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ABSTRACT
Information Retrieval in technical domains like physics is
characterised by long and precise queries, whose meaning is
strongly influenced by term context and domain. We treat
this as a disambiguation problem, and present initial find-
ings of a retrieval model that posits a higher probability
of relevance for documents matching disambiguated query
terms. Preliminary evaluation on a real-life physics test col-
lection shows promising performance improvement.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Information Retrieval, Sense Discrimination

1. INTRODUCTION
User queries in technical domains like physics tend to be

long and precise, e.g. I am looking for a general ex-

pression for the heat transfer coefficient in a li-

quid solid interface. For such queries, standard bag of
word approaches may fail to capture the dependence be-
tween the query constituents, or the modification relation-
ships of their components. For a shorter query this may not
harm retrieval, and often the collocation of the query terms
in the collection suffices. However, for longer queries, a sim-
iliar approach would result in notably more collocations in
the collection, causing accidental matches with nonrelevant
documents. An additional problem of technical domains like
physics is that words may acquire special domain-specific
meanings, e.g. in the query above, expression denotes a
formula. This sense is not only different to other senses that
expression may convey, but also central to the user need.
We present initial findings of a retrieval model that posits

a higher prior probability of relevance for documents match-
ing disambiguated query terms. Disambiguation is realised
with Schütze & Pedersen’s [3] unsupervised approach that

Copyright is held by the author/owner(s).
SIGIR’11, July 24–28, 2011, Beijing, China.
ACM 978-1-4503-0757-4/11/07.

disambiguates query terms by considering their context rep-
resentations in the retrieval collection. This approach out-
puts a disambiguated sense for a query term, and a cluster of
documents that contain the query term in its disambiguated
sense. We treat this output as evidence of relevance of those
documents to the query, and we embed it into the retrieval
model as a prior probability. Initial findings on a real-life
physics test collection are presented.

2. SENSE DISCRIMINATION MODEL
Let t′ be a query term that we wish to disambiguate.

We use Schütze & Pedersen’s [3] algorithm to build a con-
text vector for each occurrence of t′ in the collection and
in the query. This context vector consists of features oc-
curring within n = 10 words of t′ (following [3]), and uses
as features sequences of alphanumeric characters. Context
vectors are weighted using inverse context frequency and

cosine-normalised: vij =
δ(i,j) log N

N(j)
√

∑

k(δ(i,k) log
N

N(k)
)2
, where vij is

component j of context vector ~vi of term t′; δ(i, j) is 1 if
feature j occurs in context i, 0 otherwise; N(j) is the num-
ber of contexts of t′ in which feature j occurs; and N is the
total number of contexts of t′. The weighted context vectors
in the collection are then clustered into k = 20 sense clus-

ters using k-means clustering. Disambiguating t′ consists of
assigning the query context vector t′ to the closest centroid
of the sense clusters computed for t′ in the collection.

The single sense cluster assigned to t′ consists of contexts
that occur in documents in the collection. These documents
are deemed by our method to contain t′ with the same sense
as used in the query. Hence, boosting the ranking of these
documents may benefit retrieval performance. We imple-
ment this boosting as a prior probability that these do-
cuments are relevant, which we incorporate into the basic
query likelihood model used for retrieval.

Given a query Q and a document D, the query likelihood
model [1] ranks D by P (D|Q). By Bayes rule, P (D|Q) ∝
P (Q|D)P (D), where P (Q|D) is the probability that D gen-
erates Q, and P (D) is the document’s prior probability.
There are several ways of estimating P (Q|D), for instance
using Jelinek-Mercer or Dirichlet smoothing. P (D) is usu-
ally assumed to be uniform, in which case documents are
ranked solely by P (Q|D). Alternatively, P (D) can be viewed
as prior knowledge about the relevance of D [4]. Various
types of prior evidence about document relevance have been
implemented as P (D), e.g. document quality [4]. In this
work, we measure the degree of match between the sense of
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Figure 1: Retrieval performance vs. parameter µ (Dirichlet)/λ (Jelinek-Mercer) for short queries.

a term in the document with its sense used in the query, and
we implement it as P (D).
The value of P (D) is typically derived from measurements

about the evidence being modelled as the document prior.
In this work we choose a fixed value (P (D) = 0.5) to boost
those documents that disambiguate query terms. The per-
formance of our approach reported in this work may further
improve if prior values are tuned, however, at this stage, our
aim is to test whether our approach is beneficial to retrieval,
and not to optimise its performance.

3. EVALUATION
We use the iSearch real-life physics test collection [2],

which contains approx. half a million physics documents
and 65 queries with graded relevance assessments, created
by physicists. Queries contain 5 fields: 1. information need,

2. task, 3. background, 4. ideal answer, 5. keywords. We
use Indri for indexing and retrieval without removing stop-
words or stemming, because these settings give the highest
baseline performance. Our baseline runs use the Kullback-
Leibler language model [1] with Dirichlet and Jelinek-Mercer
smoothing (Dir, JM resp.). Our sense disambiguation (SD)
runs use Dir & JM, enhanced with the SD priors presented
above. We also include runs with pseudo-relevance feed-
back (FB) using Indri’s default implementation, in order
to compare our method to a more competitive approach.
We use short queries (fields 1&5)1 and long queries (all
fields), to check the effect of query length on SD. We measure
performance with: mean average precision (MAP), binary
preference (BPREF), and normalised discounted cumula-
tive gain (NDCG). For each measure, we tune: (for Dir) µ ∈
{100, 500, 800, 1000, 2000, 3000, 4000, 5000, 8000, 10000}; (for
JM) λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,
0.99}; (for FB) the number of feedback documents fbD ∈
{1, 2, 5, 10, 20} and the number of feedback terms fbT ∈
{3, 5, 10, 20, 40}.
Table 1 shows that for MAP & NDCG, SD performs the

best, with large relative improvements over the baseline and
FB. Note that MAP uses binary relevance, whereas NDCG
uses graded relevance; SD is shown superior on both of these
measures at all times, which is a good indication of its use-
fulness to IR. For BPREF, the improvement of SD over the
baseline and FB is not large, but the best run for both types
of queries is again a SD run. This result may be affected by
a bias in iSearch: its relevance assessments contain a much
larger proportion of documents judged as nonrelevant than
of documents judged as relevant [2]. BPREF is affected by

1We use fields 1&5 because they give higher baseline perfor-
mance than field 5 alone.

SHORT QUERIES LONG QUERIES
MAP BPREF NDCG MAP BPREF NDCG

Dir 0.0601 0.1954 0.1980 0.0552 0.1813 0.1892
JM 0.0630 0.1944 0.2017 0.0579 0.1844 0.1920
Dir+SD 0.0691* 0.1965* 0.2141* 0.0682* 0.1874 0.2086
JM+SD 0.0698 0.1945 0.2161 0.0708 0.1855 0.2106
Dir+FB 0.0646 0.1959 0.2003 0.0585 0.1802 0.1780
JM+FB 0.0628 0.1936 0.1896 0.0610 0.1819 0.1846

Table 1: Retrieval performance. * = stat. signif-
icance at p < 0.05 (2-tailed t-test). Bold = better
than the baseline.

this because it depends heavily on the number of judged non-
relevant documents that are retrieved at higher ranks than
relevant documents (whereas MAP & NDCG do not dis-
tinguish between non-relevant and non-judged documents).
Regarding query length, the longer the query, the higher
the improvement brought by SD, most likely because longer
queries have lower baseline scores, so there is more room for
improvement. The improvement of SD is not heavily reliant
on smoothing optimisation, as Figure 1 shows (the plots of
long queries and BPREF are similar to these): the improve-
ment of SD is more stable across different parameter values
than the baseline and FB, especially for short queries.

4. CONCLUSION
This poster presented initial work on a retrieval model

that includes a word sense disambiguation component, the
output of which is embedded into the ranking function as a
prior probability. The motivation was to improve retrieval
performance for technical domains like physics, where words
often have domain-specific senses. Preliminary experiments
on a real-life physics test collection gave positive findings;
more testing on other technical collections are needed to
further explore our so-far promising approach.

5. REFERENCES
[1] W. B. Croft and J. Lafferty. Language Modeling for

Information Retrieval. Kluwer, 2003.

[2] M. Lykke, B. Larsen, H. Lund, and P. Ingwersen.
Developing a test collection for the evaluation of
integrated search. In ECIR, pages 627–630, 2010.

[3] H. Schütze and J. O. Pedersen. Information retrieval
based on word senses. In SDAIR, pages 161–175, 1995.

[4] Y. Zhou and W. B. Croft. Document quality models for
web ad hoc retrieval. In CIKM, pages 331–332, 2005.

1102


	Introduction
	Sense discrimination model
	Evaluation
	Conclusion
	References



