Selected Topics in Column Generation

Marco E. Lübbecke
Department of Mathematical Optimization
Braunschweig University of Technology
Pockelsstraße 14, D-38106 Braunschweig, Germany
m.luebbecke@tu-bs.de

Jacques Desrosiers
HEC Montréal and GERAD
3000, chemin de la Côte-Ste-Catherine
Montréal, Québec, Canada H3T 2A7
jacques.desrosiers@hec.ca

December 2, 2002

Abstract

Dantzig-Wolfe decomposition and column generation, devised for linear programs, is a success story in large scale integer programming. We outline and relate the approaches, and survey mainly recent contributions, not found in textbooks, yet. We emphasize on the growing understanding of the dual point of view, which brought considerable progress to the column generation theory and practice. It stimulated careful initializations, sophisticated solution techniques for restricted master problem and subproblem, as well as better overall performance. Thus, the dual perspective is an ever recurring concept in our “selected topics.”

OR/MS Subject Classification: Integer Programming: Column generation, Dantzig-Wolfe decomposition, Lagrangian relaxation, branch-and-bound; Linear programming: large scale systems
1 Introduction

Over four decades have passed since Ford and Fulkerson (1958) suggested to deal only implicitly with the variables of a multicommodity flow problem. Dantzig and Wolfe (1960) pioneered this fundamental idea, developing a strategy to extend a linear program columnwise as needed in the solution process. This technique was first put to actual use by Gilmore and Gomory (1961, 1963) as part of an efficient heuristic algorithm for solving the cutting stock problem. Column generation is nowadays a prominent method to cope with a huge number of variables. The embedding of column generation techniques within a linear programming based branch-and-bound framework, introduced by Desrosiers, Soumis, and Desrochers (1984) for solving a vehicle routing problem under time window constraints, was the key step in the design of exact algorithms for a large class of integer programs.

This paper is a survey on column generation biased toward solving integer programs. Numerous integer programming column generation applications are described in the literature, as can be seen from Table 1. Generic algorithms for solving problems by integer programming column generation were presented by Barnhart et al. (1998b) and Vanderbeck and Wolsey (1996). Algorithmic efficacy is considered by Desaulniers, Desrosiers, and Solomon (2001b). Some dissertations (Ben Amor, 2002; Sol, 1994; Vanderbeck, 1994; Villeneuve, 1999) are a rich source of computational testing. Previous general reviews include those by Desrosiers et al. (1995); Soumis (1997); Wilhelm (2001).

We merge promising contemporary research works with more classical solution strategies in order to cover the whole integer programming column generation solution process. On the theoretical side, we give a primer on decomposition and column generation, pointing out that in general integrality constraints cannot simply be added to the generated variables. On the algorithmic side, we emphasize on the bounding role of the column generation algorithm and the importance of dual solutions for achieving good overall performance. The paper is divided in two major parts. The first part covers the theory that is needed to expose integer programming column generation algorithms. In §2, we recall the classical decomposition principle in linear programming, which leads to the formulation of linear programs with a huge number of variables. In §3, we present both convexification and discretization approaches for extending the decomposition principle in order to handle integrality constraints. The second part is the algorithmic counterpart of the first. Sections 4, 5 and 6 cover the solution of linear programming column generation, expanding respectively on the strategies developed for getting dual solutions to the restricted master problems, generating new variables and compensating for bad convergence behaviors. Section 7 integrates integer programming considerations, putting the preceding algorithms in perspective. Our conclusion brings attention on the strongest and most promising ideas that are presented, in the hope that ever more complex column generation applications could be successfully solved.

2 Column Generation and Dantzig-Wolfe Decomposition

In applications, constraint matrices of (integer) linear programs are not only sparse but usually exhibit structure in the form of large submatrices of zeros. This is due to the fact that activities associated with variables participate directly to only a few of the conditions represented by the constraints. Hierarchical, geographical or logical segmentation of a problem can be reflected in a model formulation. Then, non-zeros are grouped in such a way that independent subsystems of variables and constraints appear, possibly linked by a distinct set of constraints and/or variables. Multicommodity flow formulations for vehicle routing and crew scheduling problems are well known examples with such properties (De-
<table>
<thead>
<tr>
<th>Reference(s)</th>
<th>Application(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarwal et al. (1989); Desaulniers et al. (2001b); Desrochers et al. (1992); Löbel (1997, 1998); Ribeiro and Soumis (1994)</td>
<td>various vehicle routing problems</td>
</tr>
<tr>
<td>Borndörfer and Löbel (2001); Desaulniers et al. (2001b); Desrochers and Soumis (1989)</td>
<td>crew scheduling</td>
</tr>
<tr>
<td>Desrosiers et al. (1984)</td>
<td>multiple traveling salesman problem with time windows</td>
</tr>
<tr>
<td>Krumke et al. (2002)</td>
<td>real-time dispatching of automobile service units</td>
</tr>
<tr>
<td>Lübbecke (2001); Lübbecke and Zimmermann (2003); Sol (1994)</td>
<td>multiple pickup and delivery problem with time windows</td>
</tr>
<tr>
<td>Anbil et al. (1998); Crainic and Rousseau (1987); Vance et al. (1997)</td>
<td>airline crew pairing</td>
</tr>
<tr>
<td>Barnhart and Schneur (1996)</td>
<td>air network design for express shipment service</td>
</tr>
<tr>
<td>Erdmann et al. (2001)</td>
<td>airline schedule generation</td>
</tr>
<tr>
<td>Barnhart et al. (1998a); Desaulniers et al. (1997); Ioachim et al. (1999)</td>
<td>fleet assignment and aircraft routing and scheduling</td>
</tr>
<tr>
<td>Crama and Oerlemans (1994)</td>
<td>job grouping for flexible manufacturing systems</td>
</tr>
<tr>
<td>Eben-Chaime et al. (1996)</td>
<td>grouping and packaging of electronic circuits</td>
</tr>
<tr>
<td>Park et al. (1996)</td>
<td>bandwidth packing in telecommunication networks</td>
</tr>
<tr>
<td>Ribeiro et al. (1989)</td>
<td>traffic assignment in satellite communication systems</td>
</tr>
<tr>
<td>Sankaran (1995)</td>
<td>course registration at a business school</td>
</tr>
<tr>
<td>Vanderbeck (1994)</td>
<td>graph partitioning e.g., in VLSI, compiler design</td>
</tr>
<tr>
<td>Vanderbeck (1994)</td>
<td>single-machine multi-item lot-sizing</td>
</tr>
<tr>
<td>Hurkens et al. (1997); Valério de Carvalho (1999, 2000, 2002b); Vance (1998); Vance et al. (1994); Vanderbeck (1999)</td>
<td>bin packing and cutting stock problems</td>
</tr>
<tr>
<td>Alvelos and Valério de Carvalho (2000); Barnhart et al. (1997, 2000)</td>
<td>integer multicommodity flows</td>
</tr>
<tr>
<td>Bourjolly et al. (1997)</td>
<td>maximum stable set problem</td>
</tr>
<tr>
<td>Hansen et al. (1998)</td>
<td>probabilistic maximum satisfiability problem</td>
</tr>
<tr>
<td>Johnson et al. (1993)</td>
<td>minimum cut clustering</td>
</tr>
<tr>
<td>Mehrotra and Trick (1996)</td>
<td>graph coloring</td>
</tr>
<tr>
<td>Savelsbergh (1997)</td>
<td>generalized assignment problem</td>
</tr>
</tbody>
</table>

Table 1: Some applications of integer programming column generation.
The general idea behind the decomposition paradigm is to treat the linking structure at a superior, coordinating, level and to independently address the subsystem(s) at a subordinated level, exploiting any special structure at the algorithmic level. We are concerned in this paper with linking constraints, or price directive decomposition only, but see for example Benders (1962) and Van Roy (1983) for different points of view. In this section, we deal with column generation and Dantzig-Wolfe decomposition in linear programming before we extend our discussion to integer programming in §3.

2.1 Column Generation

Let us call the following linear program the master problem (MP).

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \lambda_j \\
\text{subject to} & \quad \sum_{j \in J} a_j \lambda_j \geq b \\
& \quad \lambda_j \geq 0, \quad j \in J
\end{align*}
\]

In each iteration of the simplex method we look for a non-basic variable to price out and enter the basis. That is, given the non-negative vector \(u \) of dual variables we wish to find

\[
\arg \min \{ c_j := c_j u^T a_j \mid j \in J \}.
\]

The complexity of this pricing step is clearly \(O(|J|) \), which is too costly when \(|J| \) is huge. Instead, we would like to work with a reasonably small subset \(J' \subseteq J \) of columns, giving rise to the customary notion of restricted master problem (RMP). Assuming for the moment feasibility of the current RMP, let \(\lambda \) and \(u \) be primal and dual optimal solutions of the RMP, respectively. When columns \(a_j, j \in J \), are given as elements of a set \(A \), and the respective cost coefficients \(c_j \) can be computed via a function \(c : A \to \mathbb{Q} \) then the subproblem

\[
\tilde{c}^* := \min \{ c(a) - u^T a \mid a \in A \}
\]

serves as an oracle for the pricing. We assume that this problem is feasible, for otherwise the master problem would be empty as well. If the subproblem solution is non-negative, no reduced cost coefficient \(\tilde{c}_j \) has negative value and \(\tilde{\lambda} \) (embedded in \(\mathbb{R}^{|J'|} \)) optimally solves the master problem as well. Otherwise, we enlarge the RMP by a column derived from the optimal solution to the subproblem, and repeat with re-optimizing the RMP. For its role in the algorithm, (2) is also called the generation problem, or the column generator.

Of course, one crucial part here is the pricing problem itself which inherits the difficulty of searching virtually all non-basic columns. One might get the impression that we are only delaying the trouble, but remember that vectors \(a \in A \) often encode combinatorial objects like paths, sets, or permutations. Then, \(A \) and the interpretation of cost are naturally defined on these structures, and we are provided with a valuable information about how possible columns “look like.”

Consider the one-dimensional cutting stock problem, a classical example in column generation. Given are paper rolls of width \(W \), and \(m \) demands \(b_i, i = 1, \ldots, m \), for orders of width \(w_i \). The goal is to minimize the number of rolls to be cut into orders, such that the demand is satisfied. A standard formulation is

\[
\min \{ I^T \lambda \mid A \lambda \geq b, \quad \lambda \in \mathbb{Z}_{+}^{|J'|} \},
\]

saulniers et al., 1998; Desrosiers et al., 1995).
where A encodes the set of $|J|$ feasible cutting patterns, i.e., $a_{ij} \in \mathbb{Z}_+$ denotes how often order i is obtained when cutting a roll according to $j \in J$. From the definition of feasible patterns, the condition $\sum_{i=1}^m a_{ij} w_i \leq W$ must hold for every $j \in J$, and λ_j determines how often the cutting pattern $j \in J$ is used. The linear relaxation of (3) is classically solved via column generation, where the pricing problem is a knapsack problem.

In what regards convergence of column generation, note that each $a \in A$ is generated at most once since no variable in an optimal RMP has negative reduced cost. When dealing with some finite set A (as is usually the case in combinatorial optimization), the column generation algorithm is exact. In other cases, the bounding techniques presented in §7.1 can be used to guarantee a solution within some specified tolerance. Now, let \bar{z} denote the optimal objective function value to the RMP. Note that by duality we have $\bar{z} = \mathbf{u}^T \mathbf{b}$. Interestingly, when an upper bound $\kappa \geq \sum_{j \in J} \lambda_j$ holds in the optimal solution of the master problem, we establish not only an upper bound on z^* in each iteration, but also a lower bound:

$$\bar{z} + \bar{c}^* \kappa \leq z^* \leq \bar{z}. \quad (4)$$

Thus, we may verify the solution quality at any time during a column generation algorithm. In the optimum of (1), $\bar{c}^* = 0$ for the basic variables, and the bounds close. The lower bound in (4) is computationally cheap and readily available when exact pricing is performed. When $\mathbf{c} \equiv \mathbf{1}$, κ can be replaced by z^* and a better lower bound is obtained, i.e., $\bar{z} / (1 - \bar{c}^*) \leq z^*$. Given $\mathbf{c} \geq \mathbf{0}$, a more general lower bound is available at the expense of a slightly increased computational effort (Farley, 1990). Let $j' \in \arg \min_{j \in J} \{c_j / \bar{u}^T a_j | \bar{u}^T a_j > 0\}$. Then

$$\bar{z} \cdot c_{j'} / \bar{u}^T a_{j'} \leq z^* \leq \bar{z}. \quad (5)$$

Valério de Carvalho (2002b); Vance (1998); Vance et al. (1994) tailor this to the cutting stock problem with $\mathbf{c} \equiv \mathbf{1}$. See also Hurkens, De Jong, and Chen (1997) for an implementation of both bounds.

2.2 The Decomposition Principle in Linear Programming

We briefly refresh the classical decomposition principle in linear programming, due to Dantzig and Wolfe (1960), which today is part of the mathematical programming standard repertoire (Chvátal, 1983; Lasdon, 1970). Consider a linear program

$$z^* := \min \{c^T x \mid Ax \geq b, \quad Dx \geq d, \quad x \geq \mathbf{0}\} \quad (6)$$

which we name the original or compact formulation. Let $P = \{x \in \mathbb{R}^n \mid Dx \geq d, \ x \geq \mathbf{0}\} \neq \emptyset$. The well known theorems of Minkowski and Weyl (see Schrijver, 1986) enable us to represent each $x \in P$ as convex combination of extreme points $\{p_q\}_{q \in Q}$ plus non-negative combination of extreme rays $\{p_r\}_{r \in R}$ of P, i.e.,

$$x = \sum_{q \in Q} p_q \lambda_q + \sum_{r \in R} p_r \lambda_r, \quad \sum_{q \in Q} \lambda_q = 1, \quad \lambda \in \mathbb{R}_{+}^{\left|Q\right| + \left|R\right|} \quad (7)$$
where the index sets \(Q \) and \(R \) are finite. Substituting for \(x \) in (6) and applying the linear transformations \(c_j = c^T p_j \) and \(a_j = A p_j \), \(j \in Q \cup R \) we obtain an equivalent extensive formulation

\[
\begin{align*}
z^* := \min & \quad \sum_{q \in Q} c_q \lambda_q + \sum_{r \in R} c_r \lambda_r \\
\text{subject to} & \quad \sum_{q \in Q} a_q \lambda_q + \sum_{r \in R} a_r \lambda_r \geq b \\
& \quad \sum_{q \in Q} \lambda_q = 1 \\
& \quad \lambda \geq 0.
\end{align*}
\]

(8)

It typically has an astronomically large number \(|Q| + |R|\) of variables, but possibly substantially fewer rows than (6). The equation \(\sum_{q \in Q} \lambda_q = 1 \) is referred to as the convexity constraint. If \(x = 0 \) is feasible for \(P \) in (6) at zero cost it may be omitted in \(Q \). The convexity constraint is then replaced by \(\sum_{q \in Q} \lambda_q \leq 1 \). Although the compact and the extensive formulations are equivalent in that they give the same optimal objective function value \(z^* \), the respective polyhedra are not combinatorially equivalent (Adler and Ülkküçü, 1973; Nazareth, 1987). As (7) suggests, \(x \) uniquely reconstructs from a given \(\lambda \), but not vice versa. This is well known even for network flows, where the decomposition of a flow defined on arcs into flows defined on paths and cycles is not unique (Ahuja, Magnanti, and Orlin, 1993).

Now, (8) is a special master problem, where the objective function is linear, and the set of columns is implicitly defined by the extreme points and extreme rays of a convex polyhedron \(P \). We solve it by column generation. The corresponding RMP reads as (8), with current subsets \(Q' \subseteq Q \) and \(R' \subseteq R \). Given a dual optimal solution \(\tilde{u}, \tilde{v} \) to the RMP, where variable \(v \) corresponds to the convexity constraint, the subproblem (2) in classical Dantzig-Wolfe decomposition is to determine \(\min_{j \in Q \cup R} \{ c_j - \tilde{u}^T a_j - \tilde{v} \} \). By our previous linear transformation this results in

\[
\begin{align*}
\bar{c}^* := \min \{ (c^T - \tilde{u}^T A)x - \tilde{v} \mid Dx \geq d, x \geq 0 \}.
\end{align*}
\]

(9)

This is a linear program again. We assumed \(P \neq \emptyset \). When \(\bar{c}^* \geq 0 \), no negative reduced cost column exists, and the algorithm terminates. When \(\bar{c}^* < 0 \) and finite, the optimal solution to (9) is an extreme point \(p_q \) of \(P \), and we add the column \([c^T p_q, (A p_q)^T, 1]^T \) to the RMP. When \(\bar{c}^* = -\infty \) we identify an extreme ray \(p_r \) of \(P \) as a homogeneous solution to (9), and we add the column \([c^T p_r, (A p_r)^T, 0]^T \) to the RMP. From (4) together with the convexity constraint we obtain at each iteration

\[
\bar{z} + \bar{c}^* \leq z^* \leq \bar{z},
\]

(10)

where \(\bar{z} = \tilde{u}^T b + \tilde{v} \) is again the optimal objective function value of the RMP. Note that the lower bound is also valid in the case the subproblem generates an extreme ray, that is, when \(\bar{c}^* = -\infty \). As above, the algorithm is finite as long as finiteness is ensured in optimizing the RMP. Dantzig-Wolfe type approximation algorithms with guaranteed convergence rates have been proposed for certain linear programs, see Klein and Young (1999), and the references given therein.
2.3 Block Diagonal Structure

Typical to many applications is a block diagonal structure of D, i.e.,

$$D = \begin{pmatrix} D^1 & 0 & \cdots & 0 \\ 0 & D^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D^\kappa \end{pmatrix}, \quad d = \begin{pmatrix} d^1 \\ d^2 \\ \vdots \\ d^\kappa \end{pmatrix},$$

where $D^k \in \mathbb{Q}^{m^k \times n^k}$, $d^k \in \mathbb{Q}^{m^k}$ with $\sum_{k=1}^{\kappa} n^k = n$. We could proceed as in the previous subsection, however, exploiting the special structure here seems adequate. The decomposition principle has a customary interpretation as decentralized planning without complete information at the center, see Chvátal (1983); Lasdon (1970). Each $P^k = \{x \in \mathbb{R}^{n^k} \mid D^k x \geq d^k, \ x \geq 0\}, \ k = 1, \ldots, \kappa$ independently gives rise to its own representation in the sense of (7). A superscript k to the entities c_j^k, a_j^k, and λ_j^k for $j \in Q^k \cup R^k$, indicates the respective subsystem $k \in K := \{1, \ldots, \kappa\}$. With $Q := \bigcup_{k \in K} Q^k$ and $R := \bigcup_{k \in K} R^k$ the master problem constructed in analogy to (8) reads

$$z^* := \min \sum_{k \in K} \left(\sum_{q \in Q^k} c_q^k \lambda_q^k + \sum_{r \in R^k} a_r^k \lambda_r^k \right)$$

subject to

$$\sum_{k \in K} \left(\sum_{q \in Q^k} a_q^k \lambda_q^k + \sum_{r \in R^k} a_r^k \lambda_r^k \right) \geq b$$

$$\sum_{q \in Q^k} \lambda_q^k = 1, \ k \in K$$

$$\lambda^k \geq 0, \ k \in K.$$

Denoting by v^k the dual variable associated with the kth convexity constraint, the κ subproblems are analogues of (9)

$$\bar{c}^k := \min \{ (c^k^T - u^T A^k)x^k - v^k \mid D^k x^k \geq d^k, \ x^k \geq 0\}, \ k \in K$$

and the algorithm terminates when $\bar{c}^k \geq 0$, for all $k \in K$. Otherwise, extreme points and rays identified in (12) give rise to new columns to be added to the RMP. By linear programming duality, $z = u^T b + \sum_{k \in K} \bar{v}^k$, and we obtain the bounds

$$\bar{z} + \sum_{k \in K} e^k \leq z^* \leq \bar{z}.$$

Optimal dual multipliers of the compact formulation (6) can be retrieved from the decomposition process (Walker, 1969). Let u^* and $v_{k^*}, k \in K$ be an optimal dual solution to (11) and define by $w_{k^*}, k \in K$ optimal dual solutions to (12) at the last column generation iteration, that is, for $\bar{u} = u^*$ and $\bar{v}^k = v_{k^*}, k \in K$. Then u^* and $w_{k^*}, k \in K$ constitute an optimal dual solution to (6).
3 Decomposition of Integer Programs

In almost every application we are interested in optimizing over a discrete set X, that is,

$$z^* := \min_{x \in X} c^T x \quad \text{subject to} \quad A x \geq b \quad x \in X.$$ \hspace{1cm} (14)

We consider the case of integer programming where $X = P \cap \mathbb{Z}_+$ and $P \subseteq \mathbb{R}^n$ is a polyhedron. However, X could have a much more complicated non-linear definition. We assume that z^* be finite.

3.1 Lagrangian Relaxation

A well known approach to solving (14) is provided by Lagrangian relaxation. Dropping a set of constraints $A x \geq b$ by putting them in the objective function, weighted by the Lagrangian multipliers $u \geq 0$ results in the following Lagrangian subproblem

$$L(u) := \min_{x \in X} c^T x - u^T (A x - b).$$ \hspace{1cm} (15)

$L(u)$ is a lower bound on z^*, because $L(u) \leq \min \{ c^T x - u^T (A x - b) \mid A x \geq b, x \in X \} \leq z^*$. The natural question for the best such bound on z^* is asked by the Lagrangian dual problem

$$\mathcal{L} := \max_{u \geq 0} L(u).$$ \hspace{1cm} (16)

Assume we are given optimal multipliers u^* for (16). By solving (15), we ensure that $x \in X$, we can show that $u^{*, T} (A x - b) = 0$ (complementary slackness), but we still have to check whether $A x \geq b$ (feasibility) to prove optimality. If this condition is violated, we need to recover optimality of the primal-dual pair (x, u).

Since (16) is non-differentiable, subgradient algorithms are usually used to obtain optimal or near optimal multipliers, see Wolsey (1998). These methods are simple, easy to implement, and well documented. An alternative way is by linear programming. Replace X by $\text{conv}(X)$ in (14); this does not change z^*. Changing the Lagrangian subproblem and the dual accordingly, we are enabled to write (15) and (16) in terms of extreme points and rays of $\text{conv}(X)$. This turns the Lagrangian dual into a linear program. Additionally, we can observe that for a given vector \bar{u} of multipliers

$$L(\bar{u}) = (\bar{u}^T b + v) + \min_{x \in \text{conv}(X)} (c^T - \bar{u}^T A) x - v = \bar{z} + \bar{c}^*,$$ \hspace{1cm} (17)

that is, each time the RMP is solved during the Dantzig-Wolfe decomposition, the computed lower bound in (10) is the same as the Lagrangian bound. Indeed, the two approaches provide the same lower bound on z^*. Their strong relation is investigated next.

3.2 Convexification

When $X = \emptyset$, which may happen during branch-and-bound, then $\mathcal{L} = \infty$ in (16). Otherwise, let again Q and R denote the index sets of extreme points and extreme rays, respectively, of $\text{conv}(X)$. Given some multipliers u, the Lagrangian bound is

$$L(u) = \begin{cases} -\infty & \text{if } (c^T - u^T A) p_r < 0 \text{ for some } r \in R \\ c^T p_q - u^T (A p_q - b) & \text{for some } q \in Q \end{cases} \quad \text{otherwise.}$$ \hspace{1cm} (18)
Since we assumed z^* to be finite, we wish to avoid $L(u) = -\infty$. We state this as follows

$$L = \max_{u \geq 0} \min_{q \in Q} c^T p_q - u^T (A p_q - b)$$

subject to $(c^T - u^T A) p_r \geq 0, \quad r \in R$ \hspace{1cm} (19)

or as a linear program with many constraints

$$L = \max v$$

subject to $u^T (A p_q - b) + v \leq c^T p_q, \quad q \in Q$ \hspace{1cm} (20)

$$u^T A p_r \leq c^T p_r, \quad r \in R$$

$$u \geq 0.$$

The dual linear program of (20), composed of many variables, reads

$$L = \min \sum_{q \in Q} c^T p_q \lambda_q + \sum_{r \in R} c^T p_r \lambda_r$$

subject to $\sum_{q \in Q} A p_q \lambda_q + \sum_{r \in R} A p_r \lambda_r \geq b \sum_{q \in Q} \lambda_q$ \hspace{1cm} (21)

$$\sum_{q \in Q} \lambda_q = 1$$

$$\lambda \geq 0.$$

Consequently, we can solve (16) by either (20) or (21); the former gives us the multipliers, but the latter provides us with an x feasible to (14) via the substitution (7). Moreover, in (21) we get complementary slackness and feasibility of $Ax \geq b$ for free, which is not the case in subgradient algorithms. Also $x \in \text{conv}(X)$; therefore only one issue remains to be checked: The integrality of x.

Applying Dantzig-Wolfe decomposition to (14) with X replaced by $\text{conv}(X)$, we directly obtain the above correspondence. This explains the notion of convexification (Vanderbeck, 1994).

$$z^* := \min \sum_{q \in Q} c_q \lambda_q + \sum_{r \in R} c_r \lambda_r$$

subject to $\sum_{q \in Q} a_q \lambda_q + \sum_{r \in R} a_r \lambda_r \geq b$ \hspace{1cm} (22)

$$\sum_{q \in Q} \lambda_q = 1$$

$$\lambda \geq 0$$

$$x = \sum_{q \in Q} p_q \lambda_q + \sum_{r \in R} p_r \lambda_r$$

$$x \in \mathbb{Z}^n_+,$$

where again $c_j = c^T p_j$ and $a_j = A p_j, \ j \in Q \cup R$. When we relax the integrality of x, (22) becomes separable in x and λ, and we may also relax their coupling constraint, obtaining precisely (21). Still, in order to get integer solutions, we have to impose additional conditions on the x variables. These conditions will appear in the compact formulation, at the level of the master problem or of the subproblem, or both, and the decomposition process—such as Lagrangian relaxation or Dantzig-Wolfe decomposition—has to be repeated within the search tree.

One objection against subgradient algorithms for solving the Lagrangian dual is that they exploit only local information for the iterative update of the dual multipliers. On the contrary, solving an
RMP based on (21) is a more elaborate update strategy which makes use of all the information gathered during the solution process. Only, the partly occurring large linear programs could not be solved until recently. Undoubtedly, computational progress here helped column generation to its merited popularity. Still, when the number of rows, and thus dual multipliers is very large, subgradient algorithms may be the only practical alternative. Hybrid methods are good compromises (Barahona and Jensen, 1998; Kallehauge, Larsen, and Madsen, 2001; Kohl and Madsen, 1997), e.g., starting the multiplier adjustment with a subgradient algorithm and finishing the computation using a linear program.

Besides subgradients and simplex-based methods, the Lagrangian dual can be solved with more advanced (non-linear) alternatives which enjoy stronger convergence properties. Amongst these are the bundle method (Hiriart-Urruty and Lemaréchal, 1993) based on quadratic programming, and the analytic center cutting plane method (Goffin and Vial, 1999), an interior point solution approach. However, the performance of these alternatives is still to be evaluated in the context of integer programming.

3.3 Discretization

Requiring integrality of the variables \(\lambda \) of the master problems (21) or (22) does not lead to an integer program equivalent to (14), since the optimum integer solution of (14) may be an interior point of \(\text{conv}(X) \). Alternatively, discretization (Johnson, 1989; Vanderbeck, 2000) is a true integer analogue to the decomposition principle. It is based on the following (see Nemhauser and Wolsey, 1988).

Theorem 1 Let \(P = \{ x \in \mathbb{R}^n \mid Dx \geq d, x \geq 0 \} \neq \emptyset \) and \(X = P \cap \mathbb{Z}^n \). Then there exists a finite set of integer points \(\{ p_q \}_{q \in Q} \subseteq X \) and a finite set of integer rays \(\{ p_r \}_{r \in R} \) of \(P \) such that

\[
X = \left\{ x \in \mathbb{R}_+^n \mid x = \sum_{q \in Q} p_q \lambda_q + \sum_{r \in R} p_r \lambda_r, \sum_{q \in Q} \lambda_q = 1, \lambda \in \mathbb{Z}_+^{\left|Q\right|+\left|R\right|} \right\}. \tag{23}
\]

Substitution for \(x \) in (14) as given by (23) yields an integer master problem

\[
\begin{align*}
z^* := \min \quad & \sum_{q \in Q} c_q \lambda_q + \sum_{r \in R} c_r \lambda_r \\
\text{subject to} \quad & \sum_{q \in Q} a_{q_j} \lambda_q + \sum_{r \in R} a_{r_j} \lambda_r \geq b_j \\
& \sum_{q \in Q} \lambda_q = 1 \\
& \lambda_j \in \mathbb{Z}_+, \quad j \in Q \cup R,
\end{align*} \tag{24}
\]

where again \(c_j = c^T p_j \) and \(a_{q_j} = A p_j, j \in Q \cup R \). It is interesting that, when \(X \) is bounded, (24) is a linear integer program even for arbitrary linear and non-linear cost functions \(c(x) \) in (14). Because of the convexity constraint, variables \(\lambda_q, q \in Q \) are restricted to binary values, thus

\[
c(x) = c \left(\sum_{q \in Q} p_q \lambda_q \right) = c(p_{q^*}) = c_{q^*} = \sum_{q \in Q} c_q \lambda_q
\]

holds for precisely one \(q^* \in Q \). This cannot be generalized to the unbounded case, since there need not be a unique representation of \(x \) as a combination of the \(\lambda \)'s. This is the case when we can combine
a point in X by a point in Q and several extreme rays. Then the objective function value $c(\mathbf{x})$ depends
on the actual combination.

Remark. In the important special case that $X \subseteq [0,1]^n$ convexification and discretization coincide.
All integral points in the bounded set X are already vertices of $\text{conv}(X)$, and only binary $\lambda_q, q \in Q$
in (23) make sense. That is, \mathbf{x} is the trivial convex combination of only one vertex, and therefore
$\mathbf{x} \in \{0,1\}^n \iff \lambda \in \{0,1\}^{|Q|}$. Many large scale applications belong to this class, in particular,
many decomposition procedures that give rise to set partitioning and set covering problems.

3.4 Column Generation for Integer Programs

Consider the following integer program (IP)

$$
\begin{align*}
\min \quad & \sum_{j \in J} c_j \lambda_j \\
\text{subject to} \quad & \sum_{j \in J} a_j \lambda_j \geq b \\
& \lambda_j \in \mathbb{Z}_+, \quad j \in J
\end{align*}
$$

(25)

for which the linear relaxation is solved by column generation using a given oracle, where columns
$a_j, j \in J$ are elements of set A. The difficulty here is that we do not have on hand an explicit compact
formulation on which we can analyze the solution of the linear relaxation of (25) and perform the
separation phase, as in §3.2.

Villeneuve (1999) shows the existence of such a compact formulation under very mild assumptions,
that is, (25) be domain of the oracle be included in a hyperbox $B \subseteq \mathbb{R}^h, h \in \mathbb{N}$. An equivalent multicommodity version of (25) is proposed where the variables and the domain of the
oracle are duplicated κ times. This formulation has a block diagonal structure with identical subproblems. A general separation strategy is presented, based on the reduction of B along each dimension
until an infeasible residual problem is detected or an integer solution for (25) is found.

Multicommodity flow formulations for various applications of vehicle routing and crew scheduling
proposed by Desaulniers et al. (1998) follow the above scheme. However, it should be pointed
out that existence does not mean uniqueness. For example, for the classical cutting stock problem, the
above procedure leads to the Kantorovich (1960) formulation where a commodity is defined for each
(identical) available roll. Let K be the set of rolls of width W. Define $y^k, k \in K$ as a binary variable
assuming value 1 if roll k is used and 0 otherwise, and $x^k_i, k \in K, i = 1, \ldots, m$ as a non-negative
integer variable that denotes the number of times order i is cut in roll k. The compact formulation
reads as follows:

$$
\begin{align*}
\min \quad & \sum_{k \in K} y^k \\
\text{subject to} \quad & \sum_{k \in K} x^k_i \geq b_i, \quad i = 1, \ldots, m \\
& \sum_{i=1}^m w_i x^k_i \leq W y^k, \quad k \in K \\
& y^k \in \{0,1\}, \quad k \in K \\
x^k_i \in \mathbb{Z}_+, \quad k \in K, i = 1, \ldots, m.
\end{align*}
$$

(26)
However, there exist alternative compact formulations that give rise to the same linear relaxation of the IP formulation when the decomposition principle of §3.2 is used. Valério de Carvalho (1999, 2002a) proposes a clever network-based compact formulation of the cutting stock problem which the classical knapsack subproblem is solved as a particular minimum cost flow problem. Each subproblem path flow in that network gives a valid cutting pattern, and it corresponds to an extreme ray, except the null pattern which is the single extreme point. However, no master problem is used but each generated column is split into its arc components, i.e., in terms of the original arc flow variables. A restricted compact problem is solved on the current subset of arcs, and the remaining arcs have to be priced out in order to prove optimality or to identify arcs to be included in the formulation. The flow conservation constraints are activated only as needed, i.e., for the terminal nodes of the generated arcs. Similar techniques to solve large scale linear multicommodity flow problems are used by Löbel (1997, 1998) and Mamer and McBride (2000).

We now show that column generation is essential to the branch-and-bound process of finding integer solutions. This is clearly true if the optimal integer solution of (25) is strictly inside the polyhedron defined by the convexification of the domain of the oracle since the solution cannot be generated explicitly by the oracle. Such a situation can even occur for some extreme points. In the following 3-variable example by Villeneuve (1999), if $c_2 > 1$, variable λ_2 cannot be generated using the classical minimum reduced cost criterion (Dantzig rule):

$$ z^* := \min \lambda_1 + c_2 \lambda_2 + \lambda_3 $$
subject to $\lambda_1 + 2\lambda_2 + 3\lambda_3 = 2$
$\lambda_1, \lambda_2, \lambda_3 \in \mathbb{Z}_+$.

Given the dual variable $u \in \mathbb{R}$ associated with the equality constraint, λ_2 is of minimum reduced cost if and only if $c_2 - 2u \leq 1 - u$ and $c_2 - 2u \leq 1 - 3u$, that is, $c_2 \leq 1 - |u|$, in contradiction with $c_2 > 1$. This means that requiring integrality only for columns which are (can be) generated in the RMP may result in suboptimal solutions. This happens in (27) if $1 < c_2 < 2$. What is more, the RMP can simply be integer infeasible, see e.g., Barnhart et al. (1998b); Vance et al. (1997).

Concluding, a little bit of imagination is needed to find an appropriate compact formulation. Once this is established, finding integer solutions to the compact formulation is theoretically no more difficult than for any integer program. The only difference is the way to compute a lower bound. A valid argument to prefer an extensive formulation over its compact counterpart is that the former may be stronger in the sense that its linear programming relaxation gives a tighter approximation to the convex hull of integer points, see §5.3.1 on the integrality property.

4 The Restricted Master Problem

At all times, the RMP represents all current problem information gathered from subproblem solutions, i.e., a subset of columns which proved to be useful to achieve progress in terms of the objective function value. For its role in decomposition, the RMP is often referred to as a coordination problem. From a technical perspective, the purpose of the RMP is to provide dual variables to be transferred to the subproblem. Our stopping criterion depends on dual variables as well. In the end only, we have to recover from the RMP a primal feasible solution to the compact formulation.

Primal methods, like column generation, maintain primal feasibility and work towards dual feasibility. It is therefore only natural to monitor the dual solution in the course of the algorithm. In our opinion, the dual point of view reveals most valuable insight into the algorithm’s functioning. We
call the polyhedron associated with the dual of the RMP the dual polyhedron. A dual solution to the RMP needs not be unique. If the primal is degenerate—e.g., linear relaxations of combinatorial optimization problems—this is likely to happen. This is significant inasmuch the dual solution directly influences the selection of new columns. Since a dual basic solution corresponds to an extreme point of the optimal face, it may be a bad representative of all the dual solutions obtainable.

Solving the RMP by the simplex method leads to an optimal basis essentially chosen at random, whereas the application of an interior point method produces a solution in the relative interior of the optimal face (Bixby et al., 1992). Therefore, e.g., analytic centers (Elhedhli and Goffin, 2001; Goffin et al., 1993), volumetric centers, and central path methods (Kirkeby Martinson and Tind, 1999) have been proposed. However, even such a solution only refers to the current optimal linear combination of columns generated so far. One step further, dual variable values could represent, in a well defined sense, all information presently available. This is the idea of using central prices. In the context of Dantzig-Wolfe decomposition it has been proposed by Goffin et al. (1993).

Extreme point dual solutions are immediately available when using the simplex method, and because of their “random” nature they may result in different, even complementary kinds of columns (Vanderbeck, 1994). More elaborate suggestions in the spirit of the above may speed up computation times for very difficult RMPs, see also Anbil, Forrest, and Pulleyblank (1998).

4.1 Solution Methods

4.1.1 Initialization

No matter what method we use, we have to provide an initial solution to the RMP. The well known first phase carries over to column generation (Chvátal, 1983). Artificial variables, one for each constraint, penalized by a “big M” cost, are kept in the RMP to ensure feasibility in a branch-and-bound algorithm. Beware that a smaller M gives a tighter upper bound on the respective dual variables. Details on initialization, especially for integer programming column generation, can be found in Vanderbeck (1994).

In some applications, the unit basis is already feasible. Then, an approximation of the actual cost coefficients should be used instead of M. Heuristic estimates of the optimal dual variable values are imposed as artificial upper bounds by Agarwal, Mathur, and Salkin (1989) by introducing unit columns with appropriate cost. The bounds are gradually relaxed until they are no longer binding. This relates to the stabilization approach, see §6.2. Similar techniques are proposed, e.g., by Vanderbeck (1994).

Poorly chosen initial columns lead the algorithm astray, when they do not resemble the structure of a possible optimal solution at all. They must then be interpreted as a misleading bound on an irrelevant linear combination of the dual variables. Even an excellent initial integer solution is detrimental to solving a linear program by column generation (Vanderbeck, 1994). On the other hand, bounds on meaningful linear combinations of dual variables give good experiences (Ben Amor, 2002; Valério de Carvalho, 2000), c.f. §4.2.1. Another option is a warm start from primal solutions obtained in earlier, similar runs (Anbil, Forrest, and Pulleyblank, 1998). However the best results are obtained when both estimates of the primal and the dual solutions are used (Ben Amor, 2002; du Merle et al., 1999).
4.1.2 Traditional Approaches: Simplex and Barrier

The RMP is a linear program, and the simplex method is a natural choice for solving it. Comments on the suitability of primal, dual, and primal-dual variants are found in Lasdon (1970). In presence of primal degeneracy, the dual simplex often is to be preferred to the primal. The sifting method can be a reasonable complement for large scale RMPs, see Anbil, Forrest, and Pulleyblank (1998); Bixby et al. (1992); Chu, Gelman, and Johnson (1997). For some linear programs Barrier methods (Bixby, 2002) can prove most effective, although there is no possible warm start.

4.1.3 Subgradients and Volume Algorithm

The RMP may itself be solved by subgradient algorithms by relaxing all its constraints in the objective function (Caprara, Fischetti, and Toth, 1999, 2000; Wedelin, 1995). This approach has been applied to set covering applications for which these authors provide ways to compute a number of integer primal solutions at each iteration of the column generation process. The solution method may be dynamically switched during the solution process like e.g., in Bixby et al. (1992). Because of these alternatives, we do not even need to maintain a basis.

Rather than computing an exact solution to the RMP, an approximation may suffice. Assuming P is non-empty and bounded, the volume algorithm (Barahona and Anbil, 2000) is an extension of subgradient algorithms, and rapidly produces primal as well as dual approximate solutions to the RMP. It is named after a new way of looking at linear programming duality, using volumes below the active faces to compute the dual variable values and the direction of movement. The pricing subproblem is called with a dual solution “in a neighborhood” of an optimal dual solution. Then, one can compute the probability that a particular column (which induces a face of the dual polyhedron) is generated. The subgradient method is modified in order to furnish estimates of these probabilities, i.e., approximate primal values for $\lambda_q, q \in Q$ that sum to 1. Primal feasibility may be mildly violated.

When used in alternation with the simplex method, the volume algorithm produces dual solutions with a large number of non-zero variables (Anbil, Forrest, and Pulleyblank, 1998). This quality is claimed to accelerate column generation for reasons as discussed above. Promising computational experience is given for various combinatorial optimization problems (Barahona and Anbil, 2002; Barahona and Jensen, 1998). Advantages of the volume algorithm are a straight forward implementation with small memory requirements, numerical stability, and fast convergence.

Elaborate hybrids may evolve, see e.g., Anbil, Forrest, and Pulleyblank (1998); Bixby et al. (1992); Borndörfer and Löbel (2001); Desaulniers, Desrosiers, and Solomon (2001b). Heuristics are used to construct or improve dual variable values at any time in the algorithm. The choice of a method in general will also depend on how fast or how accurate a solution is needed, whether particular problem structures are present, and what implementation skills or solvers are available. One apparent trend is not to insist on optimality, but to attack even larger problems, for which still a guaranteed approximation quality can be obtained. This is specially true for integer programs, see §7.1.

4.2 A Dual Point of View

The dual of the RMP is the dual master problem with rows omitted, hence a relaxation. An optimal dual solution obtained from the RMP may still violate constraints of the full dual master problem. Thus, the pricing problem is a separation problem for the dual. Dantzig-Wolfe decomposition and
related methods can be interpreted as special cases of Kelley’s (1961) cutting plane method devised for solving convex programs. It is sometimes more instructive and revealing to adopt the dual perspective.

Remark. Consequences from the equivalence of separation and optimization (Grötschel, Lovász, and Schrijver, 1988) arise in this context. Exponential size RMP linear programs are polynomially solvable by column generation under the assumption that the pricing problem is solvable in polynomial time (Mehlhorn and Ziegelmann, 2000; Minoux, 1987). Conversely, solving an RMP is \textbf{NP}-hard, if the pricing problem is (Johnson, Mehrotra, and Nemhauser, 1993).

4.2.1 Restriction of the Dual Master Problem

It is known that set partitioning type master problems can be converted to set covering type, preserving the optimal objective function value, when taking subsets does not increase cost. This constrains the dual space by restricting the dual variables in sign. Further, we are not restricted to only add columns from the master program. Using structural information we can do better (Ben Amor, 2002; Valério de Carvalho, 2000; see also Holmberg and Jörnsten, 1995). Consider a pair of feasible and bounded primal and dual master problems

\[
\begin{align*}
\min & \quad c^T \lambda \quad \text{subject to} & & A \lambda &= b, \
\max & \quad b^T u \quad \text{subject to} & & A^T u &\leq c
\end{align*}
\]

and their extended counterparts of the form

\[
\begin{align*}
\min & \quad c^T \lambda + f^T y \quad \text{subject to} & & A \lambda + F y &= b, \
\max & \quad b^T u \quad \text{subject to} & & A^T u &\leq c, \
\lambda, y &\geq 0 \quad \text{and} \quad F^T u &\leq f,
\end{align*}
\]

where structural inequalities \(F^T u \leq f \) are added to the dual at initialization time, i.e., before column generation starts. We assume that these inequalities do not impact on the optimal objective function value. These constraints correspond to additional variables \(y \geq 0 \) in the primal, which are not present in the original master problem. From the primal perspective, we therefore obtain a relaxation. The size of a primal basis is not affected. A good restriction of the dual polyhedron is sought, ideally to the optimal face.

Devising valid dual cutting planes requires and exploits specific problem knowledge, of course. Consider the one-dimensional cutting stock problem (3). It can be easily shown that if the orders are ranked such that \(w_1 < w_2 < \cdots < w_m \) then the dual multipliers satisfy \(u_1 \leq u_2 \leq \cdots \leq u_m \). Hence we can impose \(m - 1 \) dual constraints that must be satisfied at each iteration of the column generation process. These constraints can be generalized to larger sets. Let \(S_i = \{s \mid w_s < w_i\} \). Then

\[
\sum_{s \in S} w_s \leq u_i \Rightarrow \sum_{s \in S} u_s \leq u_i, \quad S \subset S_i.
\]

A primal interpretation of these constraints is given by Valério de Carvalho (2000); a direct proof of their validity in the dual space can be found in Ben Amor (2002). Using the above \(m - 1 \) simplest dual constraints and, for each order \(i \), at most one constraint of type (28) such that \(|S| \geq 2\), there is a considerable speedup for solving the linear relaxation of (3).

We also observe that in the case of the so-called “difficult” triplet-problems, where each roll is cut into exactly three orders without any waste, the optimal dual multipliers are known in advance and assume values \(u_i = w_i/W, i = 1, \ldots, m \). Using this \textit{a priori} perfect dual information the number of column generation iterations dramatically decreases for a number of test problems (Ben Amor, 2002).
Computational experiments conducted by Ben Amor (2002) on the multiple depot vehicle scheduling problem show that given the optimal dual multipliers and a small non-empty interval around these, column generation can be accelerated by a factor of 100. This is because poor cutting planes, with respect to the interval, are not generated. Optimal multipliers are usually not available. Good estimates can be obtained from a relaxation of the problem, from tests of previous experiments, or derived by subgradient algorithms.

Remark. Primal degeneracy may cause the simplex method, and column generation, to stall at a basic solution. Consecutively, promising zero activity columns enter the basis, each of which corresponds to an alternative dual solution. Preliminary experiments confirm that a restricted dual space partly restrains primal degeneracy as well (Ben Amor, 2002; Valério de Carvalho, 2000). See also §6.2.

5 The Pricing Problem

We are free to choose a subset of non-basic variables, and a criterion according to which a column is selected from the chosen set. According to the classical Dantzig rule, one chooses among all columns the one with the most negative reduced cost. Various schemes are proposed in the literature like full, partial, or multiple pricing (Chvátal, 1983). Column generation is a pricing scheme for large scale linear programs. Instead of pricing out non-basic variables by enumeration, we solve an optimization subproblem like (2). In Gamache et al. (1999) up to 300 \mathcal{NP}-hard subproblems arise, and partial column generation is used, also in order to avoid the generation of many similar columns.

The role of the pricing subproblem is to provide a column that prices out profitably or to prove that none exists. It is important to see that any column with negative reduced cost contributes to this aim. In particular, there is no need to solve (2) exactly; an approximation suffices until the last iteration. We may add many negative reduced cost columns from a subproblem, even positive ones are sometimes used. We may solve a temporary restriction of the subproblem, or a relaxation, which is the case for the vehicle routing problem with time windows (Desrochers, Desrosiers, and Solomon, 1992).

5.1 Dominance and Redundancy of Columns

Let us speak about strength of dual constraints. A column with reduced cost \bar{c} is dominated if there exists another column with reduced cost no larger than \bar{c} for all dual variables ranging within their respective domains (Vanderbeck, 1994). On the other hand, a column with reduced cost \bar{c} is undominated, if for all other columns there exists a set of dual variables yielding reduced cost strictly larger than \bar{c}. If dominance is detected after the solution of the pricing problem, the column is replaced by the dominating column in a post-processing phase. For instance, let \mathcal{A} be the collection of sets of a set covering problem. A column a_s corresponding to a set $s \subseteq \mathcal{A}$ is dominated, if adding to s an element $r \in \mathcal{A} \setminus \{s\}$ incurs no cost, since $c_s - u^T a_s \geq c_s - u^T a_s - u_r = c_{s \cup \{r\}} - u^T a_{s \cup \{r\}}$ for all $u \geq 0$.

An even stronger concept is introduced by Sol (1994). By analogy with the search for strong cutting planes, desirably facets of the dual polyhedron, we ask for strong columns in the RMP. A column a_s is called redundant if the corresponding constraint is redundant for the dual problem. That is,

$$a_s = \sum_{r \subseteq s} a_r \lambda_r \quad \text{and} \quad c_s \geq \sum_{r \subseteq s} c_r \lambda_r \ .$$

(29)
A column is strictly redundant if (29) holds with strict inequality. The pair \((A, c)\) satisfies the subcolumn property if \(c_r < c_s\), for all subsets \(r \subset s \in A\). In this case, a set partitioning problem can be solved as a set covering problem. If only \(c_r \leq c_s\) holds, we modify the cost structure by \(c_r := c_r + |r|\). This adds to \(z^*\) a constant term equal to the number of rows and does not change the problem. A characterization of redundant columns in the case of identical subproblems is given by Sol (1994), and a proof that no column is redundant in case of all distinct subproblems. For set partitioning problems with identical subproblems the generation of redundant columns can be avoided using an alternative pricing rule.

Proposition 2 Let \((A, c)\) satisfy the subcolumn property for a set partitioning problem and \(\mathbf{u}\) be a vector of dual multipliers. If \(a_s \in A\) is a strictly redundant column, then it cannot be an optimal solution to the pricing problem

\[
\min \left\{ \frac{c(a) - \mathbf{u}^T \mathbf{a}}{\mathbf{1}^T \mathbf{a}} \mid \mathbf{a} \in A \right\}.
\]

5.2 Alternative Pricing Rules

Proposition 2 indicates that not using the Dantzig rule may be theoretically advantageous. Steepest-edge pricing (Forrest and Goldfarb, 1992; Goldfarb and Reid, 1977) and the practical Devex variant (Harris, 1973) are reported to perform particularly well for set partitioning RMPs (Sol, 1994). The rationale behind the dual pendant deepest-cut (Vanderbeck, 1994) is to cut away as much of the dual space as possible. While steepest-edge is inherently based on the simplex method, deepest-cut is more independent from a particular solution method. This latter property leads to the lambda pricing rule (Bixby et al., 1992). Assume that \(c_j \geq 0, j \in J\). Clearly, the reduced cost \(c_j - \mathbf{u}^T a_j\) are non-negative for all \(j \in J\) if and only if

\[
\min_{j \in J} \left\{ \frac{c_j}{\mathbf{u}^T a_j} \mid \mathbf{u}^T a_j > 0 \right\} \geq 1.
\]

At first glance, this is just a reformulation. However, (31) takes advantage of structural properties of (particular) set partitioning problems: Picking columns with a small ratio accounts for smaller cost coefficients as well as for more non-zero entries in \(a_j\).

Many publications on simplex pricing are available, only a few of which have been related to column generation. One possibility is to generate columns which maximally improve the objective function value (Swoweland, 1974). The computational usefulness of such comparably aged proposals needs assessment from a modern implementation point of view. The natural question for which columns serve our goals best is not consistently to answer owing to the multiple, sometimes contrary, evaluation criteria. Computational efforts may cancel theoretical benefits. When the subproblem is solved by dynamic programming, many negative reduced cost columns are available. Among these, a posteriori choosing columns according to the alternative proposals is a practicable compromise in view of possible difficulties in efficiently implementing alternative pricing rules.

Concluding, we wish to point out some gaps in the theory. Pricing rules are sensitive to the dual variable values, in case of non-unique dual solutions. For large set partitioning problems—which are highly primal degenerate—the value of the dual variables are no meaningful measure for which column to adjoin to the RMP. The compensating concept so far is to try to remove degeneracy itself, see e.g., Valério de Carvalho (2000) and our discussion on dual cutting planes, and also §6.2 on stabilization. Finally, although primal as well as dual information went into pricing strategies, complementary slackness conditions seem not to having been satisfactorily exploited or applied.
5.3 Pricing Integer Programs

When the compact formulation (14) is an integer program, so is the pricing problem. It may be difficult to solve, and the efficiency of decomposition hinges on the question whether repeatedly solving the subproblems is “easier” than solving (14) at once.

5.3.1 Integrality Property

When $\text{conv}(X)$ is an integral polyhedron already the linear program (17) gives an integer solution. This is called the integrality property of the subproblem. Of course, it intimately depends on the subproblem formulation. For subproblems whose natural formulation gives integral optimal solutions anyway, e.g., shortest path problems, the lower bound on the optimal integral z^* in (14) obtained from the linear relaxation of the extensive formulation is no better than the one obtained from the compact formulation (Geoffrion, 1974). On the other hand, when this property does not hold, one can gain more in terms of the lower bound, but one has to work harder for integral subproblem solutions. Thus, the property is undesirable, when the integrality gap is large. This for sure holds also for Lagrangian relaxation (Geoffrion, 1974). On the other hand, the computation time gained by fast combinatorial algorithms and their ease to implement may outmatch this disadvantage.

When the polyhedron $\text{conv}(X)$ is well studied like e.g., a knapsack polytope, the relevant literature can be exploited to strengthen the linear relaxation of the pricing integer programs (Vanderbeck, 1994). When problems are small or cuts are of insufficient strength plain branch-and-bound may be the faster alternative. A more thorough investigation of the subsystem polytope can give encouraging results when adding strong valid inequalities to the pricing problem before using branch-and-bound (Johnson, Mehrotra, and Nemhauser, 1993). Even more efficient it may be to use a direct, e.g., a combinatorial method to solve the subproblem, when an appropriate algorithm is available. This is the case for constrained shortest path problems. Dynamic programming algorithms usually provide many columns per iteration. This is to be preferred over adding only one from a linear program.

5.3.2 Structured Sets of Columns

What columns are good for integer solutions of the compact formulation? Even columns that are presumably part of an (optimal) integer solution may interfere with solving the linear RMP by influencing its “guide,” namely the dual variable values (Vanderbeck, 1994). The RMP may require longer solution times due to the enlarged problem size (Vance et al., 1997). On the other hand, columns which are of no use for the linear relaxation may be required for the integer feasibility of the RMP. The concept of adjoining partial solutions seems to offer significant advantages as for obtaining integer solutions. An observation by Desrochers, Desrosiers, and Solomon (1992) is that adding columns to a set partitioning RMP that are orthogonal sets replicate the structure of the optimal integer solution. What is more, the reduction in similar columns added when the dual solution is far from optimal is pointed out by Savelsbergh and Sol (1998).

Lagrangian pricing exploits the problem information provided by the original formulation (Löbel, 1997, 1998). Based on a dual solution to the RMP, one obtains primal solutions from several Lagrangian relaxations and deduces the columns to be adjoined to the RMP. Considerable customization is necessary, e.g., deciding which Lagrangian subproblems to use. Furthermore, the deduction of columns can be non-trivial. Nonetheless, the charm of using Lagrangian relaxations of the compact
formulation rests upon controlling the structure of added columns. Very large scale linear programs emerging from practical vehicle routing problems are optimally solved using this pricing scheme.

6 The Tailing Off Effect

Simplex-based column generation is known for its poor convergence. While usually a near optimal solution is approached considerably fast, only little progress per iteration is made close to the optimum. Also, it may be relatively time consuming to prove optimality of a degenerate optimal solution. Figuratively speaking, the solution process exhibits a long tail (Gilmore and Gomory, 1963), whence this phenomenon is called the tailing off effect. There is an intuitive assessment of the phenomenon, but a theoretical understanding has only been partly achieved to date; the monographs by Lasdon (1970); Nazareth (1987) make notable contributions.

6.1 Computational Difficulties

In general, the trajectory of solutions to (6) as constructed from solutions \(\lambda \) to the RMP passes through the interior of \(\{x \in \mathbb{R}^n \mid Dx \geq d, x \geq 0\} \). In the optimum, complementary slackness conditions have to be satisfied. Since changes of primal and dual variables are applied iteratively, not simultaneously, a certain amount of “cleaning up” (Nazareth, 1987) is to be expected. Very small adjustments may be necessary close to optimum.

Finding an appropriate combination in (7) might be hindered by the possibly “complex combinatorial structure” of faces of the polyhedron defined by the subproblem (Kim and Nazareth, 1991). This complication may be worse in presence of several subproblems. A problem specific reformulation of the pricing problem in order to \textit{a priori} restrict attention to a set of known simple columns may help (Hurkens, De Jong, and Chen, 1997), see also Barnhart et al. (1998b). The diameter of the polyhedron associated with (8) is not smaller than that of the polyhedron corresponding to (6) (Adler and Ülkuçü, 1973). This is interesting, considering that the diameter is the maximal number of steps an ideal vertex following algorithm takes.

In finite precision arithmetic one has to cope with numerical instability. There are examples for bad numerical characteristics of the master problem in contrast to a well behaving compact formulation (Nazareth, 1984, 1987). Then, our stopping criterion may not work correctly (Ho, 1984; Minoux, 1986). We remark, however, that tailing off also occurs when columns are computed exactly, e.g., by use of combinatorial algorithms.

6.2 Stabilized Column Generation

It has been observed that the dual variable values do not smoothly converge to their respective optima, but vehemently oscillate, seemingly following no regular pattern. This behavior is regarded as a major efficiency issue, and its absence is seen as a (possibly \textit{the}) desirable property; see Figure 1 for an illustration. Fluctuating dual variables can be connected to the coordination between the master and the subproblem level we described earlier. In fact, the design of dual cutting planes was motivated by the wish for controlling dual variable convergence.

A simple idea was mentioned in §4.1.1, \textit{viz.} bounding the dual variable values (Agarwal, Mathur, and Salkin, 1989). A more sophisticated control of the dual variables is as follows. Let again \(u \)
Figure 1: The Euclidean distance between current and optimal dual solution plotted against time for two different solution methods applied to the same instance. Observe the different scales. The right picture displays a very stable convergence of the dual variables using the trust region stabilization device, see §6.2.2. The left picture displays the typical dual variable behavior in standard column generation. These plots are kindly provided by Brian Kallehauge.

denote an optimal solution to the current restricted dual RMP. By imposing lower and upper bounds, respectively, dual variables are constrained to lie in a “box around \bar{u}.” The such restricted RMP is re-optimized. If the new dual optimum is attained on the boundary of the box, we have a direction towards which the box should be relocated. Otherwise, the optimum is attained in the box’s interior, producing the sought global optimum. This is the principle of the Boxtep method introduced by Marsten (1975); Marsten, Hogan, and Blankenship (1975). Several other stabilization approaches have been proposed, see e.g., Senne and Lorena (2002), where a Lagrangian/surrogate relaxation is used for this purpose. In the sequel we describe three of these.

6.2.1 Weighted Dantzig-Wolfe Decomposition

In the computation of the Lagrangian dual (16), one can search “for good Lagrangian multipliers in the neighborhood of the best multipliers found so far” (Wentges, 1997). In lieu of pricing with the optimal dual variables u^k in the k^{th} iteration, a convex combination is used

$$u^{k+1} := \frac{1}{\omega_k} u^k + \frac{\omega_k - 1}{\omega_k} u_{best,k} , \quad u_{best,k} \in \arg \max \{ L(\bar{u}^i) \mid i = 1, \ldots, k \} ,$$

(32)

where $L(u)$ is defined in (15), and

$$\omega_k := \min \{ const, (k + \text{number of improvements of } L(u_{best,\cdot})) / 2 \}$$

with $const \geq 2$. Obviously, (32) is biased towards the dual solution, which produced the respective best Lagrangian lower bound in the column generation process. This emphasis becomes even stronger as the algorithms proceeds, and grows with the number of improvements of the lower bound. This can be seen as a stabilization of heuristically good multipliers. The constant $const$ is instrumental in ensuring the consideration of enough fresh information from the current RMP.
Rewriting (32) as \(\tilde{u}^{k+1} := \tilde{u}_{\text{best},k} + \omega_k^{-1}(\tilde{u}^k - \tilde{u}_{\text{best},k}) \) the method is interpreted as feasible direction search, emerging from \(\tilde{u}_{\text{best},k} \) in the direction of the current dual solution \(\tilde{u}^k \) with step length \(\omega_k^{-1} \). Finiteness of this weighted version is proven. In computational experience with capacitated facility location problems, the method delivers better Lagrangian lower bounds, when termination is guided by a small size of the duality gap. On the other hand, the same experiments indicate that the primal objective function value of the RMP decreases more slowly when using this method.

This is an example where ideas from proposals for multiplier adjustment in subgradient methods can be transferred to the column generation context. In fact, the two approaches are combined (Barahona and Jensen, 1998), i.e., every few iterations some or all of the dual variables obtained from the RMP are improved by some iterations of a subgradient algorithm before passing them to the subproblem. In early iterations this produces good multipliers, later on improves the lower bound. Considerably reduced computation times are reported for their particular application. A similar observation is made by Mahey (1986). The voluminous fund of “Lagrangian literature” may further provide stimulation in this direction.

6.2.2 Trust Region Method

Certainly, it is desirable to have the stabilization device independent of customization. For a direct control of dual variables (Kallehauge, Larsen, and Madsen, 2001), consider the dual RMP with additional box constraints centered around the current dual optimal solution \(\hat{u} \), i.e., \(\hat{u}_i - \delta \leq u_i \leq \hat{u}_i + \delta \). The method is related to the work of Madsen (1975) in the sense that these bounds are adjusted automatically, depending on how well the dual restricted master problem approximates the Lagrangian dual problem. This type of method is called a trust region method. The trust region parameter \(\delta \) is updated in each iteration according to the original update scheme by Marquardt (1963). Only iterations yielding primal progress are actually performed, and Kelley’s (1961) cutting plane method is applied to generate rows of the dual RMP, i.e., columns of the primal. When the duality gap closes (up to a preset accuracy) for a dual solution in the interior of the current box, optimality is reached, and the algorithm terminates. See Figure 1.

6.2.3 A Stabilization Approach Using Primal and Dual Strategies

Stabilized column generation (Ben Amor, 2002; du Merle et al., 1999) includes a more flexible, linear programming concept of a box, together with an \(\varepsilon \)-perturbation of the right hand side. Consider the following linear program.

\[
\begin{align*}
\min & \quad c^T \lambda - \delta^T y_- + \delta^T y_+ \\
\text{subject to} & \quad A\lambda - y_- + y_+ = b \\
& \quad y_- \leq \varepsilon_- \\
& \quad y_+ \leq \varepsilon_+ \\
& \quad \lambda, y_-, y_+ \geq 0
\end{align*}
\]
(33)

After changing the sign of \(w_- \), \(w_+ \), respectively, its dual reads

\[
\begin{align*}
\max & \quad b^T u - \varepsilon_-^T w_- - \varepsilon_+^T w_+ \\
\text{subject to} & \quad A^T u \leq c \\
& \quad -u - w_- \leq -\delta_- \\
& \quad u - w_+ \leq \delta_+ \\
& \quad w_-, w_+ \geq 0
\end{align*}
\]
(34)
In (33), surplus and slack variables y_- and y_+, respectively, account for a perturbation of b by $\varepsilon \in [-\varepsilon_-, \varepsilon_+]$, helping to overcome difficulties with degeneracy. Their usage is penalized via δ_-, δ_+, respectively. The interpretation of (34) is more interesting. The original dual variables u are restricted to the interval $[\delta_-, \delta_+ + w_+], w_-$, deviation of u from the interval $[\delta_-, \delta_+]$ is penalized by an amount of $\varepsilon_-, \varepsilon_+$ per unit, respectively. Clearly, the motivation is to steer u towards a hopefully good estimate of an optimal solution $u^* \geq 0$ to the unperturbed problem $\min \{c^T \lambda | A\lambda = b, \lambda \geq 0\}$. When does (33) yield an optimal solution this problem? Sufficient is (a) $\varepsilon_- = \varepsilon_+ = 0$ or (b) $\delta_- < \bar{u} < \delta_+$, where \bar{u} is an optimal solution to (34); (a) for the obvious reason, and (b) by complementary slackness conditions and $\varepsilon_+ \geq 0$. Therefore the stopping criteria of a column generation algorithm become $\varepsilon^* = 0$ and $y_- = y_+ = 0$.

The parameters are updated dynamically so as to make greatest use of the respective latest information. With intent to reduce the dual variables’ variation select δ_\pm to form a small box containing the (in the beginning estimated) current dual solution, and solve the linear program (33). If the new \bar{u} lies in the box described by δ_\pm, reduce its width and augment the penalty given by ε_\pm. Otherwise, enlarge the box and decrease the penalty. This allows for fresh dual solutions when our estimate was bad. The update could be performed in each iteration, or alternatively, each time a dual solution of currently best quality is obtained. This latter sequential approximation method proves most effective in implementations. Note that an update of the dual estimates can be seen as a serious step in the bundle method.

It is clear that problem specific adaptation of the parameter choice is imperative. The preliminary experiments by Ben Amor (2002); du Merle et al. (1999) indicate considerable speedup of up to a factor of ten or a growth in the size of manageable problems when using the stabilization approach. A related proposal (Agarwal, Mathur, and Salkin, 1989) gives similar experiences. It is therefore important to note that (33) is a relaxation of the unperturbed problem which is faster computed, and thus can replace it in a branch-and-bound algorithm.

7 Integer Solutions

Having introduced decomposition techniques for integer programs in §3, we still need ideas on how to actually obtain integer solutions. The literature is rich on that subject, see Table 1. In fact, X may as well contain non-linear aspects other than discreteness. Various notions have been coined for the synthesis of column generation and branch-and-bound, like branch-and-price (Barnhart et al., 1998b) and IP column generation (Vanderbeck and Wolsey, 1996). Our point is that—besides the decomposition principles—essentially it all boils down to branch-and-bound. Consequently, this section is about lower bounds and branching decisions.

7.1 Lower Bounds and Early Termination

In each node of a branch-and-bound tree we derive lower bounds on the best possible integer solution in the respective branch from solving the RMP linear relaxation by column generation. One would expect that the tailing off effect be amplified by the multitude of linear programs to solve. However, the contrary is true. The need for integer solutions provides us with a very simple amendment: Stop generating columns when tailing off occurs and take a branching decision. This early termination is based on the following. Assuming $c_j \in \mathbb{Z}, j \in J$, which for rational data is no loss of generality, column generation can be terminated as soon as $[LB] = [\bar{z}]$, with LB e.g., one of the lower bounds
of §2.1. For this purpose they have been widely used in the literature, e.g., Sol (1994); Vanderbeck (1994); Vanderbeck and Wolsey (1996). With the incumbent integral objective function value \(\hat{z} \), a node can be pruned as soon as \([LB] \geq \hat{z} \).

Early termination makes the algorithm effective for integer programs in contrast to linear programs. Of course, we need not wait until \([LB] = [\hat{z}] \), but terminate heuristically even earlier. Here is a tradeoff between computational efforts and the quality of the obtained lower bound upon premature termination. We remind the reader that this is the usual way to stop subgradient algorithms in Lagrangian relaxation. Note that monitoring the relative decrease of the objective function value over a predefined number of iterations (Gilmore and Gomory, 1963) is not robust against temporary stalls.

Integrality helps us also in other places. For a single subproblem the computation of an a priori upper bound on \(\hat{z}^* \) is given in (Vanderbeck and Wolsey, 1996, Prop. 4). When the subproblem is solved as an integer program, an initial upper cutoff can be applied. When the pricing problem is detected to be infeasible we terminate.

Depending on the problem formulations we may calculate a dual solution to the linear relaxation of (14), c.f. §2.3. Together with an integral solution this can be exploited to discard original binary variables with reduced cost larger than the optimality gap. More than 90% of the flow variables have been removed on instances of the multiple depot vehicle scheduling problem by Hadjar, Marcotte, and Soumis (2001).

7.2 Branching and Cutting Decisions

A valid branching scheme divides, desirably partitions, the solution space in such a way that the current fractional solution is excluded, integer solutions remain intact, and finiteness of the algorithm is ensured. Moreover, some general rules of thumb prove useful, such as to produce branches of possibly equal size, sometimes referred to as balancing the search tree. Important decisions should be made early in the tree. In the case that the master problem has to be solved integrally, a compatible branching scheme is sought which prevents columns that have been branched on from being regenerated without a significant complication of the pricing problem (Johnson, 1989; Savelsbergh, 1997; Vance, 1998). This, in general, would lead to finding the \(k \)th best subproblem solution instead of the optimal one (Ribeiro, Minoux, and Penna, 1989). Aside from the conceptual complication, this modified or destroyed a possibly well exploited structure. This is all the more important when e.g., combinatorial algorithms are used for the subproblem solution.

When the master problem has to be solved integrally, general branching schemes are given by Vanderbeck (2000); Vanderbeck and Wolsey (1996). The most common scheme in conjunction with column generation is Ryan and Foster’s (1981) designed for set partitioning problems.

Proposition 3 Given \(\Lambda \in \{0,1\}^{m \times |J|} \) and a fractional basic solution to \(A\Lambda = 1, \ Lambda \geq 0, \) i.e., \(\Lambda \notin \{0,1\}^m \). Then there exist \(r,s \in \{1, \ldots, m\} \) such that \(0 < \sum_{j \in J'} a_{rj} a_{sj} \lambda_j < 1 \).

When such two rows are identified, we obtain one branch in which these rows must be covered by the same column, i.e., \(\sum_{j \in J'} a_{rj} a_{sj} \lambda_j = 1 \), and one branch in which they must be covered by two distinct columns, i.e., \(\sum_{j \in J'} a_{rj} a_{sj} \lambda_j = 0 \). Note, that this information can be easily transferred to and obeyed by the pricing problem.

This excellent scheme already hints to a powerful insight which is used already in standard branch-and-bound, viz. to branch on meaningful variable sets. Our most valuable source of information are
the original variables of the compact formulation; they must be integer, and they are what we branch and cut on, see e.g., Desaulniers et al. (1998); Gamache et al. (1998); Sol (1994). To this end, let us assume that we have a compact formulation on hand, see §3.4. Branching and cutting decisions both involve the addition of constraints, at least implicitly. One could require integrality of x at any node of a branch-and-bound tree (Holm and Tind, 1988), but this is not efficient. A problem specific penalty function method is proposed by Hurkens, De Jong, and Chen (1997). Alternatively, given an added set $Hx \geq h$ of constraints, these restrictions on the compact formulation (14) can be incorporated in $Ax \geq b$, in $x \in X$, or partially in both structures. In any case, the new problem is of the general form of (14), that is, $\min \{c^T x \mid A'x \geq b', x \in X'\}$ to which we apply a decomposition. The new RMP is still a linear program, and as soon as the possible modification of the subproblem’s structure is tractable we face no severe complications.

Consider for example the vehicle routing problem with time windows (Desaulniers et al., 2001a; Desrochers et al., 1992): Decisions can be taken on the network flow variables as well as on the starting time of the service at a customer. Additionally, we may impose subtour elimination constraints, or more generally, κ-path cuts where κ is a lower bound on the number of vehicles needed to service a certain set of customers (Kohl et al., 1999). Also possible are the trivial cuts on the total number of vehicles and on the value of the objective function, decisions on a single arc, or on a linear combination of arc flow and time values.

Indeed, the only limitation is the imagination of the researchers. Ioachim et al. (1999) perform branching on time variables that are already integer because these are currently obtained as a convex combination of several time values. Gamache et al. (1998) impose a very deep cut into the subproblem structure. It does not only cut off the current infeasible solution but at the same time it also removes a number of infeasible integer solutions from the subproblem structure. Generally speaking, a decision imposed on the pricing problem is preferable to one imposed on the master problem as it directly controls the generated columns. An example of that is the 2-cycle elimination for constrained shortest paths with time windows (Desrochers, Desrosiers, and Solomon, 1992), generalized by Irnich (2000). Indeed, the choice of the structure on which to impose decisions is a matter of algorithmic efficiency and performance. We remark that adding cutting planes in conjunction with column generation in a branch-and-bound search is usually called branch-and-price-and-cut, see e.g., Barnhart et al. (1998a); Barnhart, Hane, and Vance (2000); Park, Kang, and Park (1996).

Finally, one should be aware that even if a new decision set goes into the master problem structure, the pricing problem may change. Some examples already appeared in the routing and scheduling area. In Ioachim et al. (1999) linear combinations of time variables appear in the master problem structure; this has the consequence that these time variables also appear in the objective function of the subproblem together with the flow variables. This changes the way to solve the constrained shortest path problem (Ioachim et al., 1998).

The implementation of a column generation based integer programming code still is an issue. Not so because of the complex interaction of components but because of the vast possibilities to tune each of them. All strategies from standard branch-and-bound apply, including depth first search for early integer solutions, heuristic fathoming of nodes, rounding and (temporary) fixing of variables, and many more (Desaulniers, Desrosiers, and Solomon, 2001b). Above all, new columns are generated at any node of the tree.

Concluding, two decades ago, Chvátal (1983) saw no efficient way of handling the difficulty of finding an optimal integer solution to a problem solved using a column generation scheme. Today, this is no longer true when a compact formulation is available and columns are generated at each node.
of the search tree. This fundamental and indeed extremely simple approach has been in use now for almost twenty years (Desrosiers, Soumis, and Desrochers, 1984), and is being refined ever since. The price we have to pay for this simplicity is that besides RMP, subproblem, and branch-and-bound also the compact formulation has to be represented in order to recover a solution in terms of the original variables x.

8 Conclusion

The growing understanding of the dual point of view brought considerable progress to the column generation theory and practice. It stimulated careful initializations, sophisticated solution techniques for the restricted master problem and the subproblem, as well as better overall performance.

Due to well known computational defects of Dantzig-Wolfe decomposition we cannot recommend its classical implementation as the sometimes called complementary pricing scheme for large scale linear programs. However, structural dual cutting planes, primal and dual stabilization strategies as well as non-linear implementations turn column generation into a very promising approach to decomposable linear programs.

Column generation is clearly a success story in large scale integer programming. The linear programming bound obtained from an extensive reformulation is often stronger, the tailing off effect can be lessened or circumvented at all, and the knowledge of the original compact formulation provides us with a strong guide for branching and cutting decisions in the search tree. Today we are in a position that generic integer programming column generation codes solve many large scale problems of “industrial difficulty,” no standard commercial MIP solver could cope with. This is all the more true since non-linearities occurring in practical problems can be taken care of in the subproblem.

For very hard problems the best algorithmic choice may not be obvious. Having identified the computational bottleneck, one should invest in implementing more sophisticated ideas which we discuss in this paper. The good news is: There are plenty of them. In addition, all components greatly benefit from customization and tailoring. Problem adequate heuristics are most vital ingredients in an actual implementation. Thus, ample room for research is left, and hopefully some directions have been pointed to.

References

