SCOR Model Planning and Scheduling

One analytical model not possible

- One analytical model will allow global optimization but …
- One model impractical because of granularity and technology:
 - Decisions are made at different time frames – strategic, tactical and operational
 - Decisions are made at different data granularities – aggregate and detailed
 - Impractical to use one modeling/solver technology for all problems
- Decomposition is thus necessary
- Introduces a problem of maintaining global optimization with multiple hybrid analytical models as well as aggregation/dis-aggregation rules

Outline

- SCOR model planning and scheduling
- One SCOR model ≠ One analytical model
- Decomposition dimensions
- The Microsoft Dynamics AX hierarchical planning and scheduling framework
- The Microsoft Dynamics AX planning and scheduling models/solvers
 - Today
 - Investing
 - Models and Solvers
 - Alternative scheduling strategies
Dynamics AX hierarchical framework

Function and throughput decomposition

Dynamics AX Models/Solvers - Today

- Demand planning
 - Sales History Model
 - Microsoft Time Series Algorithm Solver
 - Aggregate products

- Supply planning
 - Throughput Model
 - Internal LP Solver
 - Aggregate products and components and bottleneck resources

- Multi-Site and Single-Site Master Planning and Scheduling
 - BOM and Routing Model
 - BOM explosion and operations sequencing solver
 - Detailed products and components and all resources

Multi-dimensional decomposition
Dynamics AX Models/Solvers - Investing

- Supply planning
 - Flow prediction modeling
 - Queueing theory
 - Operational Analysis
 - Stochastic programming

- Multi-Site and Single-Site Master Planning and Scheduling
 - Process models
 - Queueing theory
 - Operational Analysis
 - Math/Constraint/Stochastic Programming
 - Alternative scheduling strategies
 - Lean
 - Theory of Constraints
 - CONWIP

Theory of Constraints

Characteristics:
- Less data
- High quality data
- Profit based
- Drum, buffer, rope
- Pull & push work
- Includes financials
- Quality at bottleneck

Mix optimized for maximum profit \(\text{profit} = T - OE \)

Inventory is an expense

Set price on market demand not cost + profit

Pace based on constraint throughput. CPI goal – move constraint to market

MRP II Scheduling

Characteristics:
- Lots of data
- High quality data
- Order based
- Batch & Queue
- Push work
- Quality not built-in

Mix based on order priority

Pace based on schedule & efficiency performance metric. Goal is to maximize efficiency.