
Contributing to Futhark
for your Bachelors Project

Troels Henriksen (athas@sigkill.dk)

Computer Science
University of Copenhagen

September 2019



Contribute to the best data-parallel GPU-targeting
ML-like functional language developed at DIKU!

Looks a bit like a simplified combination of SML and Haskell.

l e t v e c t o r add [ n ] ( a : [ n ] i 3 2 ) ( b : [ n ] b ) : [ n ] i 3 2 =
map2 (+) a b

l e t product [ n ] ( a : [ n ] i 3 2 ) : i 3 2 =
reduce (∗ ) 1 a

l e t do t p r oduc t [ n ] ( a : [ n ] i 3 2 ) ( b : [ n ] i 3 2 ) : i 3 2
p roduct ( v e c t o r add a b )

It runs very fast on parallel hardware. Significantly faster than
most hand-written C or similar.



Roughly Three Kinds of Projects

(Light) Compiler Hacking:
The Futhark compiler is written in Haskell. It is well
written, but not small ( 55k SLOC). Only fairly
limited work possible for a bachelors project.

Parallel Programming in Futhark:
We port benchmarks, libraries, and example
applications to determine areas in which Futhark
should be improved.

Work on Infrastructure and Tooling:
Futhark is run as a sound software engineering
project, which means tooling to run tests, analyse
benchmark results, etc. These are very “open”
projects, in that you are free to choose language and
methodology yourself.



The Unit of Difficulty

We rate the difficulty of project proposals from one to five
broken keyboards.

Not simply a measure of workload, but based on whether we
believe we understand every issue related to implementation
of the project.

Higher difficulty implies more “unexpected” problems that we
cannot immediately give you an answer to.



Project: Porting LULESH to Futhark

Idea LULESH a small fragment of a program for
simulating shockwave propagation, commonly used
for showing off new languages and tools.

Challenges Nontrivial size (the Accelerate port is over a
thousand lines).

Difficulty
While I don’t understand the physics myself, there
are dozens of existing implementations.



Project: Porting LULESH in Futhark (details)

To quote LLNL:

“The Shock Hydrodynamics Challenge Problem was originally defined and implemented by LLNL as
one of five challenge problems in the DARPA UHPC program and has since become a widely studied
proxy application in DOE co-design efforts for exascale.”

In the HPC community, porting or running LULESH is a fairly common way of showing off new languages or
machines. While Futhark is not really targeted at exascale computers, we do have a strategy of porting common
benchmarks to show off what the language can do. LULESH already has many implementations in different
languages, both high- and low-level, so you don’t need to understand the physics to port it. It is generally the case
when porting benchmarks that we don’t actually know what the program does, we just want to make sure our
version gives the same result.
This is a hacking-heavy project, and fun if you like making things go fast, or just want to try out real parallel
programming on a nontrivial problem.



Project: Investigate and Improve C# Backend

Idea We recently finished a succesful master’s thesis
project that implemented a C# backend for Futhark.
This project also includes a compiler from a small
subset of F# to Futhark. We think it works well. We
might be wrong. We’d like someone to investigate
more closely.

Challenges You’ll be working with fairly new technology that is
pretty untested, even by the standards of research
language.

Difficulty

It is very easy to scale this project based on your
ambitions, skills, and interests.



Project: Investigate and Improve C# Backend

The C# backend can produces standalone executables, just like the other backends. This has been tested quite
well, but is useful only for benchmarking. The ambition of the C# backend is that the generated code can be
accessed by otherwise ordinary C# applications, but this has not been evaluated much. This project could
investigate how easy it is to take existing C# programs with some computational component, and rewrite that
component in Futhark. Alternatively, it could take one of the existing Futhark demos123, which are written in
Python and Go, and rewrite them in C#.
We also have a compiler, FShark, from a subset of F# to Futhark. The point here is that an F# programmer can
develop and debug F# code as they are used to and with conventional tools (subject to some extra rules), and
then later compile it to Futhark, and from there to efficient GPU code. We have no idea how practical this
workflow is. Maybe you can find out for us?

The overarching purpose of this project is to produce feedback for improving these two bits of technology. If you

are up to it, the project can also involve actually performing said improvement, but it is not a requirement.

1https://github.com/athas/diving-beet
2https://github.com/athas/futball
3https://github.com/nqpz/futcam

https://github.com/athas/diving-beet
https://github.com/athas/futball
https://github.com/nqpz/futcam


Project: Javascript Backend

Idea Javascript does not have any OpenCL binding
(WebCL is dead). Instead, we could use compute
shaders from the OpenGL binding - WebGL.

Challenges I have no WebGL experience; our kernel code
generator only generates OpenCL kernels (although
GLSL shaders look fairly similar); requires significant
amounts of research, design and implementation
work. This is definitely a tough one.

Difficulty

Do not assume that you can finish this completely in
one project - think proof of concept. I believe this
project constitutes novel research.



Project: Implement Hypertexture Rendering

Idea Hypertexture is a method for representing 3D models
with complex boundaries, like fur or fire. Rendering
hypertexture scenes is very time-consuming, but very
parallel. A combinator-based library for expressing
hypertexture scenes in Futhark would be fun.

Challenges You will need to understand the underlying
mathematics to at least some extent. Designing a
library will require thinking hard about API design
(especially given Futhark’s constraints).

Difficulty



Project: Implement Hypertexture Rendering
(image)



Project: Implement Hypertexture Rendering
(details)

Samantha Frolich from the University of Bristol has implemented hypertexture as a Haskell library, which then
generates a C++ program to perform the rendering. She won the ICFP undergraduate research competition for her
work, which is now publicly available:
https://github.com/sf16540/Hypertexture

The scheme of generating C++ is necessary because Haskell is nowhere fast enough for the actual rendering (based
on raymarching) to run in reasonable time. Hopefully, Futhark is!
Samantha’s implementation is rather complex and heavily based on type classes, allowing her implementation to be
instantiated with different algebras. I don’t think this is crucial to the idea, and in Futhark it is probably better to
just design a library that ultimately represents a fuzzy set (so, a probabilistic point distribution). This is not too
dissimilar to when we ported Conal Elliott’s functional images to Futhark with very good results:
https://github.com/diku-dk/futhark-benchmarks/tree/master/misc/functional-images

https://github.com/sf16540/Hypertexture
https://github.com/diku-dk/futhark-benchmarks/tree/master/misc/functional-images


Project: Bounds Checking on GPU

Idea The Futhark compiler makes an effort to remove
array bounds checks, but it is not always succesful.
Currently, the GPU code generator cannot deal with
bounds checks, so if any are left, the compiler will
fail. The workaround is to disable bounds checking
for some programs, but this is not very satisfactory.
This project is about finding a way to efficiently do
bounds checking on the GPU.

Challenges Need to find a way to abort a GPU thread without
deadlocking the entire kernel (or catch the deadlock,
or kill the entire kernel somehow). The failure case
need not be fast, but passing checks should be
efficient.

Difficulty



Other Projects

If you have an idea of your own, come by and we can have a chat
about it. Inspiration:

A “Try Futhark” web application like
https://tryhaskell.org/.

Port a benchmark from a suite like Rodinia or Parboil to
Futhark.

Writing a Futhark package or application that does something
cool: classification, machine learning, image analysis, etc.

An automatic code formatter like gofmt.

Fixing/improving/rewriting the automatic indentation of the
futhark-mode for Emacs.

If you have an ≤ 15 ECTS idea for something that would
contribute to the project, we can probably supervise it.

https://tryhaskell.org/


Compiler hacking is hard work, but rewarding

“Futhark: the harder the battle the sweeter the victory!”
-Rasmus Wriedt Larsen (bachelor and masters thesis)

“Hvis du laver et Futhark-projekt, kommer du aldrig til at sove.”
-Niels G. W. Serup (bachelor and masters thesis)

“Et ambitiøst projekt med en h̊ardt arbejdende kerne af folk!
Hvad mere kan man ønske sig?” -Hjalte Abelskov (bachelor
thesis)

“Efter at havde arbejdet med Futhark føles alt andet i mit liv
meningsløst.” -Daniel Gavin (bachelor thesis)

“Futhark: S̊a lille et sprog, der kan s̊a meget for s̊a mange!”
-Kasper Abildtrup Hansen (bachelor thesis)



Contact

If you think any of this is interesting, come talk to Troels...

...in my office: 01-0-017 at HCØ.

...via email: athas@sigkill.dk

...or on IRC: #diku on Freenode
(http://ucph.dk/#tabs1-chat)

Or talk to Martin Elsman or Cosmin Oancea.

Also check out the website at https://futhark-lang.org

http://ucph.dk/#tabs1-chat
https://futhark-lang.org

