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Abstract. The di�culty of a user query can a↵ect the performance of
Information Retrieval (IR) systems. This work presents a formal model
for quantifying and reasoning about query di�culty as follows: Query
di�culty is considered to be a subjective belief, which is formulated on
the basis of various types of evidence. This allows us to define a belief
model and a set of operators for combining evidence of query di�culty.
The belief model uses subjective logic, a type of probabilistic logic for
modeling uncertainties. An application of this model with semantic and
pragmatic evidence about 150 TREC queries illustrates the potential
flexibility of this framework in expressing and combining evidence. To
our knowledge, this is the first application of subjective logic to IR.

1 Introduction

The task of an Information Retrieval (IR) system is to retrieve information from
a large repository of data in response to a user need, or query. The di�culty
of this task may be a↵ected by various factors, relating to the system or algo-
rithms used, to the properties of the data to be retrieved, or to the inherent
di�culty of the user’s information need. The e↵ect of the last of these factors
upon retrieval performance is often referred to as query di�culty, and is stud-
ied extensively in the field (discussed in Section 5). Our work addresses query
di�culty by proposing a formal framework for modelling query di�culty. Our
proposed formalisation consists of a belief model that considers query di�culty
to be a subjective belief, which is formulated on the basis of di↵erent types of
evidence. This belief model uses a type of logic called subjective logic [11] in or-
der to combine this evidence and to make a final estimation about the expected
di�culty of a query. Any type of evidence can be used with this model.

Subjective logic is a type of probabilistic logic that allows probability val-
ues to be expressed with degrees of uncertainty. Like any probabilistic logic,
it combines the strengths of logic and probabilities: from the area of logic, it
draws the capacity to express structured argument models, and from the area
of probabilites it draws the power to express degrees of those arguments. This
means that one can reason with argument models in the presence of uncertain



or partially incomplete evidence. Since most of our knowledge or evidence about
query di�culty in IR can never be complete, but rather tends to include degrees
of uncertainty, subjective logic constitutes an appealing model for representing
query di�culty, in the sense that the conclusions drawn reflect any ignorance
and uncertainty of the input evidence.

Subjective logic is not the only formalism to model degrees of uncertainty.
Several other mathematical models have been proposed to this end, the oldest
being the Bayesian model of subjective probabilities (a survey of its foundations
can be found in [8]). There also exist generalisations of the Bayesian model,
(critically surveyed in [21]), the best-known of which is Dempster-Shafer’s belief

theory [7,19]. The point of departure for Dempster-Shafer from classical Bayesian
theory is its abandoning of the additivity principle of classical probabilities,
i.e. the requirement that in a given event space, the probabilities of mutually
disjoint elements must add up to 1. In classical Bayesian theory, this requirement
makes it necessary to estimate a probability value for every element of the event
space, even though there might be no basis for it, for instance in the case of
uncertainty. Instead, Dempster-Shafer’s belief theory suggests assigning a so-
called belief mass to the whole event space. This belief mass is defined on the
basis of both evidence and uncertainty about the event, hence it constitutes
a much more flexible way of representing beliefs than traditional probabilities.
Subjective logic can be seen as an alternative to the Dempster-Shafer theory, its
main di↵erence from the former being in its definition and distribution of belief
mass: subjective logic defines belief mass as a function of not only belief and
uncertainty, but also of an apriori probability in the absence of any evidence;
furthermore, subjective logic assigns this belief mass, not to the whole event
space, but to the individual elements of the event space. It can be argued that
this allows subjective logic to formulate more expressive beliefs than Dempster-
Shafer theory [11].

One of the advantages of using a belief theory, be it with Dempster-Shafer
theory or subjective logic, is that it allows to operate on the beliefs and fuse
them. Fusing beliefs is a formal way of saying ‘combining evidence’. In the con-
text of IR, combining evidence is a process that aims to use di↵erent types of
information that may enhance IR performance, but for which we have di↵erent
degrees of uncertainty regarding the enhancement that they may bring [18]. In
this work we use two di↵erent subjective logic operations to combine evidence
about query di�culty: a fair consensus and a biased recommendation (also called
discounting).

The contribution of this work lies in proposing a type of formal logic for IR,
which has not been used before in the field, and in illustrating its application to
the representation and combination of evidence about query di�culty. To our
knowledge, whereas Dempster-Shafer theory has been used extensively in IR (see
Section 5), this is the first application of subjective logic to IR.

In the rest of this paper, Section 2 introduces belief models for subjective
logic and presents our proposed belief model of query di�culty. Section 3 intro-
duces the subjective logic operators for combining evidence used in this work.



Section 4 illustrates the application of our proposed belief model of query dif-
ficulty with 150 TREC queries and di↵erent types of semantic and pragmatic
evidence. Section 5 overviews related past work on logic models for IR and query
di�culty. Section 6 summarises this work and suggests future research directions.

2 Belief Model of Query Di�culty

Belief models define a set of possible situations, for instance a set of possible
states of a given system, called frame of discernment. This frame is defined over
a proposition, i.e. a statement. At any one time, only one state of the frame of
discernment can be true with respect to the proposition. A frame of discernment
with two states � and ¬� is called focused frame of discernment with focus on

�. In this work, we use a focused frame of discernment.
Given any frame of discernment over a proposition, one can estimate the

probability expectation that this proposition is true. This probability expecta-
tion is computed using evidence, which is said to come from ‘observers’. An
observer can assign to a state a belief mass, which represents his belief that this
state is true with respect to the proposition. This belief can be represented in
di↵erent ways by di↵erent uncertainty theories, for instance Dempster-Shafer
or subjective logic as discussed in Section 1. An underlying similarity in these
di↵erent representations is that this belief includes an explicit representation of
the uncertainty of the observer about his belief.

Subjective logic considers the belief of an observer about the truth of a propo-
sition as a subjective belief marked by degrees of uncertainty, and it calls it
opinion. Let � = {�,¬�} be a binary frame. An opinion about the truth of state
� is the ordered quadruple !

A

�

⌘ (b, d, u, a) where superscript A is the opin-
ion’s owner (i.e the observer), b is the belief mass supporting that the specified
proposition is true (i.e. the observer’s belief), d is the belief mass support-
ing that the specified proposition is false (i.e. the observer’s disbelief), u is
the amount of uncommitted belief mass (i.e. the observer’s uncertainty), and
a is the apriori probability in the absence of committed belief mass (divided
uniformily among the states). These components satisfy: b + d + u = 1 and
b, d, u, a 2 [0, 1]. Clearly, a binomial opinion where b + d = 1 is equivalent to a
traditional probability, and a binomial opinion where b + d = 0 expresses total
uncertainty. The probability expectation of a binomial opinion is: E = b + au.

For the purpose of believing a binary proposition such as: “query q is di�-
cult”, we assume that the proposition will be either true or false. Hence, we define
a focused frame of discernment as shown in Fig. 1 with the states: t (true) and f

(false). The uncertainty probability of each state is represented by the belief mass
assigned to each state by di↵erent observers, who are in fact our sources of evi-
dence about query di�culty. The opinions of the three observers A,B, C shown in
Fig. 1 are: !
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subscripts t, f denote the true and false state respectively. These opinions define



our opinion space. The observers’ opinions are drawn from real observations
about the queries, which constitute our evidence space, discussed next.

BELIEF MODEL OF QUERY DIFFICULTY

t f

query q is di�cult

A B C

OBSERVERS

(evidence)

PROPOSITION

BELIEF MASS

ASSIGNMENT

Two states about the proposition that query q is di�cult are discerned by the

frame. Di�erent observers (evidence) assign belief mass to each state. Belief

mass consists of the observer’s belief, disbelief and uncertainty about a state.

The model estimates the total belief of the proposition.

Fig. 1. A belief model of query di�culty.

2.1 Evidence Space

For a focused frame of discernment, such as the one in Fig. 1, the proposition
of the frame constitutes a binary event, where either the one or the other state
is true: the query is either di�cult or not. The type of evidence that we use to
estimate the truth of this proposition can also be seen as binary, in the sense
that it can be either positive (supporting that the query is di�cult) or negative
(supporting that the query is not di�cult). Hence, both our opinion space and
our evidence space consist of binary events. For such binary events, subjective
logic defines a bijective mapping between the opinion and evidence space, as
follows [11]. Let r denote positive evidence, and s denote negative evidence.
Then, the correspondence between this evidence and the belief, disbelief, and
uncertainty b, d, u is defined as:

b =
r

r + s + 2
d =

s

r + s + 2
u =

2
r + s + 2

(1)

Eq. 1 allows one to produce opinions based on statistical evidence. This map-
ping is derived in a mathematically elegant way, by considering the posteriori
probability of the binary events defined in a focused frame of discernment, ex-
pressed using a beta probability function (the full derivation is presented in [11]
and is outwith the focus of our work). The point to remember here is that in
subjective logic any opinion has an equivalent mathematical and interpretative
representation as a probability density function and vice versa.



3 Subjective Logic Operations for Combining Evidence

Subjective logic contains several operators for combining evidence (see [11] for
more). In this work we use two combinations only: consensus and recommenda-

tion (or discounting). Using subjective logic terminology, we will refer to com-
bining evidence as combining opinions, and treat these statements as equivalent.

3.1 Consensus between Independent Opinions
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held by two independent observers A and B about the same proposition x. Then,
!

A,B

x

⌘ (bA,B

x

, d

A,B

x

, u

A,B

x

, u

A,B

x

) is the opinion of an imaginary observer [A,B]
about x. [A,B] represents the Bayesian consensus of opinions of both A and B,
denoted !

A,B

x

= !

A

x

� !

b

x

, and defined by:

b

A,B

x

=
b

A

x

u

B

x

+ b

B

x

u

A

x



, d

A,B

x

=
d

A

x

u

B

x

+ d

B

x

u

A

x



, u

A,B

x

=
u

A

x

u

B

x



(2)

a

A,B

x

=
a

B

x

u

A

x

+ a

A

x

u

B

x

� (aA

x

+ a

B

x

)uA

x

u

B

x

u

A

x

+ u

B

x

� 2u

A

x

u

B

x

(3)

where  = u

A

x

+ u

B

x

� u

A

x

u

B

x

such that  6= 0, and where a

A,B

x

= (aA

x

+ a

B

x

)/2
when u

A

x

, u

B

x

= 1. The proof is included in [11].
This operation is both commutative and associative, meaning that the order

in which opinions are combined does not impact the combination. The operation
assumes that opinions are independent and that not all the combined opinions
have zero uncertainty. Attempting to combine opinions all of which have zero
uncertainty can be seen as meaningless, because these opinions would have com-
plete belief or disbelief, and would hence be in complete conflict or agreement.

The e↵ect of the consensus operator is to reduce uncertainty. The consensus
operator has the same purpose as Dempster’s rule [7], and the two tend to
produce overall quite similar results. In [11], Section 5.3, Josang illustrates some
cases where the consensus operator is ‘better’ than Dempster’s rule, in the sense
that the former produces less counterintuitive results than the latter.

3.2 Recommendation (or Discounting) between Opinions

Assume two observers A and B where A has an opinion about B, and B has an
opinion about a proposition x. A recommendation of these two opinions consists
of combining A’s opinion about B with B’s opinion about x

3 in order for A to get
an opinion about x. Let !
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3 B’s recommendation must be interpreted as what B recommends to A, and not
necessarily as B’s real opinion.



B’s recommendation. Then, !
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of the recommendation from B, defined as:
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This operation is associative but not commutative, meaning that the order in
which opinions are combined impacts the combination. Eq. 4 can become equiv-
alent to Shafer’s discounting function [19] by setting 1� c = b

A

B

, where c denotes
Shafer’s discounting rate which is multiplied to the belief mass on each state in
the frame except the belief mass of the powerset itself.

4 Illustrative Experiments

4.1 Evidence of Query Di�culty

We illustrate an application of our formalisation of query di�culty using two
types of linguistic evidence, namely semantic and pragmatic evidence. From
these types of linguistic evidence we obtain positive and negative evidence of
query di�culty, which we map into belief, disbelief and uncertainty using Eq. 1.

The choice of evidence is illustrative. Our proposed model allows to represent
and combine any type of evidence, simply by introducing more observers who
contribute their beliefs to the frame of discernment. Any other evidence can be
used.
Semantic Evidence. We use as semantic evidence two indicators that have
been found to be correlated with query di�culty, namely (i) query scope, pro-
posed by Plachouras and Ounis [18], and (ii) query polysemy [16]. Query scope
is a probabilistic measure that estimates how specific or generic a query is by
using the query term frequencies in the collection as well as their semantic con-
tent. Assuming that each query term corresponds to one or more concepts in
WordNet (or any other similar lexical reference system), the semantic content
of query terms is approximated from the hierarchical structure of their respec-
tive concepts. Specifically, we use the following formulae from [18] (keeping their
original notation): given a term t

k

and several concepts C
k

associated to this
term, the scope of t

k

is defined as the maximum probability of any of its asso-
ciated concepts: scope

tk = max
C2Ck prob(C). This probability is estimated as
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, and n
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denotes the number
of concepts associated with t
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(in this work we select n
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only). Pla-
chouras and Ounis posit that as term scope approaches zero, the term is less
represented in the collection, and hence more di�cult to retrieve [18]. Based on



this reasoning, we define a threshold ✓

sco

, so that any term scope  ✓

sco

consti-
tutes positive evidence of query di�culty, and any term score > ✓

sco

constitutes
negative evidence. For the illustrations shown here, we define ✓

sco

as the median
term scope in all queries.

The second type of semantic evidence consists of the ‘polysemy score’ o↵ered
by WordNet to each term. This score reflects the number of concepts to which
a term is associated, e.g. a score of 1 denotes a monosemous term. WordNet
considers terms of polysemy score 1-4 as uncommon (in decreasing degrees from
1 to 4) and terms of polysemy score 5 or more as common (in increasing degrees
from 5 upwards). Following the assumption that the more polysemous a term is,
the harder the query [16], we define the following threshold: ✓

pol

 4 constitutes
positive evidence of query di�culty, and ✓

pol

> 5 constitutes negative evidence.
Here, the value of the threshold ✓

pol

is taken directly from WordNet.
Pragmatic Evidence. Our pragmatic evidence aims to show whether a query
constitutes a literal or stipulative statement of an information need. The meaning
of a literal statement remains unchanged in all contexts, whereas the meaning of
a stipulative statement is context- or register-dependent. We assume that a literal
query should be easier to retrieve than a stipulative query because its meaning
depends more on the literal semantics of its individual terms, and less on their
contextual, metaphorical or other interpretations. To obtain this evidence, we
use human judges, who read the queries and classify them as stipulative or not,
based on their intuition. We use three human judges and consider their decision
about the query being a literal or stipulative statement of an information need
as negative or positive evidence of query di�culty respectively. The judges have
a disagreement rate of 17.1%, and an inter-annotator agreement of  = 0.413,
measured using Cohen’s , which indicates moderate agreement.

To recapitulate, we have three types of evidence (scope, polysemy, pragmatic
judgement), which correspond to the observers of our model (Fig. 1). Next we
illustrate how we formalise this evidence in our belief model of query di�culty,
using TREC [24] queries.

4.2 Working Examples

Let us consider the following TREC queries: n

o 415 (drugs, Golden Triangle),
n

o 479 (where can I find information about kappa alpha psi?), n

o 492
(us savings bonds), n

o 508 (hair loss is a symptom of what diseases?).
In this section, we will estimate their di�culty and compare it to the retrieval
performance they yield on their respective TREC collections (LAT & WT10G).
Retrieval will be realised with the BM25 model at default settings, and measured
by Mean Average Precision (MAP) against the prejudged relevance information
provided for these datasets by TREC.

Table 1 presents the evidence given by our observers about the di�culty of
each sample query, as well as the respective belief mass estimated by our model.
The opinion of each observer can be represented as a tuple of the belief mass
(b, d, u) and also of a prior probability of uncertainty a (a is divided uniformily
among the two states of our frame of discernment, hence a=0.5 at all times).



Proposition: the query is di�cult

query

query scope query polysemy pragmatic judgement

belief disbef. uncert. Exp.di↵ belief disbef. uncert. Exp.di↵ belief disbef. uncert. Exp.di↵ MAP

b d u E b d u E b d u E

415 0.13 0.63 0.25 0.25 0.40 0.20 0.40 0.50 0.60 0.00 0.40 0.80 0.250
479 0.50 0.33 0.17 0.58 0.29 0.43 0.29 0.44 0.60 0.00 0.40 0.80 0.240
492 0.75 0.13 0.13 0.88 0.20 0.40 0.40 0.30 0.60 0.00 0.40 0.80 0.307
508 0.79 0.11 0.11 0.84 0.33 0.33 0.33 0.50 0.00 0.60 0.40 0.20 0.230

Table 1. Sample queries with their respective query di�culty evidence (scope,
polysemy, pragmatic judgment) and MAP. The belief mass components of each
type of evidence are clearly shown (b, d, u), as well as their final expected prob-
ability of query di�culty (E).

For example, the opinion of the polysemy observer that query 492 is di�cult is
represented as !

pol

t

⌘ (0.4, 0.2, 0.4, 0.5). In this case, the observer’s belief is equal
to his uncertainty (=0.4), and his disbelief is low (=0.2), hence the evidence of
this observer for this query is not very discriminative.

In Table 1 we also see that the di↵erent types of evidence do not always
agree. For instance, using query scope evidence, the probability that query 415
is di�cult is quite low (0.25), whereas using pragmatic evidence, the same prob-
ability for the same query is quite high (0.80). How di�cult this query is can be
seen in the last column of the table, which presents the MAP obtained by the
system for this query. In this case, an MAP of 0.250 is relatively low, hence the
pragmatic evidence seems more appropriate than the semantic scope evidence.

Combination of evidence

query

consensus sco,pol,pra pra discounts sco,pol

belief disbef. uncert. Exp.di↵ belief disbef. uncert. Exp.di↵

415 0.15 0.36 0.50 0.394 0.54 0.00 0.46 0.770
479 0.27 0.23 0.50 0.524 0.54 0.00 0.46 0.770
492 0.32 0.19 0.44 0.569 0.54 0.00 0.46 0.770
508 0.31 0.19 0.50 0.558 0.00 0.54 0.46 0.230

Table 2. Two di↵erent combinations of semantic scope (sco), polysemy (pol) and
pragmatic (pra) evidence about the four sample queries: consensus combines all
evidence fairly, whereas discounting favours pragmatic evidence at the expense
of the other two.

A more accurate estimate of query di�culty could be obtained by combining
those di↵erent types of evidence, as presented in Table 2. Table 2 illustrates the
two combinations of evidence presented in Section 3. The column headed ‘consen-
sus’ refers to the combination of our semantic scope, polysemy and pragmatic



evidence (denoted ‘sco,pol,pra’ respectively) using Eq. 2. The column headed
‘pra discounts sco,pol’ refers to the combination by discounting (Eq. 4), where
pragmatic evidence recommends its opinion to the consensus of scope and poly-
semy evidence. In this case, more weight is given to the pragmatic evidence than
to the other two types of evidence. We see that combining evidence by consensus
provides probability estimates that constitute a fair compromise of the individ-
ual expectations of each type of evidence. However, this is not always desirable,
especially in cases such as the ones presented in Table 2, where the original
estimates were in sharp disagreement between them. Combining strongly dis-
agreeing evidence results in an expected probability that approaches 0.5, hence
which can be considered relatively arbitrary. This implies that combining evi-
dence by consensus may be better suited to generally agreeing evidence, than
to sharply disagreeing evidence. On the contrary, combining evidence by dis-
counting allows one to produce more biased estimates (in this context, bias is
desirable). A prerequisite for such cases would be having some apriori knowl-
edge regarding the reliability or suitability of each type of evidence, or about
the agreement between the types of evidence to be combined. In a realistic situ-
ation, this type of knowledge is not di�cult to obtain, since most systems that
use query di�culty evidence for retrieval prediction ensure such knowledge using
o✏ine training and pre- or post-retrieval passes on prejudged relevant datasets
(evidence relying on such processes in highlighted in Section 5). We see in Table 2
that combination by discounting produces estimates that are more discrimina-
tive than the consensus estimates, namely 0.77 and 0.23 as opposed to estimates
closely approaching 0.5. The 0.77 estimates are in fact more accurate predictions
of query di�culty, because the displayed queries are di�cult queries (their MAP
scores do not exceed 0.3, as shown in Table 1).

Finally, we can report that the observations reported illustratively above
are also valid for the majority of the 401-550 TREC query set. Experiments
with these 150 queries show that semantic scope is not discriminative evidence
of query di�culty, that polysemy is better than scope but not at all times, and
that pragmatic judgment constitutes the most reliable out of the three sources of
evidence. More importantly, the combination of evidence for all queries is consis-
tently better when we use discounting (with pragmatic evidence discounting the
other two), than when we combine all three types of evidence on equal grounds
with consensus. The respective correlation between the estimated query di�culty
and MAP is in the range of Spearman’s ⇢ ⇡ 0.3 for discounting (weak positive
correlation), and ⇢ ⇡ 0.1 for consensus. These correlations are not strong, as is
commonly reported for most types of query di�culty evidence, and in particular
evidence stemming from the textual expression of the query [16]. These weak
correlations are partly due to the reliability or quality of the evidence used, but
also to the fact that the problem of query di�culty is largely influenced by sev-
eral factors (as mentioned in Section 1), meaning that it is practically impossible
for a single type of evidence to constitute a reliable and consistent predictor of
query di�culty for all queries in all datasets [18].



5 Related Work

In order to avoid breaking the flow of the belief model presented in this work,
we have left the treatment of related work at the end. This section discusses
separately applications of formal logic to IR, and work on query di�culty. The
applications of formal logic aim to give a plenary view of the di↵erent aspects and
processes of an IR system that can be formalised with logic, hence constituting
potential future applications of the subjective logic presented in this work. The
overview of work on query di�culty aims to present di↵erent types of query
di�culty evidence, which can be used within our proposed frame, using the
same methodology and equations set out in Sections 2-3.
Formal Logic in IR. The expressive power of formal logic has long attracted
applications of it to IR, starting with Van Rijsbergen’s logical uncertainty prin-

ciple [1]. Since then, modal logic has been used to integrate semantic-based and
probabilistic-based approaches of deciding the relevance between a document
and a query [17]. Extensions of the logical uncertainty principle have been pro-
posed in order to integrate natural language processing and artificial intelligence
techniques to IR [5]. Particular aspects of formal logic have also been used to
address specific aspects or processes in IR, for instance belief revision has been
used to model IR agents [14], to estimate the similarity between a document and
a query [15], and more recently to model adaptive and context-sensitive IR [13].
The Dempster-Shafer theory presented in Section 1 has been used extensively:
to build an IR framework where information structure, significance, uncertainty
and partiality can be elegantly represented and processed [12], to integrate Web
evidence into IR [23], to integrate into Web IR evidence of query di�culty in the
form of semantic scope (one of the types of evidence we used in this work) [18], as
well as to relate dependent indices [20]. There are further applications of formal
logic to IR, reviews of which can be found in [3]. A more indepth treatment of
formal representations for IR can be found in [2].
Query Di�culty. In this work we propose a formal representation of query
di�culty, an area of much interest to IR. Di�cult queries may be due to a number
of causes. Linguistic features of the query text that may indicate query di�culty
include morphological statistics (e.g. word length, number of morphemes per
word), syntactical statistics (e.g. number of conjunctions, syntactic depth), or
semantic statistics (e.g. polysemy value) [16]. Additional factors that may impact
retrieval performance can be drawn from the retrieval resources. For instance,
simple statistics such as the frequency of query terms in the collection [10], or the
score of the top-ranked documents and the average inverse document frequency
(idf) of query terms [22] have been correlated to query di�culty. Query di�culty
has also been correlated with query length [25], based on the overlap between
results of sub-queries based on single query terms and results of longer queries. A
clarity score has been proposed [6] to measure the coherence of a list of retrieved
documents by the KL-divergence between the query model and the collection
model. A robustness score [26] has been proposed to quantify the robustness
of the document ranking in the presence of uncertainty. Retrieval precision has
been correlated to the distance between the retrieved document set and the



collection [4] measured by the Jensen-Shannon divergence. In addition, di↵erent
techniques have been proposed for predicting automatically query performance
specifically in Web IR [27], either by making use of both single term and term
proximity features to estimate the quality of top retrieved documents, or by
viewing the retrieval system as a noisy channel, where the query is the input, the
ranked list of documents is the corrupted output, and their proposed technique
measures the degree of corruption. The main components of query di�culty
have been defined as the textual expression of the query, the set of documents
relevant to the query and the entire collection of documents, with experiments
showing that query di�culty strongly depends on the distances between these
components [4]. Finally, a recent overview of query di�culty with respect to
performance prediction can be found in [9].

6 Conclusion

We proposed representing and formalising query di�culty for IR using subjective
logic, a type of probabilistic logic for modelling uncertainties not used in IR be-
fore. Considering query di�culty as a subjective belief, formulated on the basis
of various types of evidence, we defined a belief model that uses subjective logic,
and a set of operators for combining evidence of query di�culty. We illustrated
an application of this model with semantic and pragmatic evidence and TREC
queries, which were combined in two di↵erent ways: by fair consensus and by
biased discounting. Integrating further evidence or refining its combination can
be realised easily with subjective logic, as illustrated in this work with working
examples. Further research includes obtaining more varied sources of evidence
for the task of query di�culty (any of the types of evidence highlighted in Sec-
tion 5 can be used). Finally, the proposed belief model could be applied to other
aspects of IR, apart from query di�culty, similarly to the varied and extensive
use of Dempster-Shafer by the community (overviewed in Section 5).
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