
Contributing to Futhark
for your Bachelors Project

Troels Henriksen (athas@sigkill.dk)

Computer Science
University of Copenhagen

5th of February 2018

I recently bought an expensive new graphics card

Not to look at this:

But at this:

clGetPlatformIDs(1, &platform, &platforms);

clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1,

&device, &devices);

cl_context_properties properties[]= {0};

cl_context context =

clCreateContext(properties, 1, &device,

NULL, NULL, &error);

cl_command_queue cq =

clCreateCommandQueue(context, device,

0, &error);

cl_program prog =

clCreateProgramWithSource(context, 1,

&transpose_cl,

NULL, &error);

clBuildProgram(prog, 0, NULL, "", NULL, NULL);

Context

Graphics cards (GPUs) provide massive amounts of
computational power, but they are hard to program. It gets
even harder (impossible) if you want both reusable and fast
code.

Still, GPGPU (using GPUs for non-graphics workloads) has
been increasing in popularity for the past ten years, as the
potential performance improvements are significant.

GPUs are extremely parallel processors capable of keeping tens
of thousands of threads in flight. But these threads have to
access memory in certain patterns, and do roughly the same,
or they will run very slowly.

This calls for a language that makes it easier to deal with.

GPU programming

GPUs function as extremely fast data-parallel co-processors. They
are not independent, but are controlled by an ordinary CPU
process that sends code and data.

For strange historical reasons, GPU programs are often called
kernels. The CPU code is called host code.
At runtime, a CPU program will send a GPU program (often
specified in a dialect of C) to the device driver for the GPU,
and get back some GPU-specific machine code.
This GPU-code is then sent to the GPU along with data in
order to perform computation.

Sequential CPU
program

Parallel GPU
program

Futhark overview

We have created a programming language, Futhark, intended for
writing parallel programs that can be compiled to run on GPUs
and other parallel machines.
Futhark is a data-parallel purely functional array language. Looks a
bit like a simplified combination of SML and Haskell.

l e t v e c t o r add [n] (a : [n] i 3 2) (b : [n] b) : [n] i 3 2 =
map (+) a b

l e t product [n] (a : [n] i 3 2) : i 3 2 =
reduce (∗) 1 a

l e t do t p r oduc t [n] (a : [n] i 3 2) (b : [n] i 3 2) : i 3 2
p roduct (v e c t o r add a b)

So what do we want to do with this language?

Futhark Details

The primary purpose of Futhark is to be fast
Functional programming is merely a means to an end. We aim
at being within a factor of 2 of hand-optimised hand-written
GPU code.

Uses a heavily optimising ahead-of-time compiler
The compiler performs heavy optimisation, extracts parallel
sections of code and translates these to GPU code, and
generates host code for controlling the GPU.

Generated code interfaces with the GPU through the
OpenCL API
This is an open standard for interacting with “accelerators”
(mostly GPUs, but also FPGAs, multicore CPUs, and even
clusters).

Free software:
https://github.com/diku-dk/futhark.git

https://github.com/diku-dk/futhark.git

Roughly Three Kinds of Projects

(Light) Compiler Hacking:
The Futhark compiler is written in Haskell. It is well
written, but not small (45k SLOC). Only fairly
limited work possible for a bachelors project.

Parallel Programming in Futhark:
We port benchmarks, libraries, and example
applications to determine areas in which Futhark
should be improved.

Work on Infrastructure and Tooling:
Futhark is run as a sound software engineering
project, which means tooling to run tests, analyse
benchmark results, etc. These are very “open”
projects, in that you are free to choose language and
methodology yourself.

The Unit of Difficulty

We rate the difficulty of project proposals from one to five
broken keyboards.

Not simply a measure of workload, but based on whether we
believe we understand every issue related to implementation
of the project.

Higher difficulty implies more “unexpected” problems that we
cannot immediately give you an answer to.

Project: Java Backend

Idea The host code could be generated in any language
with OpenCL bindings. Since most of the runtime is
ideally spent in the GPU code, performance of the
host language should not matter much. We already
have code generators for Python and C, and soon
C# - we would like to add Java to this list.

Challenges Mapping Futhark IR constructs and types to Java;
generating a nice API. However, you will have to
write code in Haskell.

Difficulty

Prior generations of bachelors students have already
found the landmines for you - but it’s still fun and
rewarding work.

Project: Java Backend (details)

In principle, we could have a backend code generator for every language out there. A fully functioning code
generator is not particularly large (less than 2000 SLOC for the Python backend). However, they are still a
maintenance burden, so we would like to keep the number limited. JVM and .NET are, however, interesting,
because by supporting these, Futhark would immediately be accessible to all other languages running on these
platforms (Java, C#, Kotlin, F#, Scala, etc).
One thing that eased the development of the Python backend (which was itself a bachelors project in 2016) was
the presence of a mature library for calling OpenCL. These also exist for .NET (either NOpenCL or OpenCL.Net),
and the JVM (JOCL).
This project will require you to write a nontrivial amount of code in Haskell, although the existing backends provide
a pretty good template to follow. For example, see the following files:

https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/

GenericPython/AST.hs

https:

//github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/GenericPython.hs

https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/PyOpenCL.hs

The Python backend is pretty full-featured. We don’t expect all the bells and whistles from a bachelors project.

https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/GenericPython/AST.hs
https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/GenericPython/AST.hs
https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/GenericPython.hs
https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/GenericPython.hs
https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/PyOpenCL.hs

Project: Benchmark Tooling

Idea Every time a change is made to the Futhark
compiler, our benchmark suite is automatically run
on various machines, and the results stuffed away.
We now have over 5000 JSON files with data, but
very little tooling that allows us to analyse how
compiler performance has varied over time. We
would like to have such tools.

Challenges Involves a bit of independent problem analysis to
figure out what we need, as well as some UI design
and visualisation work. You can probably look at
established compiler projects for inspiration.

Difficulty

Feasible even for a single student - and you can pick
whichever language, infrastructure and tools you
want.

Project: Benchmarking Tooling (details)
We have a little bit of tooling, which for a specific machine and benchmark can give us a graph of how the runtime
has varied over time, proportional to the fastest the benchmark has ever been.

2016-11-23

2017-01-17

2017-02-20

2017-03-19

2017-05-03

2017-06-21

2017-07-31

2017-10-01

2017-12-05

2018-01-05

2018-01-28

0.90

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.602.702.802.90

Sl
ow

do
wn

 c
om

pa
re

d
to

 fa
st

es
t

rodinia/kmeans/kmeans.fut
data/100.in
data/204800.in
data/kdd_cup.in

Project: Benchmark Tooling (details)

The graph on the previous slide is generated by a script hacked up in Python, and has multiple problems:

Not automatic: Whenever benchmark results are produced, we would like such graphs (or similar) to be
produced for all machine/benchmarks configurations and made publicly available within a
web page somewhere on https://futhark-lang.org

Lacks information: E.g. exactly which change caused the large performance degradation in the beginning of
summer 2017, and which one fixed it? All benchmark results are keyed to Git commits, so
the answer exists, it is just hard to get to. An interactive Javascript-based graph with
zooming and extra information (such as absolute runtime) on hover could help here.

No ability to query: I can’t ask “when was this benchmark fastest, and what was the first change that caused a
(significant) slowdown?” I would also like to be able to to ask “given two commits IDs, give
me a summary of the performance changes across all benchmarks”.

We have some suggestions on what a solution should look like, but are pretty open to anything that can help us
make better use of our present and future data. If you want to play with web-based visualisations and graphs, then
we’re fine with that. If you think doing query languages would be fun, that would be great too. Anything is better
than what we have right now.

https://futhark-lang.org

Project: CUDA Backend

Idea Currently, the Futhark compiler generates code using
the OpenCL library, but some interesting platforms
support only NVIDIAs CUDA. It would be useful to
add a CUDA backend to Futhark.

Challenges There are three different CUDA layers that could be
targed by the code generator: language, runtime, and
driver level. I have no idea which one is best. Will
possibly require some minor modification of kernel
code generator (the CUDA and OpenCL kernel
languages are similar but not identical).

Difficulty

Project: CUDA Backend (details)

This project involves a significant amount of independent work on studying the CUDA documentation and
determining how to use its low-level facilities correctly.
In order to ease maintenance, the new CUDA backend should re-use most of the concepts used by the existing
OpenCL backend. Hence, you will probably have to write some glue code to make CUDA look a bit more like
OpenCL. I do not expect this to be conceptually difficult.
You will need to write a fairly nontrivial amount of Haskell for this one. However, you will be working at the very
tail end of the compiler, so you will not have to spend a lot of time studying an existing large code base. In a
perfect world, you might be able to get away with simply writing some runtime system code (in C/C++) and a
CUDA-fied version of this module—

https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/COpenCL.hs

—but we do not live in a perfect world.
One very interesting question is whether code generated by the CUDA backend will actually run faster than the
equivalent code generated by the OpenCL backend, and if so, why.

https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/Backends/COpenCL.hs

Project: A Statistics Library

Idea We need to improve the capabilities of Futhark’s
standard library. Not just so we can avoid writing the
same primitives over and over again, but also to test
that the library and compiler is flexible enough. A
library containing various statistical methods and
primitives would be useful.

Challenges Programming with an experimental compiler always
carries a little risk. Also, data-parallel functional
programming is likely not a paradigm that any of you
have prior experience with. Of course, that’s also
what makes it fun.

Difficulty

Project: A Statistics Library (details)

The best avenue of attack is probably to port an existing statistics library. Doubly so if you are not already
experienced with statistics, and have an idea of what such a library should contain. By basing the work on an
existing library, you get test cases almost for free, which saves you from having to understand exactly what the
statistical methods compute. Instead, you just have to make sure you get roughly the same results.
This is generally the approach you have to take when porting benchmarks and libraries to a new language, and
there is no way you can be an expert in all of computational fluid dynamics, ray-tracing, heat dynamics, heart-wall
simulations, molecular dynamics, image processing, and fractals (to name just a few of the topics covered by the
Futhark benchmark suite).
We are not picky as to which existing library should form the basis for the work, but this Javascript library looks
pretty simple:
https://github.com/compute-io/compute.io

The work would involve translating statistical primitives, of course, but also redesigning the library to take
advantage of Futhark’s unique features (such as the module system) and restrictions.
If you would rather port a useful non-statistics library (maybe some deep learning!), that would also be welcome. In
particular, machine learning or linear algebra primitives would be useful.

https://github.com/compute-io/compute.io

Project: Implement Language Server Protocol
(LSP) for Futhark

Idea “The Language Server protocol is used between a
tool (the client) and a language smartness provider
(the server) to integrate features like auto complete,
go to definition, find all references and alike into the
tool”. Implement an LSP server for Futhark to get
these features in various code editors that support
LSP.

Challenges The LSP is a real industrial spec, and probably too
large to implement completely in a single bachelor’s
project. You will have to identify a realistic yet
practically useful subset.

Difficulty

Project: Implement Language Server Protocol
(LSP) for Futhark (details)

Futhark already has an Emacs major mode that supports syntax highlighting, (some) automatic indentation, and
such. We could work on adding support for autocompletion and go to definition functionality in an ad-hoc way, but
not only is it a lot of work, it would also not be accessible to those unfortunate people who do not use Emacs. By
implementing an LSP server instead, this functionality would also be available to people using such editors as
VSCode, Sublime Text, Vim, etc.
The Futhark compiler frontend can be used to analyse a Futhark program to obtain identifiers and the locations of
various definitions. Realistically, in order for this information to be accessible, the LSP server will have to be
written in Haskell. Alternatively, I could extend the Futhark compiler to dump all this information in some standard
format (JSON) which you could read in an LSP server implemented in another programming language.
While I have not ever implemented an LSP server myself, it is my impression that it is not overly complicated.
However, this is definitely a coding-heavy project.

The LSP spec https://microsoft.github.io/language-server-protocol/specification

https://microsoft.github.io/language-server-protocol/specification

Project: SequenceL to Futhark compiler

Idea Texas Multicore produces a data-parallel functional
language called SequenceL. It uses quite a different
way to express parallelism, based on implicit
vectorisation. It would be interesting to write a
compiler that translates SequenceL to Futhark.

Challenges I don’t know SequenceL in detail, and there is no
SequenceL implementation with freely available
source code. (You can write the first one!)

Difficulty

Project: SequenceL to Futhark compiler (details)

This is a matrix multiplication written in SequenceL:

matmul (A(2) , B(2)) [i , j] := sum(A[i , a l l] ∗ B[a l l , j]) ;

And this is in Futhark:

l e t matmul [n] [m] (A : [n] [m] i32 , B : [m] [p] i 3 2) : [n] [p] i 3 2 =
map (\A row −>

map (\ B co l −> r educe (+) 0 (map (∗) A row B co l))
(t r a n s p o s e B))

A

There are two main differences that enable the SequenceL implementation to be more succint:

SequenceL has syntax that directly indicates that the function produces a two-dimensional array, with the
function definition giving the result for a given [i,j] index.

SequenceL overloads functions and operators (here, *) to operate on arrays and not just scalars. They use
a transformation called normalise-transpose to do this in a systematic manner.

In Futhark’s view of the world, both of these correspond to inserting appropriate uses maps at appropriate locations,
so we believe there is no deep different in the expressivity of the two languages. Since the Futhark compiler
generates code that is, as far as we can determine, significantly better than that which is produced by the
SequenceL compiler, there is value in being able to translate SequenceL to Futhark.
This project involves creating a SequenceL compiler from scratch, using whichever technology (language, tooling,
whatever) you prefer. You will have to implement all the usual bits of a compiler (lexer, parser, type checker),
except that the code generator will produce high-level Futhark instead of low-level assembly, as you may have done
before. If you want to try your hand at writing your own compiler, then this is the project.

SequenceL on Rosetta Code: https://rosettacode.org/wiki/Category:SequenceL

SequenceL documentation: https://texasmulticore.com/documentation/3.0/index.html

https://rosettacode.org/wiki/Category:SequenceL
https://texasmulticore.com/documentation/3.0/index.html

Other Projects

If you have an idea of your own, come by and we can have a chat
about it.
Inspiration:

A “Try Futhark” web application like
https://tryhaskell.org/.

Port a benchmark from a suite like Rodinia or Parboil to
Futhark.

An automatic code formatter like gofmt.

Fixing/improving/rewriting the automatic indentation of the
futhark-mode for Emacs.

If you have an ≤ 15 ECTS idea for something that would
contribute to the project, we can probably supervise it.
I can also supervise other projects related to programming
languages, parallel programming, or high-performance computing,
but the more distant the project is from my core research, the less
specific help I can provide.

https://tryhaskell.org/

Compiler hacking is hard work, but rewarding

“Futhark: the harder the battle the sweeter the victory!”
-Rasmus Wriedt Larsen (bachelor and masters thesis)

“Hvis du laver et Futhark-projekt, kommer du aldrig til at sove.”
-Niels G. W. Serup (bachelor and masters thesis)

“Et ambitiøst projekt med en h̊ardt arbejdende kerne af folk!
Hvad mere kan man ønske sig?” -Hjalte Abelskov (bachelor
thesis)

“Efter at havde arbejdet med Futhark føles alt andet i mit liv
meningsløst.” -Daniel Gavin (bachelor thesis)

“Futhark: S̊a lille et sprog, der kan s̊a meget for s̊a mange!”
-Kasper Abildtrup Hansen (bachelor thesis)

Contact

If you think any of this is interesting, come talk to Troels...

...in the office shared with Cosmin: 01-0-017 at HCØ.

...via email: athas@sigkill.dk

...or on IRC: #diku on Freenode
(http://ucph.dk/#tabs1-chat)

Or talk to Martin Elsman or Cosmin Oancea.

Also check out the website at https://futhark-lang.org

http://ucph.dk/#tabs1-chat
https://futhark-lang.org

