented programming. The di�erent 
avors of garbage collection techniques from the

early history of LISP and up to recent proposals for realistic and e�cient garbage collection

in both sequential and distributed systems are surveyed in Chapter 2.

Our proposals has been applied to the Emerald system. The Emerald prototype has been

extended with routines to identify object references in both user de�ned and system objects.

The faulting mechanism in the Emerald kernel has been generalized to take garbage collection

faults into account also. The local and global garbage collector has been implemented in

the Emerald prototype. Further changes has been done to implement a new level of parallel

processing inside the kernel, the garbage collector dispatcher, thus enabling quasi-concurrency

between user processes and garbage collectors on each node.

The Emerald prototype has been tested on a network of four VAXstation 2000 worksta-

tions. Arti�cial as well as more realistic Emerald programs have been written and run on

the prototype. Parallel work has made the Emerald system available on SUN-3, HP and

SPARC workstations, but the garbage collector has only been tested on VAX and SPARC

architectures.

7.4 Limitations in the Current Implementation

Though we have a working implementation some short cuts have been made to make the

Emerald prototype running, i.e.:

� The garbage collection scheme should be integrated with the �le system collector, that

manage the libraries of compiled code available for the Emerald kernel. This will enable

objects, previously know by the compiler system, to be removed from the root set, when

the compiler and all compiled programs have dropped them.

� The combined e�ect of node failures and checkpointed objects being recoverable has

not been tested, as the checkpoint system was not available in the used implementation

of Emerald.

.
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� The reclamation part has left room for further improvements. The tuning of the sweeper

to cooperate with the virtual memory system is a matter of further research as is the

tuning of when to initiate new collections.

7.5 Contributions

Our work shows that it is both possible to identify a large group of storage as garbage

and to do a comprehensive recycling, while the system is running. Our solution tolerates

temporary and partial failures, a general challenge when using distributed systems instead of

single computer systems. The solution has been implemented in the distributed, object-based

system, Emerald. In summary we have achieved:

A Comprehensive and Concurrent Garbage Collector in a Distributed System.

The implementation of the comprehensive garbage collector in Emerald works concur-

rently with user activity. To our knowledge it's the �rst working implementation of

comprehensive and concurrent garbage detection in distributed systems.

Robust Garbage Collection in Distributed Systems.

Our implementation works even in the case of partial failures of nodes in the distributed

system. The global collector simply waits for unavailable nodes to become available,

while the local collectors are able to collect local garbage independently.

The implementation is extremely robust to node failures at any time, and as long as

nodes becomes pair-wise available the collection will �nally complete its job even if

some nodes are not available at the end.

Implementation of the Faulting Mechanism.

We have applied the idea of faulting on object invocation used by remote invocations to

garbage collection by introducing a garbage collection fault. Thus the garbage collector

invariant: Mutators only access traversed and marked objects is retained by protecting

known, but not traversed, objects.

7.6 Future Directions

7.6.1 Orphans

Sometimes it is possible to determine that processes will never a�ect the system by other

means than using resources. Such orphans may be detected by the scheme proposed by

[Kafura 90]. Our detection mechanism may be extended to reclaim this kind of orphans also

by changing the de�nition of the root set. Following Kafura's scheme the liveness of each

process is dynamically determined by following references from the process to see whether

it has access to a live part of the system, i.e., an object reachable from a live process, a

persistent object or a communication path to the environment, e.g., an i/o-stream.

7.6.2 O�-line Garbage Detection

It is a general observation that: garbage stay garbage. Thus the garbage property is stable.

This enables us to use a picture of the whole system instead of the system itself for garbage

detection. The garbage detection may use the copy and run o�-line to the rest of the system.

.



{ 115 {

When the o�-line garbage detection is �nished, a list of garbage objects is send to the running

system, as these may be reclaimed.

In Emerald, system objects containing executable code may be identi�ed as garbage when

the object using the code cease to exist. Later, a new object may be instantiated, that needs

the same code. If the code has been collected in between, the code is re-loaded from the stable

storage like a �rst-timer. If the code is still loaded, the new object will reuse the existing

code. Thus for e�ciency purpose, the garbage property: garbage stay garbage is violated in

the Emerald prototype. The implemented garbage collector does, however, take this violation

into account to preserve correctness.

7.6.3 Object-Oriented Kernel Design

The Emerald kernel has grown out of old kernel modules from the Eden kernel. Further

development has modi�ed the kernel to its current size of over 100 Kbytes (more than 50,000

lines of C programs). It is modular in design, but based on traditional C programming

practice, employing header �les, etc.

Our experience while maintaining the kernel have been that many modules would have

bene�ted from a more object-oriented design. Instead, we have added new features by either

copying or rewriting existing code. Large part of the code has been copied and a few changes

applied to make the copy behave like the new feature. Other parts has been rewritten as

classes, that are instantiated for the di�erent purposes. Examples are:

Location

The garbage collector needs to �nd objects in the same way that objects are located

for remote invocations, thus the implementation could be reused if it had been build as

a generic service.

Mobility

Checkpoint moves objects to stable store nearly as objects are moved between nodes.

Thus a generic mobility service could be instantiated for these slightly di�erent pur-

poses.

Translation

The mechanism to serialize an object for mobility purpose could also be re-used when

applying a copying garbage collector. The marchalling and un-marchalling could also

be used to move objects for storage compaction purposes on a single node.

7.6.4 A New Object Store

Hierarchical memories may serve our purpose better than running on top of a virtual memory

system, which we do not control. Instead, we could build a reactive object store on each

node. Stored objects are semi-persistent, i.e. if they are not known from a running process

or a persistent directory service, they get automatically garbage collected.

By not using the virtual memory system, we get liberated from viewing the Emerald �le

system of code �les etc. and the swap space as di�erent. Thus disk space may be preserved.

Furthermore by allocating immutable objects separately, we prevent the overhead of write-

back, when swapping out immutable object pages.
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7.6.5 Room for improvements

The study of memory access in a hierarchical memory design reveals a need to make the

main application and the memory system cooperate to ensure that the most often used

access patterns are supported by the memory system. The memory system must deliver the

needed memory on the highest possible level. In a cache, we want to improve the cache hit

ratio, in a paging system we want to avoid thrashing, etc.

The Emerald system has no cooperation with these kind of basic memory systems. The

allocator does not look at the memory as a virtual memory with pages, nor does it take

advantage of any ways to improve caching. The current implementation of the sweeper,

called from the allocator, incurs a second access pattern due to its sequential search over

the entire virtual memory. The sweep is expected to be largely improved by determine the

amount to sweep by the available pages. Moreover, the sweeper should sweep a complete page

from its beginning to its end before it returns to the allocator. The sweeper should issues

requests for further pages to be swapped in while user programs are allowed to proceed.

7.6.6 General applications of our Scheme

Our solution works for a one language system, i.e. with full knowledge about identi�cation

of references. It could however be applied to any system where references are identi�able.

The philosophy behind garbage collection may be generalized as resource management behind

the user. Our garbage detection scheme is not limited to storage reclamation. The garbage

detection delivers a �rst hand description of other wasted resources also.

In fact the management of any resource in a system may be extended with automatic

detection and reclamation of unused resources. As long as reachability is the underlying

de�nition, that separates non-garbage from garbage, our garbage detection algorithm may

be applied.

This is further simpli�ed in object-based systems where all resources are implicit modeled

by objects. This enables our garbage detection algorithm to identify all kind of garbage. Thus

the reclamation process should not only recycle the storage but also other kinds of resources

associated with the garbage object.

7.7 Final Conclusion

We have achieved our goals of Comprehensive, Concurrent, and Robust Garbage Collection

in Distributed, Object-Based System by developing and implementing a new dual garbage

collection scheme in the Emerald prototype. The scheme is robust to node failures, works

concurrently, and collects all garbage.

.



Chapter 8

References

[Abdullahi 92] Saleh E. Abdullahi, Eliot E. Miranda, and Graem A. Ringwood. Collection
schemes for distributed garbage. In Yves Bekkers and Jacques Cohen, editors,
Memory Management, International Workshop IWMM 92, Proceedings published
in: Lecture Notes in Computer Science 637, pages 43{81, INRIA, IRISA, and ACM
Sigplan, Springer Verlag, St. Malo, France, September 1992.

[Almes 85] Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe. The
Eden System: A Technical Review. IEEE Transactions on Software Engineering,
SE-11(1):43{59, January 1985.

[Appel 88] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection
on stock multiprocessors. In ACM SIGPLAN'88 Conference on Programming
Language Design and Implementation, Proceedings in: SIGPLAN Notices 23(7),
pages 11{20, ACM, SIGPLAN, Association for Computing Machinery, Georgia,
USA, July 1988.

[Appel 91] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS-IV Proceedings in: SIGPLAN Notices

26(4), pages 96{107, ACM SIGARCH/SIGOPS/SIGPLAN and IEEE Computer
Society, TC MM / TC VLSI / TC OS, ACM Press, Santa Clara, California, USA,
April 1991. Simultaneous published as SIGARCH Computer Architecture News

19(2) and SIGOPS Operating Systems Review 25, special issue.

[Augusteijn 87] Lex Augusteijn. Garbage collection in a distributed environment. In J. W.
de Bakker, A. J. Nijman, and P. C. Treleaven, editors, PARLE'87, Parallel Ar-
chitectures and Languages Europe, Volume II: Parallel Languages, Proceedings
published in: Lecture Notes in Computer Science 259, pages 75{93, ESPRIT, Eind-
hoven, The Netherlands, Springer-Verlag, June 1987.

[Baden 83] Scott B. Baden. Low-overhead storage reclamation in the Smalltalk-80 virtual
machine. In Glenn Krasner, editor, Smalltalk-80: Bits of History, Words of Ad-

vice, chapter 19, pages 331{342, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1983.

[Baker 77] Henry G. Baker, Jr. and Carl Hewitt. The Incremental Garbage Collection of

Processes. AI Memo 454, AI Lab/MIT, Arti�cial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, December
1977.

[Baker 78] Henry G. Baker, Jr. List processing in real time on a serial computer. Communi-

cations of the ACM, 21(4):280{294, April 1978.

117



{ 118 {

[Bal 89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan-

guages for distributed computing systems. ACM Computing Surveys, 21(3):261{
322, September 1989.

[Bartlett 88] Joel F. Bartlett. Compacting Garbage Collection with Ambiguous Roots. WRL
Research Report 88/2, Digital, Western Research Laboratory, Palo Alto, CA, USA,
February 1988.

[Bartlett 89] Joel F. Bartlett. Mostly-Copying Garbage Collection Picks Up Generations and

C++. WRL Technical Note TN- 12, Digital, Western Research Laboratory, Palo
Alto, CA, USA, October 1989.

[Beemster 90] Marcel Beemster. Back-end aspects of a portable POOL-X implementation. In
Pierre America, editor, Parallel Database Systems (PRISMA Workshop) Pro-
ceedings published in: Lecture Notes in Computer Science 503, pages 193{228,
PRISMA project, supported by the Dutch Stimuleringsprojectteam Informaticaon-

derzoek (SPIN), Springer-Verlag, Noordwijk, The Netherlands, September 1990.

[Bekkers 92] Yves Bekkers and Jacques Cohen, editors. Memory Management, International
Workshop IWMM 92, Proceedings published in: Lecture Notes in Computer Sci-

ence 637, INRIA, IRISA, and ACM Sigplan, Springer Verlag, St. Malo, France,
September 1992.

[Ben-Ari 84] Mordechai Ben-Ari. Algorithms for on-the-
y garbage collection. ACM Transac-

tions on Programming Languages and Systems, 6(3):333{344, July 1984.

[Bennett 87] John K. Bennett. The design and implementation of Distributed Smalltalk. In
OOPSLA'87, ACM Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications, Proceedings published in: SIGPLAN Notices 22(12),
pages 318{330, ACM SIGPLAN, Association for Computing Machinery, Orlando,
Florida, USA, October 1987.

[Bevan 87] David I. Bevan. Distributed garbage collection using reference counting. In J. W.
de Bakker, A. J. Nijman, and P. C. Treleaven, editors, PARLE'87, Parallel Ar-
chitectures and Languages Europe, Volume II: Parallel Languages, Proceedings
published in: Lecture Notes in Computer Science 259, pages 176{187, ESPRIT,
Springer-Verlag, Eindhoven, The Netherlands, June 1987.

[Bevan 89] David I. Bevan. An e�cient reference counting solution to the distributed garbage
collection problem. Parallel Computing, 9(2):179{192, 1988/89.

[Bishop 77] Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage

Collection. PhD thesis, LCS/MIT, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, May 1977.

[Black 85] Andrew P. Black. Supporting distributed applications: experience with Eden.
In Proceedings of the Tenth ACM Symposium on Operating Systems Principles,
pages 181{193, Association for ComputingMachinery, ACM Press, December 1985.

[Black 86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure
in the Emerald system. In OOPSLA'86, ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, Proceedings published in:
SIGPLAN Notices 21(11), pages 78{86, October 1986.

[Black 87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Dis-
tribution and abstract types in Emerald. IEEE Transactions on Software Engi-

neering, 13(1):65{76, January 1987.

[Bobrow 80] Daniel G. Bobrow. Managing reentrant structures using reference counts. ACM

Transactions on Programming Languages and Systems, 2(3):269{273, July 1980.

.



{ 119 {

[Boehm 88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative

environment. Software { Practice & Experience, 18(9):807{820, September 1988.

[Boehm 91] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage
collection. In ACM SIGPLAN'91 Conference on Programming Language Design
and Implementation, Proceedings in: SIGPLAN Notices 26(6), pages 157{164,
ACM SIGPLAN, ACM Press, Toronto, Ontario, Canada, June 1991.

[Bronnenberg 89] Wim Bronnenberg. POOL and DOOM | A survey of Esprit 415 subproject
A, Philips Research Laboratories. In E. Odijk, M. Rem, and J.-C. Syre, edi-
tors, PARLE'89, Parallel Architectures and Languages Europe, Volume I: Parallel
Architectures, Proceedings published in: Lecture Notes in Computer Science 365,
pages 356{373, ESPRIT, Eindhoven, The Netherlands, Springer-Verlag, June 1989.

[Chin 91] Roger S. Chin and Samuel T. Chanson. Distributed object-based programming
systems. ACM Computing Surveys, 23(1):91{124, March 1991.

[Cohen 81] Jacques Cohen. Garbage collection of linked data structures. ACM Computing

Surveys, 13(3):341{367, September 1981.

[Collins 60] George E. Collins. A method for overlapping and erasure of lists. Communications

of the ACM, 3(12):655{657, December 1960.

[Demers 90] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and Scott
Shenker. Combining generational and conservative garbage collection: framework
and implementations. In ACM Symposium on Principles of Programming Lan-

guages, 17. annual Symposium, Conference Record, pages 261{269, ACM, SIG-
PLAN, Association for Computing Machinery, San Francisco, CA, USA, January
1990.

[Detlefs 90] David L. Detlefs. Concurrent, Atomic Garbage Collection. PhD thesis, Depart-
ment of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213,
USA, October 1990. Technical Report CMU-CS-90{177.

[Deutsch 76] L.Peter Deutsch and Daniel G. Bobrow. An e�cient, incremental automatic
garbage collector. Communications of the ACM, 19(9):522{526, September 1976.

[Dijkstra 76] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Ste�ens. On-the-
y garbage collection: An exercise in cooperation. In F. L. Bauer
and K. Samelson, editors, Language Hierarchies and Interfaces, Lecture Notes in

Computer Science 46, pages 43{56, NATO Scienti�c A�airs Division, European
Research O�ce, National Science Foundation, Springer-Verlag, 1976. International
Summer School 1975 in Marktoberdorf.

[Dijkstra 78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Ste�ens. On-the-
y garbage collection: An exercise in cooperation. Communica-

tions of the ACM, 21(11):966{975, November 1978.

[Eckart 87] J. Dana Eckart and Richard J. LeBlanc. Distributed garbage collection. In Thomas
Turba, editor, ACM SIGPLAN'87 Symposium on Interpreters and Interpretive
Techniques, Proceedings in: SIGPLAN Notices 22(7), pages 264{273, ACM SIG-
PLAN and IEEE Computer Science, TC Computer Languages, Association for
Computing Machinery, St.Paul, Minnesota, USA, June 1987.

[Fenichel 69] R. Fenichel and J. Yochelson. A LISP garbage-collector for virtual-memory com-
puter systems. Communications of the ACM, 12(11):611{612, November 1969.

[Gelernter 60] H. Gelernter, J. R. Hansen, and C. L. Gerberich. A FORTRAN-compiled list-
processing language. Journal of the ACM, 7:87{101, April 1960.

.



{ 120 {

[Goldberg 89] Benjamin Goldberg. Generational reference counting: A reduced-communication

distributed storage reclamation scheme. In ACM SIGPLAN'89 Conference on
Programming Language Design and Implementation, Proceedings in: SIGPLAN

Notices 24(7), pages 313{321, ACM SIGPLAN, Association for Computing Ma-
chinery, Portland, Oregon, USA, June 1989.

[Goldberg 91] Benjamin Goldberg. Tag-free garbage collection for strongly typed programming

languages. In ACM SIGPLAN'91 Conference on Programming Language Design
and Implementation, Proceedings in: SIGPLAN Notices 26(6), pages 165{176,
ACM SIGPLAN, ACM Press, Toronto, Ontario, Canada, June 1991.

[Hudak 82] Paul Hudak and Robert M. Keller. Garbage collection and task deletion in dis-
tributed applicative processing systems. In Daniel P. Friedman and David S. Wise,
editors, 1982 ACM Symposium on LISP and Functional Programming, Conference

Record, pages 168{178, ACM SIGPLAN/SIGACT/SIGART, Association for Com-
puting Machinery, Pittsburgh, Pennsylvania, USA, August 1982.

[Hughes 85] John Hughes. A distributed garbage collection algorithm. In Jean-Pierre Jouan-
naud, editor, Functional Programming Languages and Computer Architecture,
Proceedings published in: Lecture Notes in Computer Science 201, pages 256{272,
Springer-Verlag, Nancy, France, September 1985.

[Hutchinson 87a] Norman C. Hutchinson. Emerald: An Object-Based Language for Distributed Pro-

gramming. PhD thesis, Department of Computer Science, University of Washing-
ton, Seattle, Washington, January 1987. Technical Report 87-01-01.

[Hutchinson 87b] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy, and
Eric Jul. The Emerald Programming Language Report. Technical Report 87-10-07,
Department of Computer Science, University of Washington, Seattle, Washington,
October 1987. Also available as DIKU Report (Blue series) no. 87/22, Department
of Computer Science, University of Copenhagen, Copenhagen, Denmark and as
TR no. 87-29, Department of Computer Science, University of Arizona, Tucson,
Arizona.

[Jul 87] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mo-
bility in the Emerald system. In Proceedings of the Eleventh ACM Symposium on

Operating Systems Principles, pages 105{106, Association for Computing Machin-
ery, December 1987. Extended abstract only; full paper published as [Jul 88b].

[Jul 88a] Eric Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis,
Department of Computer Science, University of Washington, Seattle, Washing-
ton, December 1988. Technical Report no. 88-12-6. Also available as DIKU Re-
port (Blue series) no. 89/1 from Department of Computer Science, University of
Copenhagen, Denmark.

[Jul 88b] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-Grained Mo-
bilty in the Emerald System. ACM Transactions on Computer Systems, 6(1):109{
133, February 1988.

[Juul 91] Niels Christian Juul. Workshop: Garbage Collection in Object-Oriented Sys-
tems. In Jerry L. Archibald and K. C. Burgess Yakemovic, editors, OOP-
SLA/ECOOP'90, Conference on Object-Oriented Programming: Systems, Lan-
guages, and Applications. European Conference on Object-Oriented Programming,
Addendum to the Proceedings, published as SIGPLAN Notices Special Issue, ACM
SIGPLAN, ACM Press, Ottawa, Canada, August 1991.

[Juul 92] Niels Christian Juul and Eric Jul. Comprehensive and robust garbage collection
in a distributed system. In Yves Bekkers and Jacques Cohen, editors, Memory

.



{ 121 {

Management, International Workshop IWMM 92, Proceedings published in: Lec-

ture Notes in Computer Science 637, pages 103{115, INRIA, IRISA, and ACM
Sigplan, Springer Verlag, St. Malo, France, September 1992.

[Kafura 90] Dennis Kafura, Douglas Washabaugh, and Je� Nelson. Garbage collection of ac-
tors. In Norman Meyrowitz, editor, OOPSLA/ECOOP'90, Conference on Object-
Oriented Programming: Systems, Languages, and Applications. European Con-
ference on Object-Oriented Programming, Proceedings published in: SIGPLAN

Notices 25(10), pages 126{134, ACM SIGPLAN, Association for Computing Ma-
chinery, Ottawa, Canada, October 1990.

[Knuth 68] Donald E. Knuth. Fundamental Algorithms. Volume 1 of The Art of Computer

Programming, Addison-Wesley Publishing Company, Reading, Massachusetts,
1968.

[Kolodner 89] Elliot Kolodner, Barbara Liskov, and William Weihl. Atomic garbage collection:
managing a stable heap. In James Cli�ord, Bruce Lindsay, and David Maier,
editors, Proceedings of the 1989 ACM SIGMOD International Conference on the
Management of Data in SIGMOD RECORD 18(2), pages 15{25, ACM SIGMOD,
Association for Computing Machinery, Portland, Oregon, USA, June 1989.

[Kolodner 90] Elliot K. Kolodner. Atomic incremental garbage collection and recovery for a large

stable heap. In A. Dearle, G. Shaw, and S. Zdonik, editors, Implementing Per-

sistent Object Bases: Principles and Practice, pages 193{206, Morgan-Kaufmann
Publishers, San Mateo, CA, USA, September 1990. Fourth International Work-
shop on Persistent Object Systems at Martha's Vineyard, MA, USA, September
1990.

[Kolodner 92a] Elliot K. Kolodner. Atomic Incremental Garbage Collection and Recovery for

a Large Stable Heap. PhD thesis, LCS/MIT, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology, February 1992. Technical report
MIT/LCS/TR-534.

[Kolodner 92b] Elliot K. Kolodner and William E. Weihl. Atomic incremental garbage collection.
In Yves Bekkers and Jacques Cohen, editors, Memory Management, International
Workshop IWMM 92, Proceedings published in: Lecture Notes in Computer Sci-

ence 637, pages 365{387, INRIA, IRISA, and ACM Sigplan, Springer Verlag, St.
Malo, France, September 1992.

[Kung 77] H. T. Kung and S. W. Song. An e�cient parallel garbage collection system and its
correctness proof. In Proceedings of the Eighteenth Annual Symposium on Founda-

tions of Computer Science, pages 120{131, IEEE, Providence, Rhode Island, USA,
IEEE, New York, USA, October 1977.

[Lang 92] Bernard Lang, Christian Queinnec, and Jos�e Piquer. Garbage collecting the world.
In Proceedings of the 19th Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages (POPL'92), ACM SIGPLAN and ACM SIGACT,
Association for Computing Machinery, Albuquerque, New Mexico, USA, January
1992.

[Lazowska 81] Edward D. Lazowska, Henry M. Levy, Guy T. Almes, Michael J. Fischer, Robert J.
Fowler, and Stephen C. Vestal. The architecture of the Eden system. In Proceed-

ings of the Eigth ACM Symposium on Operating Systems Principles, pages 148{
159, Association for Computing Machinery, December 1981.

[Lermen 86] Claus-Werner Lermen and Dieter Maurer. A protocol for distributed reference
counting. In WilliamL. Scherlis and John H. Williams, editors, 1986 ACM Sympo-

sium on LISP and Functional Programming, Proceedings of, pages 343{350, ACM
SIGPLAN/SIGACT/SIGART, Association for Computing Machinery, Cambridge,
Massachusetts, USA, August 1986.

.



{ 122 {

[Lester 89] David R. Lester. An e�cient distributed garbage collection algorithm. In E. Odijk,

M. Rem, and J.-C. Syre, editors, PARLE'89, Parallel Architectures and Languages
Europe, Volume I: Parallel Architectures, Proceedings published in: Lecture Notes
in Computer Science 365, pages 207{223, ESPRIT, Springer-Verlag, Eindhoven,
The Netherlands, June 1989.

[Lieberman 83] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM, 26(6):419{429, June 1983.

[Liskov 86] Barbara Liskov and Rivka Ladin. Highly-available distributed services and fault-
tolerant distributed garbage collection. In Proceedings of the 5th annual ACM

Symposium on Principles of Distributed Computing (PODC'5), pages 29{39, As-
sociation for Computing Machinery, Vancouver (Canada), August 1986.

[Mancini 91] Luigi V. Mancini, Vittoria Rotella, and Simonetta Venosa. Copying garbage col-
lection for distributed object stores. In Proceedings of the Tenth Symposium on

Reliable Distributed Systems, IEEE Computer Society, TC Distributed Processing,
Pisa, Italy, September 1991.

[McCarthy 60] John McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, Part I. Communications of the ACM, 3(4):184{195, April 1960.

[Minsky 63] M. L. Minsky. A LISP Garbage Collector Using Serial Secondary Storage. AI
Memo 58, AI Lab/MIT, Arti�cial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, USA, October 1963.

[Mohamed Ali 84] Khayri Abdel-Hamid Mohamed Ali. Object-Oriented Storage Management and

Garbage Collection in Distributed Processing Systems. PhD thesis, The Royal
Institute of Technology, S-100 44 Stockholm, Sweden, December 1984. Technical
Report TRITA-CA-8406.

[Moon 84] David A. Moon. Garbage collection in a large LISP system. In Guy L. Steele Jr.,
editor, 1984 ACM Symposium on LISP and Functional Programming, Conference

Record, pages 235{246, Association for ComputingMachinery, Austin, Texas, USA,
August 1984.

[Piquer 91] Jos�e M. Piquer. Indirect reference counting: a distributed garbage collection
algorithm. In Emile H. L. Aarts, Jan van Leeuwen, and Martin Rem, editors,
PARLE'91, Parallel Architectures and Languages Europe, Volume I: Parallel Ar-
chitectures and Algorithms, Proceedings published in: Lecture Notes in Computer

Science 505, pages 150{165, ESPRIT, Eindhoven, The Netherlands, Springer-
Verlag, June 1991.

[Pixley 88] Carl Pixley. An incremental garbage collection algorithm for multi-mutator sys-
tems. Distributed Computing, 3(1):41{50, 1988.

[Plainfoss�e 92] David Plainfoss�e and Marc Shapiro. Experience with a fault-tolerant garbage
collector in a distributed lisp system. In Yves Bekkers and Jacques Cohen, editors,
Memory Management, International Workshop IWMM 92, Proceedings published
in: Lecture Notes in Computer Science 637, pages 116{133, INRIA, IRISA, and
ACM Sigplan, Springer Verlag, St. Malo, France, September 1992.

[Queinnec 89] Christian Queinnec, Barbara Beaudoing, and Jean-Pierre Queille. Mark DURING
sweep rather than mark THEN sweep. In E. Odijk, M. Rem, and J.-C. Syre,
editors, PARLE'89, Parallel Architectures and Languages Europe, Volume I: Par-
allel Architectures, Proceedings published in: Lecture Notes in Computer Science

365, pages 224{237, ESPRIT, Springer-Verlag, Eindhoven, The Netherlands, June
1989.

.



{ 123 {

[Raj 91] Rajendra K. Raj, Ewan D. Tempero, Henry M. Levy, Andrew P. Black, Norman C.

Hutchinson, and Eric Jul. Emerald: A general-purpose programming language.
Software { Practice & Experience, 21(1):91{118, January 1991.

[Rudalics 86] Martin Rudalics. Distributed copying garbage collection. In WilliamL. Schelis and
John H. Williams, editors, 1986 ACM Symposium on LISP and Functional Pro-

gramming, Proceedings of, pages 364{372, ACM SIGPLAN / SIGACT / SIGART,

Association for Computing Machinery, Cambridge, Massachusetts, USA, August
1986.

[Schelvis 88] Marcel Schelvis and Eddy Bledoeg. The implementation of Distributed Smalltalk.
In S. Gjessing and K. Nygaard, editors, ECOOP'88, European Conference on
Object-Oriented Programming, Proceedings published in: Lecture Notes in Com-

puter Science 322, pages 212{232, Springer-Verlag, Oslo, Norway, August 1988.

[Schelvis 89] Marcel Schelvis. Incremental distribution of timestamp packets: A new approach
to distributed garbage collection. In OOPSLA'89, ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications, Proceedings pub-
lished in: SIGPLAN Notices 24(10), pages 37{48, ACM SIGPLAN, Association
for Computing Machinery, New Orleans, USA, 1989.

[Schorr 67] H. Schorr and W. M. Waite. An e�cient machine-independent procedure for
garbage collection in various list structures. Communications of the ACM,
10(8):501{506, August 1967.

[Shapiro 90] Marc Shapiro, David Plainfoss�e, and Olivier Gruber. A garbage detection pro-

tocol for a realistic distributed object-support system. Rapport de Recherche IN-
RIA 1320, INRIA-Rocquencourt, Paris, France, November 1990.

[Shapiro 91] Marc Shapiro. A fault-tolerant, scalable, low-overhead distributed garbage de-
tection protocol. In Proceedings of the Tenth Symposium on Reliable Distributed

Systems, IEEE Computer Society, TC Distributed Processing, Pisa, Italy, Septem-
ber 1991.

[Sharma 91] Ravi Sharma and Mary Lou So�a. Parallel generational garbage collection. In
Andreas Paepcke, editor, OOPSLA'91, ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications, Proceedings published in: SIG-
PLAN Notices 26(11), pages 16{32, ACM SIGPLAN, ACM Press, Phoenix, Ari-
zona, USA, October 1991.

[Spector 82] David Spector. Minimal overhead garbage collection of complex list structure.
SIGPLAN Notices, 17(3):80{82, March 1982.

[Spek 90] Juul van der Spek. POOL-X and its implementation. In Pierre America, editor,
Parallel Database Systems (PRISMAWorkshop) Proceedings published in: Lecture
Notes in Computer Science 503, pages 309{344, PRISMA project, supported by
the Dutch Stimuleringsprojectteam Informaticaonderzoek (SPIN), Springer-Verlag,
Noordwijk, The Netherlands, September 1990.

[Steele 75] Guy L. Steele. Multiprocessing compactifying garbage collection. Communications

of the ACM, 18(9):495{508, September 1975. 1975 ACM Student Award Paper:
First Place.

[Tel 87] Gerard Tel, Richard B. Tan, and Jan van Leeuwen. The derivation of on-the-

y garbage collection algorithms from distributed termination detection protocols.
In F.J.Brandenburg, G. Vidal-Nagnet, and M. Wirsing, editors, STACS'87 4th
Annual Symposium on Theoretical Aspects of Computer Science, Proceedings in
Lecture Notes in Computer Science 247, pages 445{455, Springer-Verlag, Passau,
Germany, February 1987.

.



{ 124 {

[Tel 91] Gerard Tel and FriedemannMattern. The derivation of distributed termination de-

tection algorithms from garbage collection schemes. In Emile H. L. Aarts, Jan van
Leeuwen, and Martin Rem, editors, PARLE'91, Parallel Architectures and Lan-
guages Europe, Volume I: Parallel Architectures and Algorithms, Proceedings pub-
lished in: Lecture Notes in Computer Science 505, pages 137{149, ESPRIT, Eind-
hoven, The Netherlands, Springer-Verlag, June 1991.

[Ungar 83] David M. Ungar and David A. Patterson. Berkeley Smalltalk: who knows where
the time goes. In Glenn Krasner, editor, Smalltalk-80: Bits of History, Words of

Advice, chapter 19, pages 189{206, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1983.

[Ungar 84] David Ungar. Generation scavenging: A non-disruptive high performance stor-
age reclamation algorithm. In Peter Henderson, editor, Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, SIGPLAN Notices 19(5), pages 157{67, Association for
Computing Machinery, May 1984.

[Ungar 88] David Ungar and Frank Jackson. Tenuring policies for generation-based storage
reclamation. In OOPSLA'88, ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications, Proceedings published in: SIGPLAN No-

tices 23(11), pages 1{17, ACM SIGPLAN, Association for Computing Machinery,
San Diego, California, USA, September 1988.

[Vestal 87] Stephen C. Vestal. Garbage Collection: An Exercise in Distributed Fault-tolerant

Programming. Technical Report 87{01{03, Department of Computer Science, Uni-
versity of Washington, Seattle, Washington, USA, January 1987. Adaption of PhD
Thesis.

[Washabaugh 90] Douglas M. Washabaugh. Real-Time Garbage Collection of Actors in a Distributed

System. Master's thesis, Virginia Polytechnical Institute and State University,
Blacksburg, Virginia, USA, February 1990.

[Watson 87] Paul Watson and Ian Watson. An e�cient garbage collection scheme for parallel
computer architectures. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven,
editors, PARLE'87, Parallel Architectures and Languages Europe, Volume II: Par-
allel Languages, Proceedings published in: Lecture Notes in Computer Science

259, pages 432{443, ESPRIT, Eindhoven, The Netherlands, Springer-Verlag, June
1987.

[Weizenbaum 62] J. Weizenbaum. Knotted list structures. Communications of the ACM, 5(3):161{
165, March 1962.

[Weizenbaum 63] J. Weizenbaum. Symmetric list processor. Communications of the ACM,
6(10):524{544, September 1963.

[Wentworth 90] E. P. Wentworth. Pitfalls of conservative garbage collection. Software { Practice

& Experience, 20(7):719{727, July 1990.

[Wester 90] R. H. H. Wester and B. J. A. Hulshof. The POOMA operating system. In Pierre
America, editor, Parallel Database Systems (PRISMA Workshop) Proceedings
published in: Lecture Notes in Computer Science 503, pages 396{423, PRISMA
project, supported by the Dutch Stimuleringsprojectteam Informaticaonderzoek

(SPIN), Springer-Verlag, Noordwijk, The Netherlands, September 1990.

[White 80] Jon L. White. Address/memory management for a gigantic LISP environment or,
GC considered harmful. In 1980 LISP Conference, Conference Record, pages 119{
127, The LISP Conference, P.O.Box 487, Redwood Estate, CA 95044, USA, Stan-
ford University, Stanford, CA, USA, August 1980.

.



{ 125 {

[Wilson 92] Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and

Jacques Cohen, editors, Memory Management, International Workshop IWMM
92, Proceedings published in: Lecture Notes in Computer Science 637, pages 1{42,
INRIA, IRISA, and ACM Sigplan, Springer Verlag, St. Malo, France, September
1992.

[Zorn 90] Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage collec-

tion. In 1990 ACM Conference on LISP and Functional Programming, Proceed-

ings, pages 87{98, ACM, SIGPLAN/SIGART/SIGSAM, Nice, France, June 1990.

.



{ 126 {

.



Appendix A

The Emerald System

Emerald is a distributed object-based system with support of objective expressiveness, con-

current execution, and object mobility. The Emerald system is an implementation of the

Emerald programming language [Hutchinson 87b, Raj 91] by means of the Emerald compiler

[Hutchinson 87a] and run-time system [Jul 88a].

The purpose of this chapter is to provide su�cient information about both the Emerald

language and its implementation to understand the Emerald speci�c details of the thesis.

The following sections present a short discussion on the language implementation (Section

A.1), and a presentation of the current run-time system (Section A.2). The implementation

of processes (Section A.3) and objects (Section A.4) is given next, followed by a description of

the object protection and faulting mechanism (Section A.5). The location protocol (Section

A.6) is summarized.

This appendix is, however, not a general introduction to Emerald, neither the program-

ming language nor its compiler and run-time system. The overall perspective of this presen-

tation is to present what is needed to understand the problems and solutions from a garbage

collection implementors point-of-view.

A.1 Objects in the Emerald Language

Emerald is an imperative, strongly-typed, object-based programming language [Black 86,

Black 87, Jul 88b]. It supports a uni�ed object model independent of object size, use, and

distribution, with special emphasize on distribution and concurrency. Objects are highly

mobile and distribution is made transparent to other facilities.

In general objects reside on exactly one node, though immutable objects may be repli-

cated when asked to move to another node. For e�ciency reasons objects are implemented

di�erently depending on their usage. The compiler classi�es the objects as either global, local,

or direct to enable the most e�cient representation in the run-time system.

Direct objects are objects implemented inside other objects for e�ciency. They are al-

most invisible to the run-time system as they are optimized away by the

compiler.

Local objects need no mechanism for mobility and global visibility, and hence they are

only invoked locally using the traditional procedure call mechanism.
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Global objects may be known outside the node where they reside, and include full mech-

anisms for mobility and remote invocation, the Emerald implementation

of remote procedure calls used when invoking a non-resident object.

Note, however, that this classi�cation of objects is purely a matter of implementation by the

compiler/run-time system. To the Emerald programmer, all objects look alike. This was one

of the goals in the design of Emerald, a uni�ed object model with multiple implementations

for e�ciency; a lesson learned by using the Eden system [Lazowska 81, Almes 85], where

programmers were led to use two distinct object models for e�ciency [Black 85].

As distribution is transparent in Emerald, the programmer may move objects between the

nodes by requests to the run-time system. Moving an object includes the movement of any

processes executing inside the object, thus Emerald supports process mobility as well. The

processes originate in the optional process section of objects. Each process may be described

as a thread-of-control from the process section, through each operation invoked in nested

calls; the call chain or a stack of activation records when seen from the run-time system. The

thread-of-control may be distributed among the nodes as the activation records resides on

the same node as the object invocation they represent.

Conceptually, after it has been created, an object persists forever. However, failures may

result in the disappearance of objects, and in cases where no other object in the system has

a reference to the object, the object may be garbage collected to reuse its resources.

The transparency of distribution also leaves the responsibility to cope with failures, avail-

ability, checkpoints and recovery from failures on the programmer. The Emerald language

has explicit tools for this purpose. Objects may be checkpointed to stable storage on their

own and possibly other nodes. When a node restarts after a crash the checkpointed objects

are recovered from the stable store. The recovery of each object includes the execution of the

optional recovery section of the object.

Not only the state of the object is saved at checkpoint time, also the state of attached

objects as well as all relevant system objects like those containing the associated code for

the objects. The checkpoints are done explicit by executing checkpoint statements in the

Emerald program.

The copies on stable storage will be outdated as the original object may continue to

mutate. Thus after a node failure the checkpointed objects may pertain a di�erent view of

the global system than is actually the reality. It is the obligation of the programmer, who

knows the object, to specify in the recovery section of the object, what is needed to adjust

the object to the current state of the global system, otherwise inconsistent state of objects

may invalidate global or local invariants of the Emerald program.

Checkpointed objects may also be recovered by the system, if the original has disappeared.

This is done when the object is needed by other objects and a checkpoint copy is available and

may be recovered safely. Safeness is concerned with quorum, to prevent multiple inconsistent

copies from being available concurrently.

A.2 The Emerald Run-time System

The Emerald kernels, running on di�erent nodes, constitute the run-time system for Emerald

programs. The compiler submits a program for execution by submitting a unique object

identi�er (OID) representing the program to one of the kernels. The kernel loads the code

associated with the received OID, creates objects and translate the references necessary to

.
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execute the program. Further code may be loaded and translated during this process. The

code is native machine code augmented with calls to kernel operations.

While the kernel is running, various user and system objects will be created dynamically

and the Emerald processes scheduled for execution. The handling of processes in the kernels

are detailed in section A.3. In the following section (A.4) the implementation of user and

system objects is described. Global objects facilitate mobility and remote accessibility, but

the actual access may be node-local, if the invoker and invoked reside on the same node.

To achieve the high local performance in the case where the two objects are on the same

node, remote access is handled as an exception. The Emerald faulting mechanism is used

to turn the invocation of an object, that is not resident, into a remote invocation without

adding overhead to the case where the object is resident (Section A.5). The location protocol

is used to determine the location of another object, e.g., before doing a remote invocation.

The protocol is described in section A.6 where object availability and unavailability is also

discussed.

A.3 Process Implementation in Emerald

Each process is represented in the Emerald run-time system by a chain of stack segments.

Each stack segment is an Emerald object. When a process grows out of the top of the stack

in the current stack segment, another stack segment is allocated, and the two segments are

chained. Each time a process does a remote invocation the stack is continued on another

stack segment on the remote node. The chain of stack segments may represent any kind of

processes. If the process is local, all stack segments resides on the same node, whereas the

stack segments of a distributed process are spread among the nodes.

The process may move from one node to another leaving a node gap between two stack

segments. Old parts of its stack segments may, however, also be moved before the chain of

nested invocations returns. The later happens when an object that moves has a chain of calls

passing through itself. Then the activation record representing the call through the moving

object must follow the object, and thus, the stack segment it is in must be divided in three

parts of which the middle moves with the object. Still all the stack segments are chained, so

that they all together represent the current chain of nested calls done by the process.

The Emerald kernel executes user processes on a round-robin basis. The Emerald compiler

and kernel ensures that each process will preempt itself very often, i.e., at each invocation call,

system call, and end of current statement block, the process lets the kernel decide, whether the

process shall continue or be rescheduled to the back of the ready-to-run queue (readyQ). These

breakpoints of self-preemption (
ick) are inserted by the system; the Emerald programmer

is not aware of how quasi-parallelism is achieved.

Furthermore, the Emerald kernel has a set of internal queues of actions to be done, and

mechanisms to ensure execution and synchronization among the di�erent types of processes.

The kernel queue (taskQ) is the primary list of actions to be done between user processes.

Each time a 
ick is done by a user process, the outstanding queue of actions in kernel queue

is done before a user process may continue. All events external to the kernel, e.g., interrupts

from other kernels, i/o-interrupts, etc., are put in the kernel queue without being serviced

further. Thus it is important to clean up the kernel queue very often, and each action must be

of limited time, to ensure fast enough service of the external events. Interrupts from external

events are received by the Emerald kernel as Unix signals.

.
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Level Queues in the kernel Processes on this level

User level current The user process running or doing 
ick right now.

readyQ The ready-to-run user processes.

| Other user processes may be waiting inside moni-

tor and condition queues, de�ned by the Emerald

programmer.

Kernel level taskQ Actions to be done by the kernel due to in- and

external events.

Interrupt level | Unix signals results in an appropriate kernel task

(the corresponding event handler) being inserted

in taskQ.

Figure A.1: The levels of execution inside the Emerald kernel

Both user processes and internal tasks may be scheduled for execution at a certain future

clock value. When the timer they are waiting for expires, the tasks are scheduled on the

kernel queue. This task will rescheduled a user process on the ready-to-run queue, if it was

waiting for the timer.

The various levels of execution inside the Emerald kernel may be summarized as shown

in Figure A.1.

A.4 Objects in the Run-time System

Each Emerald kernel has a heap in which the dynamically allocated objects are stored. The

heap includes both dynamically allocated structures owned by the kernel (various tables and

internal text strings etc.) and objects, which are managed as Emerald objects. The storage

allocated and owned by the kernel are not discussed further here. Our focus is on the object

graph containing Emerald objects, which may be system or user objects.

On the implementation level, all Emerald objects are tagged with an implementation type

and the distinction local/global, as well as resident/non-resident, and replicated applies to

all of them. This information is kept as an object descriptor (OD) for each object. The

descriptor also contains space for two sets of garbage collector-bits, one for local and one for

global garbage collection. The object descriptor is maintained as either a header of an object

or as a separate descriptor object. Separate descriptor objects are for objects that move

between the nodes, they leave a copy of their descriptor behind them, as the descriptor is

augmented with hints to the new location of the object (How to locate an object is described

in section A.6). Where needed the OD contains information about the system wide name of

the object (the OID).

The system objects implement the basis for running Emerald programs on top of the ker-

nel. To implement a program, the compiler constructs a code object. By using the templates

inside the code object the kernel is able to create the objects representing the data. Spe-

cial objects are created for language concepts like processes (stack segments) and condition

queues (condition). In total Emerald supports objects tagged as either of:
Local Data

(LOData)

includes a header as OD, and user data of a local or a global, replicated

object. The OD contains references to the code describing the layout

of the user data (templates).

.
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Global Data

(GOData)

contains user data of a global object and a reference to its OD and to

the code describing the layout of the user data (templates).

Global Data De-

scriptor (GOD)

is the OD of a global data object. The OD contains information about

the status of the data object.

Stack Segment

(SS)

represent a process. Besides information about the process and its code,

this is a stack of activation records. The bottom contains a reference

to the previous stack segment, whether resident or not, or identi�es the

bottom of the process stack.

Stack Segment

Descriptor

(SSOD)

is the OD of a Stack Segment. The OD contains information about the

status of the data object, but not the process represented by the chain

of Stack Segments.

Code1 (Code) is a container of both the executable code for an object and templates

describing how internal references in the code are organized, as well

as the organization of the data (in a local or global data object) and

on the stack when running. References for run-time type checking to

abstract type objects is also included. Code objects are immutable, i.e.,

they may be treated like immutable data objects, which are replicated

when needed on multiple nodes.

Code Descriptor

(CodeOD)

is the OD of the code object. Containing references to code and refer-

ences for run-time type checking to abstract type objects.

Condition

(Cond)

includes a header as OD and represent a queue, used by processes

made waiting inside a monitor. The object is distinct from, but tightly

connected to the monitor inside the data object using it.

Abstract/Con-

crete Type

(AbCon)

is used by the type system of Emerald to do run-time type checking.

These objects represent connections between abstract and concrete code

objects. No OD is associated with these.

The code objects contain type information to outline the data objects de�ned by the

user. The kernel sees these objects as either local or global objects. The templates in the

associated code objects describes how the data shall be interpreted, and thus de�nes which

bytes contain references to other objects. The kernel applies internal type speci�cation to

ensure correct interpretation of the bytes of user data. These internal types are also used

when the data is allocated on the stack, i.e., in an activation record inside a stack segment.

The internal types are:
Data A sequence of bytes containing data not interpretable as references.

ODP A reference to an object descriptor (OD) or object of one of the aforementioned

types.

1Code is inline in Doto object, each behaving like a complete unlinked output �le from the assembler

(Unix assembler names their output �le with su�x \.o", thus the name Doto).
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OID A system-wide unique object identi�cation, which may be looked up locally in

the local object table or system-wide via the location protocol.

Variable In general a dual reference to an object containing both the ODP for the object

and a reference to an AbCon determine the type of the object.

Address A reference to an entity inside the object.

Vector A counter of elements and a list of references to these element objects.

Monitor A queue of processes, i.e., stack segments, waiting to enter the monitor.

Invoke

queue

A supplementary queue element header, used to link stack segments, SS, in a

double linked queue.

Replicated objects are implemented as resident and local, with special care taken to make

a copy instead of a move, when asked to move between nodes.

In principle, each object has an object descriptor (OD) and a unique identi�cation (OID).

On each node an object table of all globally known objects (OID, OD) at the node exists.

As mentioned the OD may be allocated as a header in the real object. An object, which

makes no use of the system-wide unique OID, may for e�ciency purpose skip the allocation

of OID. OID's are requested from a name server, to achieve uniqueness. Each node runs its

own name server, thus the node allocating the OID is part of the identi�cation.

The object graph, which is the target of the mark-phase of the garbage collector, is dis-

tributed among the nodes. The object graph consists of both user and system objects. In

garbage collection context, Emerald consists of a set of well de�ned objects, where all refer-

ences are easily identi�ed. The system objects has kernel support to identify their references

and user references are identi�ed by templates in the associated code object. The garbage

collection perspective is that all Emerald objects may be managed by the same garbage col-

lector leaving only explicit kernel allocated structures on the heap to be treated separately.

These are recycled by explicit deallocation inside the kernel (free()).

A.5 The Faulting Mechanism

The Emerald faulting mechanism is used where an object needs access to an object not

immediately available. The missing availability may be due to the non-residence of the

object on the current node, or the object being broken (invalidated by some failed process).

During its initialization, the object will also be unavailable to ensure that only fully initialized

objects are accessed. A non-resident object may be resident on another node or in the stable

store of the node.

The faulting mechanism ensures that appropriate actions are taken by the kernel in these

cases to bring the object into an available position while delaying the invoking process tem-

porarily. If the object is remotely available, a remote invocation is established, and if the

object is not available at all, the unavailable section of the invoking object is called. The

kernel may enable the faulting mechanism thereby protecting the object by setting certain

status-bits in the OD of the object. The mechanism is available for global objects only, i.e.,
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Emerald objects implemented as GOData, SS, and Code. All these has separate ODs. The

OD contains both a general frozen-bit to trigger a failure and several bits, each indicating

a di�erent reason to protect the object.

The main purpose of the faulting mechanism is to limit the overhead when accessing a

global object locally, i.e., to turn a local invocation of an object into a remote invocation when

the object is non-resident only. Global objects facilitate mobility and remote accessibility,

but the actual access may be node-local, if the invoker and invoked reside on the same node.

To achieve the high local performance in the case where the two objects are on the same

node, remote access is handled as an exception. The Emerald faulting mechanism is used

to turn the invocation of an object, that is not resident, into a remote invocation without

adding more overhead than a single test instruction to the case where the object is resident.

Even a remote invocation will eventually be executed as a local invocation. The fault

handling mechanism of Emerald implements a remote invocation as three successive steps:

1. Move the current stack top (the process invoking) to the node hosting the invoked

object.

2. Perform the invocation locally on the node hosting the object.

3. Return the top of the stack back to the invoking node.

Thus 2. is performed on the destination node, whereas 1 and 3 both include packing and

sending, and receiving and unpacking on the two nodes.

A.6 The Location Protocol

The location protocol is used to determine the location of another object, e.g., before do-

ing a remote invocation. This section presents the protocol and how the availability and

unavailability of objects is achieved also.

The Emerald Location Protocol is based on Fowlers work. It is detailed in [Jul 88a] and

summarized here. It starts by using the most simple and common step, and fails through a

number of more general steps if the former steps fail to succeed.

1. If the object is available on the same node as the requester a simple lookup in the object

table is enough.

2. Failing 1. results in a system-wide identi�cation (OID) being returned and a location

hint (last known residence as seen from this node) which may be out of date. The hint

is followed by asking the hinted node if the object is there. A new hint is piggy-backed

if the object were not there either.

3. If 2 fails also, we update the hint and resort to the global locate request, a reliable

broadcast to all nodes. The node hosting the object will answer the request.

4. Also failing 3 implies that the object is not on any available nodes. A request to recover

the object from a checkpoint copy is the tried.

5. Should recovery be impossible also, the object requesting the unavailable object is

interrupted with an unavailable exception. Objects may de�ne their own unavailable

handlers in Emerald to take care of such situations | the failure is propagated down

.
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through the call stack until an object with an unavailable handler or the bottom of the

stack is met.

Due to individual node-failures, objects may be lost permanently. An object trying to

access such an unavailable object will be given an unavailable exception from the run-time

system.

.



Appendix B

The Speci�cation of the Emerald

Garbage Collection Scheme

This speci�cation of the full Emerald garbage collection scheme is based on the design dis-

cussed in Chapter 3 and 4 of the thesis. The most important issues on implementing the

scheme in the Emerald prototype are discussed in Chapter 5. The full garbage collection

scheme in Emerald consists of two sets of collectors. One set of collectors cooperates on a

global collection while the other set of collectors does an independent node-local collection

on each node. The global collection is comprehensive but potentially slow, whereas the node-

local is more expedient but conservative. The two collectors on each node are called the

global and the local garbage collector , respectively. Their basic algorithm is the same; but the

root set is larger in the local garbage collector, whereas the global must facilitate inter-node

cooperation and distributed termination detection.

The chapter contains a speci�cation of the full Emerald garbage collection scheme based

on the rationale given in the previous chapters. The �rst section gives a brief outline of the

modules that constitute the entire garbage collection scheme and the primary data structures

(Section B.1). The following sections describe the two garbage detectors, their interaction,

and their common storage reclamation, i.e., the local marker process (Section B.2), the global

marker process (Section B.3), the synchronization of the local and global marker processes

(Section B.4), and the sweeper process (Section B.5). Finally, the distributed communication

scheme is described (Section B.6).

B.1 Overview of the Speci�cation

Both collectors are divided into a marker and a sweeper process, plus additional processes

acting as event handlers driven by external events. Moreover the local and global sweeper

processes are put together as one process interleaved with the storage allocator on each node.

Thus we have two marker processes, a local marker (Section B.2) and a global marker (Section

B.3). A picture of all processes and event handlers for each node was given in Section 5.1 as

Figure 5.1, page 82.

On each node the two marker processes work on their own set of data structures and

utilize their own set of mark-bits associated with each object. Thus each object has room

for both local and global mark-bits in its object descriptor (OD). The descriptor contains

two local and two global garbage collector-bits for coloring and bits to indicate that the
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object is protected (Frozen) and why (LocalGCFrozen, GlobalGCFrozen, etc.). The

marking scheme is implemented by using the mark-�eld of the objects to mark the object

with the current garbage collection cycle number (= black). Lower cycles in the mark-�eld

are interpreted as white. The width of the mark-�eld (2 bits) restrict the stored value to be

cycle modulo 4. The same mark is thus used again later, and hence the sweeper process must

know about the current interpretation and stop reclaiming objects marked similar to current

live objects.

The color gray is represented by:

� putting a reference to the object in a gray set,

� protecting the object, and

� marking the object with the current cycle.

The gray set is divided in two sets for the local marker process and three sets for the global.

The local marker process uses:

A temporary gray set for references to non-protectable objects, that are Shade. The

marker process ensures that these objects are de�nitely traversed and their references

Shade before it �nish its current step. Thus the temporary gray set is a stack represent-

ing those objects, which must be traversed together with the current object traversal

before any mutator is allowed to run.

A local gray set for references to resident and protectable objects, that are Shade. Also

the additional root objects goes into this set.

The global marker process uses two similar sets, and:

A non-resident gray set for references to non-resident objects, that are Shade. The set is

resident, but it references non-resident objects.

Both marker processes take advantage of the common sweeper process (Section B.5) and

the garbage collection fault handler (Section B.2). The sweeper process reclaims objects

marked with a cycle less than the cycle of the latest completed mark-phase. The global

collector further utilize the handlers for message exchange between nodes (Section B.6). The

message exchange ensures that the global collectors will cooperate during the mark-phase by

exchanging references from their non-resident gray sets and detects when the mark-phase is

�nished by a distributed termination detection algorithm using two-phase commitment.

B.2 The Local Marker Process

The local marker process is implemented by Algorithm 7. As indicated, the marker runs

mostly in parallel with other activities in the system. Phase L1 and L4 are however done

non-interruptible (atomically), to ensure consistency during the start and the end of the

mark-phase. The Garbage Collection Fault Handler, described by Algorithm 8 ensures that

mutators only access black objects. Concurrency is achieved by self-preemptive scheduling,

i.e., the marker process 
icks in Phase L2 { L3 each time the temporary gray set is empty.

Flick is a voluntary suspension of the process. The marker process is resumed by the run-time

system in between other system activities and user processes. The Kernel Dispatcher System

takes care of this by managing the self-preemptive garbage collector processes on a priority

level, between system interrupts (signals) and Emerald processes (user processes). At most

one garbage collector process is resumed once between the progressing Emerald processes.
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Algorithm 7 (Local Marker Process)

A new local collection is requested on node i:

Phase L0 7.1 Wait until the previous local cycle, cyclei is �nished.

Force the Sweeper to �nished its work with the oldest local garbage

collection cycle number, cyclei � 21 if not done yet.

Wait until no Global Marker is working with a non-empty gray set of

objects resident on this node.

Phase L12 7.2 Increment cyclei, thus de�ning the new black color.

7.3 Suspend all mutators on this node.

7.4 Enable the Garbage Collection Fault Handler for resident and arriving

mutators.
Phase L2 7.5 For each suspended mutator do:

7.5.1 Traverse the mutator, and Shade all the references found.

7.5.2 While the temporary gray set is non-empty extract one object at a

time and traverse the object to Shade its references.

7.5.3 Resume the mutator.

7.5.4 Flick.
7.6 Establish a set of references to any additional roots of the object

graph for this node and Shade these. These are standard objects kept

available for e�ciency, as well as objects granted available to the the

run-time system, and objects potentially known from another node

(ReferenceGivenOut).

Phase L3 7.7 While the local gray set is non-empty:

7.7.1 Move one object from the local gray set to the temporary gray set.

7.7.2 While the temporary gray set is non-empty extract one object at a

time and traverse the object to Shade its references.

7.7.3 Flick.
Phase L42 7.8 Run-time system tables are adjusted to re
ect that white objects are

now considered garbage.

7.9 Change the interpretation of the mark-�eld, as white objects (marked

with cyclei� 1) are garbage now. Inform the Sweeper , that the Local

Marker of cyclei is now �nished, thus objects marked with a cycle

lower than cyclei are to be reclaimed.

7.10 Enable pending collectors to try running again.

Shade a reference:

If the reference is to a resident, white object, mark the object black, put it

in the gray set, and protect the object. If the object is non-protectable, it is

put in the temporary gray set instead of the local gray set . A reference to a

non-resident object is skipped.
A 7

1The mark-�eld is two-bit wide, thus only the latest 4 cycle numbers are recognizable. Current cycle
modulo 4 is stored as black, and thus the sweeper process must not be more that 2 cycles behind a running

marker process.
2Phase L1, step 7.2 { 7.4 is done atomically, i.e., as one indivisible operation when viewed from the mutators

or any other process on the same node. The same yields the steps from the end of step 7.7 to the end of Phase

L4, i.e., step 7.8 { 7.10.
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The garbage collection fault handler may be enabled for either local, global, or both

collectors, depending on whether a local, a global, or both markers have not terminated yet.

When the handler is invoked due to a LocalGCFrozen protection4, and the handler

is already enabled for local garbage collection faults, it does the actions described in Algo-

rithm 8 for the local collector using the mark-�elds and data structures associated with local

collection.

Algorithm 8 (Garbage Collection Fault Handler)

The garbage collection fault handler on node i is invoked due to a fault when a mutator

wants to access a protected object (protected due to LocalGCFrozen respectively

GlobalGCFrozen):

8.1 Suspend the mutator.

8.2 Move the reference to the object from the local gray set , respectively

the global gray set , to the temporary gray set .

8.3 While the temporary gray set is non-empty extract one object at a

time and traverse the object to Shade its references.

8.4 Unprotected the object and remove the protection reason handled

here, i.e., LocalGCFrozen, respectively GlobalGCFrozen.

8.5 Resumed the mutator.

A 8

As shown, similar actions are taken in both the case of a LocalGCFrozen, and a Global-

GCFrozen fault using the local and global mark-�elds and data structures respectively. If

both collectors have enabled the fault handler and protected the object, Algorithm 8 is done

twice, i.e., both for the local and global case.

B.3 The Global Marker Process

The global marker process is implemented by Algorithm 9. The marker processes on the

di�erent nodes communicate be sending messages. Send( m, n), i.e., send message m to

node n, shall be interpreted as a reliable communication of the message m from the current

node to node n. Actually it is implemented in the Emerald prototype as a repeated broadcast

until a node accept the message and returns an acknowledgment. The repeated broadcast is

repeated by doubling the interval between successive broadcasts, to limit the noise interfered

on other nodes.

Algorithm 9 (Global Marker Process)

A global collection (number cyclei) is requested on node i:

Phase G0 9.1 Drop any non-terminated Global Marker with a smaller cycle, and

any non-terminated Local Marker on this node.

Force the Sweeper to �nished its work with the old global garbage

collection cycle number, cyclei � 2 if not done yet.

4The object may be protected according to local collection, global collection, or other purposes like non-

availability and non-residence.
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Phase G15 9.2 Increment cyclei thus de�ning the new black color.

9.3 Suspend all mutators on this node.

9.4 Enable the Garbage Collection Fault Handler for resident and ar-

riving mutators, and the Remote Shade Handlers for incoming re-

quest/reply.

Broadcast a GGC-Started message to tell the other nodes that global

garbage collection number cyclei has started on node i.

Phase G2 9.5 For each suspended mutator do:

9.5.1 Traverse the mutator, and Shade all the references found.

9.5.2 While the temporary gray set is non-empty extract one object at a

time and traverse the object to Shade its references.

9.5.3 Resume the mutator.

9.5.4 Flick.
9.6 Establish a set of references known at node i to any additional roots

of the distributed object graph and Shade these. These are stan-

dard objects kept available for e�ciency, as well as objects granted

available to the the run-time system.

Phase G3{6 9.7 Until global termination6 is detected do:

Phase G3 9.7.1 While the global gray set is non-empty:

9.7.1.1 Move one object from the global gray set to the temporary gray

set.

9.7.1.2 While the temporary gray set is non-empty extract one object at

a time and traverse the object to Shade its references.

9.7.1.3 Flick.
Phase G4 9.7.2 While the non-resident gray set is non-empty:

9.7.2.1 Send a ShadeRequest to the nodes hosting the objects refer-

enced from this set.

9.7.2.2 Flick.
Phase G5{6 9.7.3 While both sets are empty (no gray objects), start a distributed

termination detection by sending a Status to the other nodes and


ick.

Phase G75 9.8 Run-time system tables are adjusted to re
ect that white objects are

now considered garbage.

9.9 Change the interpretation of the mark-�eld, as white objects (marked

with cyclei�1) are garbage now. Inform the Sweeper , that the Global

Marker of cyclei is now �nished, thus objects marked with a cycle

lower than cyclei are to be reclaimed.

9.10 Enable pending collectors to try running again.

A 9

5Phase G0{G1, step 9.1 { 9.4 is done atomically, i.e., as one indivisible operation, when viewed from the

mutators or any other process on the same node. The same yields the steps from the end of Phase G6 through
the entire Phase G7 (step 9.8 { 9.10).

6Distributed termination detection is described in details in section B.6.

.



{ 140 {

Shade a reference:

If the reference is to a resident, white object, put it in the gray set and protect the

object. If the reference is to a white, non-resident object, the reference is put in the

non-resident gray set.

Screening incoming messages on node, i:

Each received message, mess, is screened to ensure that cyclemess � cyclei. If not, the

Global Marker is called to start its cyclemess.

The exchange of ShadeRequest, ShadeReply, and Status messages are described further

in Section B.6.

B.4 Synchronization of the Local and Global Marker Pro-

cesses

As indicated by the 
ick-statement in both marker processes (Algorithm 7 and 9) these

processes may run in parallel. Their quasi-concurrent execution is, however, constrained.

According to section 4.5.2, the local and global marker processes are blocked by each other as

they are not allowed both to have a non-empty gray set concurrently. Figure B.1 illustrates

an execution of the two processes with 
ick -points marked. Those point where one of the

processes may allow the other to run, i.e., they 
ick and have an empty gray set, are annotated

as enable points.

The Local Marker Process The Global Marker Process

Non-empty
gray set

Flick
points

Global
blocks
local

Local
blocks
global

Enable each
other points

L0 L2
1 2

L1
3 4 5 6 8

L4
9 10

L3
7Step

Phase

Start

End

G0 G2
1 2

G1
3 4 5 6

G4
7.2 7.3 8

G7
9 10

G3
7.1

G5 G6

Start

End

Figure B.1: The points of synchronization between the global and local marker processes

.
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B.5 The Sweeper Process

The common sweeper process is implemented by Algorithm 10. When enabled, it traverse

the object storage (sequentially) and reclaim objects marked as garbage in their local or

global mark-�eld according to the following scheme. The scheme depends on the status of

the corresponding collector, i.e., whether a local and/or global marker process is running

concurrently.

When the marker process of the cycleth garbage collection is �nished, the sweeper process

is enabled to reclaim objects marked with cycle � 1. When the next marker process (of

cycle + 1) is started the sweeper process is disallowed to reclaim anymore objects marked

with cycle�3 as (cycle�3) modulo 4 = (cycle+1) modulo 4. If the sweeper has not �nished

sweeping for this old cycle, it is forced to do so in Phase 1 of both the global and local marker

process.

When the sweeper process is enabled by one or more local or global marker processes,

the storage allocator will invoke it, each time more storage is requested. This ensures that

the garbage will be reclaimed in a speed comparable to the current allocation speed. Each

time, it is invoked, it will try to reclaim the same amount of storage, as requested from the

allocator.

The sweeper process makes an in�nite sweep of the object store by viewing the heap

cyclic, i.e., when it reaches the top of the heap, it continues from the bottom again. During

each invoke it will at most traverse the entire heap once. It also stops, when enough has been

reclaimed or no more mark-values is enabled.

Algorithm 10 (Sweeper Process)

Sweeping of storage on node i, resumed when enabled and more storage is requested:

10.1 While enabled and until enough has been reclaimed, get the next

object from the heap:

10.1.1 If the object is marked with a mark enabled as garbage, the object

is returned to the allocator, i.e., to the appropriate free-list.

10.1.2 The requested amount of storage is reduced with the amount just

reclaimed.

A 10

B.6 The Distributed Communication Scheme

The global marker process in Algorithm 9 takes advantage of the garbage collection fault

handler also used by the local marker process and described by Algorithm 8. Furthermore, the

global marker process utilizes four more handlers for arriving messages, i.e., ShadeRequest,

ShadeReply, Status, and Terminate.

The actions taken by these handlers depend on the actual state of the running collector.

The global marker process on each node was structured as 8 phases from G0 to G7 (See

Algorithm 9). Table B.1 describes the arriving events and actions taken according to the

current phase, plus the new phase. The actions of this state/transition table is labeled A{G

and outlined by Algorithm 11, 12, 13, and 14.

Furthermore, the system ensures that any two communicating nodes are running in the

same cycle of the global marker process. The screening of incoming messages in Algorithm 9

ensures this.

.
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Current Phase G1 G2 G3 G4 G5 G6 G7 G0

Events

ShadeRequest | A/2 A/3 A/3 A/3 A/3 | |

ShadeReply | | B/3 C/4-5 | | | |

Status skip D/2 D/3 D/4 E/5-6 F/5-6-7 skip skip

Terminate | | | | G/7 G/7 skip skip

Table B.1: The phase/event-action/transitions of the global collector on each node

The actions named A{G are detailed in Algorithm 11{14. The �elds marked "|" represent illegal

combination of event and phase. The �elds marked skip are situations which may happen, but they

are skipped as the event has no relevant meaning during that phase. The phases correspond to the

phases listed in Algorithm 9.

Algorithm 11 (Shade Request Handler)

On arrival of a ShadeRequest containing a set of object references, SR, on node i while

the Marker Process is in phase G2{G6:

A 11.1 Each of the received references in SR to resident objects is Shade.

11.2 One ShadeReply is send explicit to the requesting node containing

references to all the resident (and new Shade) objects as a common

acknowledgment.

A 11

Algorithm 12 (Shade Reply Handler)

On arrival of a ShadeReply containing a set of object references, SR, on node i while the

Marker Process is in phase G3:

B 12.1 Delete the acknowledged references given in SR from the non-resident

gray set.

On arrival of a ShadeReply containing a set of object references, SR, on node i while the

Marker Process is in phase G4:

C 12.1 Delete the acknowledged references given in SR from the non-resident

gray set.

12.2 If both the non-resident gray set and the global gray set have become

empty this node is �nished for now:

12.2.1 Increment timestampi.

12.2.2 Send Status < i; timestampi >.

12.2.3 Set next phase to G5.

A 12

Algorithm 13 (Status Handler)

The Status signal from node j (with timestampj , and a set of status for other nodes

f< n; timestampn >gn) received on node i, during phase G2{G4:

D 13.1 Record status information received: < j; timestampj > and any more

recent information from the set f< n; timestampn >gn.

.
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The Status signal from node j (with timestampj , and a set of status for other nodes

f< n; timestampn >gn) received on node i, during phase G5:

E 13.1 Record status information received: < j; timestampj > and any more

recent information from the set f< n; timestampn >gn.

13.2 If status has been received from all nodes, it is time to get commitment

from all other nodes, and the next phase is set to G6.

The Status signal from node j (with timestampj , and a set of status for other nodes

f< n; timestampn >gn) received on node i, during phase G6:

F 13.1a Record status information about the sending node, j:

< j; timestampj > only.

13.2a If the status for node j is unchanged, mark it as a commitment, else

the commitment must be restarted and next phase is set back to G5

again.

13.3 If all nodes has committed, send a Terminate, and set the next

phase to G7.

A 13

Algorithm 14 (Terminate Handler)

The Terminate signal from node j received on node i, during phase G5 or G6:

G 14.1 Next phase is set to G7, as another node has detected that this mark-

phase is globally completed.

A 14

.
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Appendix C

Implementation Statistics

The garbage collection scheme has been implemented in the Emerald prototype by additions

to the Emerald run-time system, i.e., the Emerald kernel only. The current prototype may

run on either of the architectures: VAX, SPARC, and Motorola 68000 under various versions

of the Unix operating system. The VAX implementation has been tested with Ultrix 4.2

and Mt.XINU 4.3bsd Unix. Under SunOS 4.1.1. (also 4.3bsd compatible) it may run at

SUN-3 workstations, SUN-4 servers, and SPARC-stations. Furthermore, additions to let it

run under HP-UX (Version 8) at M68000-based HP workstations are also available.

The current version does not facilitate heterogeneous1 execution of Emerald programs,

i.e., each Emerald system consists of a set of homogeneous computers connected by a thin

and/or thick Ethernet segmented by bridges.

1Another version of the Emerald system has been developed for heterogeneous computing; but the garbage

collector has not been tested on this version yet.

Kernel size (in lines of source code) Kernel GC changes Kernel
Kernel Modules without GC and additions inclusive GC

Message Module (MM, LM, and GCM) 5,904 1,265 7,146

Dynamic Code Load 3,748 413 4,044

Language Interface (stubs) 994 0 994

Process Management (in- and external) 4,789 2,041 6,607

Support for Mobile Object and Remote Access 9,420 1,762 9,953

Storage Management (inclusive GC) 1,392 6,323 7,248

Host Tables (HOTS) 1,582 237 1,804

Signals and User i/o 1,584 7 1,586

Checkpoint and Recovery Module 1,216 55 1,234

Various 8,544 1,348 9,755

Kernel Measurement and Debugging (KMD) 3,407 296 3,589

Total 42,580 13,747 53,960

Table C.1: Code Statistics for the added garbage collection in the Emerald kernel

145



{ 146 {

The extension to the Emerald kernel are quanti�ed in Table C.1 as lines of source code

mostly written in C. As shown, the source code has grown from 42,000 lines to more than

53,000 lines by the addition and change of 14,000 lines. 25% of the new kernel is either new

code or modi�cations of the old code.

The density of "real code" in the implementation is fairly low as more debugging and

monitoring code has been included following the existing style of the Emerald kernel. Such

additional code has been added all over the kernel during debugging, and the KMD sys-

tem itself has also been extended. These debugging aids remain in the �nal version of the

kernel source �les, but the in
uence on run-time measurements has been limited by special

compilation and compaction.

The primary additions are the garbage collector modules inserted in the modules for Stor-

age Management and Message handling. Process Management now includes the management

of the internal kernel processes for garbage collection processes, also. The changes in the Mo-

bile Object Support modules are concerned with registering inter-node references, location

of objects, remote invocations, and the garbage collection fault handler.
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Appendix D

Danish Summary

Spildopsamling i distribuerede systemer

Et dansk resume af licentiatafhandling indleveret til forsvar ved K�benhavns Universitet af

Niels Christian Juul

Licentiatarbejdet taget sit udgangspunkt i behovet for automatisk at kunne genanvende

dynamisk allokeret lager i distribuerede systemer. Automatisk genanvendelse er muligt ved

at spildopsamle ikke-frigivne lagerstykker, n�ar disse kan identi�ceres som spild. En spildop-

samler har s�aledes til opgave at identi�cere hvilke lagerstykker, der er spild, og indsamle dem.

Dette arbejde fokuserer p�a identi�kation af spild, hvor spild|kort fortalt|de�neres som de

allokerede lagerstykker ingen kan anvende, fordi ingen kender dem. I distribuerede systemer

kompliceres identi�kationsprocesses af at relationen "kender til" kan krydse frem og tilbage

over gr�nserne mellem de knuder (datamater), som udg�r systemet.

Den udviklede spildopsamlingsmetode for distribuerede systemer er karakteriseret ved:

Fuldst�ndighed idet alt spild opsamles.

Parallellitet idet spildopsamlingen udf�res parallelt med afviklingen af andre

processer.

Robusthed idet spildopsamlingen foretages selvom alle knuder i det distribuerede

system ikke er tilg�ngelige samtidigt.

Spildopsamlingen er implementeret i k�retidssystemet for det distribuerede, objekt-baserede

programmeringssprog, Emerald.

Baggrund

Behovet for spildopsamling af arbejdslager i datamatsystemer er en konsekvens af behovet

for dynamisk lagerallokering (hob-allokering), hvor levetiden af det allokerede ikke er bun-

det til levetiden for initiativtageren til allokeringen. Problemstillingen er f.eks. aktuel i

objekt-orienterede systemer med persistente objekter. Emerald er et s�adant distribueret,

objekt-orienteret system, best�aende af en overs�tter og et k�retidssystem, som afvikles p�a

arbejdsstationer (knuder) forbundet i et lokalnet.
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Spildopsamling efter metoderne reference counting, mark-and-sweep og stop-and-copy har

v�ret kendt siden begyndelsen af 1960'erne, hvor de blev introduceret i forbindelse med

behandlingen af dynamiske datastrukturer som lister. Med udbredelsen af blok-orienterede

programmeringssprog (og stak-allokering) gennem 1970- og 1980'erne svandt behovet for

hob-allokering og spildopsamling. Den objekt-orienterede b�lge har dog igen sat fokus p�a

spildopsamling, hvor objekternes levetid er uafh�ngig af levetiden for den som opretter dem.

P�a grund af de omkostninger, som anvendelsen af de f�rste spildopsamlere introducerede, har

spildopsamling haft et d�arligt omd�mme. Der �ndes imidlertid idag metoder, som nedbringer

den generende ventetid, hvor spildopsamleren l�aser systemet, til et minimum.

Den udviklede spildopsamlingsmetode

Den udviklede spildopsamlingsmetoed er baseret p�a to mark-and-sweep spildopsamlere p�a

hver knude i det distribuerede system. De enkelte spildopsamlere afvikles parallelt med

brugerprocesser ved hj�lp af en objektbeskyttelsesmekanisme med en e�ekt svarende til page-

fault i side-opdelte virtuelle lagersystemer. Objektbeskyttelsen anvendes p�a objekter, som

endnu ikke er m�rket under m�rkningsfasen. Selve indsamlingsfasen er gjort uafh�ngig af

b�ade brugerprocesser og m�rkningsfasen ved at v�re indlejret i lagerallokeringsoperationerne.

For at kunne identi�cere alt spild samarbejder den ene spildopsamler fra hver knude i en

global spildopsamling. Ved hj�lp af decentral styring og en distribueret termineringsdetek-

tion opn�ar den globale spildopsamler at blive robust overfor tempor�re fejl, som knuder der

g�ar ned og kommer op igen. Knuderne beh�ver kun v�re parvis tilg�ngelige for udveksling af

informationer, omend metoden risikerer at v�re meget l�nge om at afslutte identi�kationen af

spild. Spild m�a imidlertid identi�ceres og returneres til lageradministratoren i et tempo, der

svarer til allokering af lager til applikationerne. Derfor udf�rer det andet s�t af spildopsamlere

hver for sig en uafh�ngig indsamling af lokalt spild p�a deres respektive knuder.

Spildopsamlingen er implementeret i Emerald systemet som en lokal og en global m�rk-

ningsprocess (Marker), samt en f�lles opsamlingsprocess (Sweeper) suppleret med rutiner til

h�andtering af kommunikation og synkronisering mellem disse og resten af k�retidssystemet.

Hver m�rkningsprocess starter med sine r�dder (referencer til lagerstykker, som ihvertfald

ikke er spild) og genneml�ber alle lagerstykker, den kan n�a direkte og indirekte via referencer,

hvorunder disse m�rkes. Indsamlingsprocessen genneml�ber hele lageret og noterer sig de

ikke m�rkede lagerstykker som spild, der registreres til senere genbrug.

Opn�aede resultater

Ved at implementere den designede spildopsamlingsmetode er det lykkedes samtidigt at

opn�aen fuldst�ndig, parallel og robust spildopsamling i det distribuerede, objekt-baserede sys-

tem, Emerald. Alt spild i det distribuerede system, inklusiv cirkul�re, selvrefererende struk-

turer af spild opsamles parallelt med at systemet fortsat afvikler brugerprogrammer. De

pauser, som spildopsamlingens enkelte deltrin introducere i den normale programafvikling,

kan normalt begr�nses til samme st�rrelsesorden som den tid hver Emerald process tildeles

som maximal k�rselstid af gangen. Pauser p�a grund af spildopsamling er s�aledes ikke mere

synlige for den enkelte process end de pauser systemet i forvejen introducerer for at 
ere

processer kan afvikles "samtidigt".
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Konklusion

Det er s�aledes eftervist, at det i praksis er muligt at foretage spildopsamling i distribuerede

systemer mens de k�rer. Dette er opn�aet ved:

En fuldst�ndig og parallel spildopsamler i et distribueret system

Implementationen af den fuldst�ndige spildopsamler i Emerald fungerer parallelt med

afviklingen af brugerprogrammer. S�avidt vides, er det den f�rste fungerende implemen-

tation af en fuldst�ndig og parallel spilddetektor i distribuerede systemer.

En robust spildopsamler i distribuerede systemer

Implementationen fungerer selvom dele af det distribuerede system fejler. Den glo-

bale spildopsamler afventer simpelthen at utilg�ngelige knuder bliver tilg�ngelige igen.

Hvorimod den lokale spildopsamler er istand til uafh�ngigt heraf at opsamle lokalt spild.

Faktisk er den anvendte protokol for kommunikation og synkronisering mellem knuderne

i systemet s�a robust at den sikre s�avel fremdrift (m�rkningsfasen konvergerer mod sin

afslutning) som detektion af at afslutningen er n�aet, selvom knuderne hver is�r fejler

vilk�arligt ofte. Parvis tilg�ngelighed af alle knuder mindst en gang under afslutningen

er det h�ardeste krav den globale spildopsamler stiller til det distribuerede system.

Udnyttelse af objektbeskyttelsesmekanismen

Ved at anvende ideen om objektbeskyttelse, som den i forvejen er brugt til at detektere

hvorn�ar et procedurekald ikke er lokalt, men skal omformes til et fjernprocedurekald,

under m�rkningsfasen opn�as en klar skillelinie mellem de objekter brugerprocesserne

anvender og de som endnu ikke er m�rket af spildopsamleren. Herved beskyttes kendte,

men endnu ikke gennemsete, objekter fra at blive forandret bag ryggen af spildopsam-

leren.

.
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