Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section before going to your assigned lab session.

Verification: The Warm-up section of each lab must be completed during your assigned Lab time and the steps marked Instructor Verification must also be signed off during the lab time. One of the laboratory instructors must verify the appropriate steps by signing on the Instructor Verification line. When you have completed a step that requires verification, simply demonstrate the step to the TA or instructor. Turn in the completed verification sheet to your TA when you leave the lab.

Lab Report: It is only necessary to turn in a report on Section 3 with graphs and explanations. You are asked to label the axes of your plots and include a title for every plot. In order to keep track of plots, include your plot inlined within your report. If you are unsure about what is expected, ask the TA who will grade your report.

The objective in this lab is to introduce digital images as a second useful signal type. We will show how the A-to-D sampling and the D-to-A reconstruction processes are carried out for digital images. In particular, we will show a commonly used method of image zooming (reconstruction) that gives “poor” results—a later lab will revisit this issue and do a better job.

1 Pre-Lab

1.1 Digital Images

In this lab we introduce digital images as a signal type for studying the effect of sampling, aliasing and reconstruction. An image can be represented as a function $x(t_1, t_2)$ of two continuous variables representing the horizontal (t_2) and vertical (t_1) coordinates of a point in space.\(^1\) For monochrome images, the signal $x(t_1, t_2)$ would be a scalar function of the two spatial variables, but for color images the function $x(\cdot, \cdot)$ would have to be a vector-valued function of the two variables.\(^2\) Moving images (such as TV) would add a time variable to the two spatial variables.

Monochrome images are displayed using black and white and shades of gray, so they are called gray-scale images. In this lab we will consider only sampled gray-scale still images. A sampled gray-scale still image would be represented as a two-dimensional array of numbers of the form

$$x[m, n] = x(mT_1, nT_2) \quad 1 \leq m \leq M, \text{ and } 1 \leq n \leq N$$

where T_1 and T_2 are the sample spacings in the horizontal and vertical directions. Typical values of M and N are 256 or 512; e.g., a 512×512 image which has nearly the same resolution as a standard TV image. In MATLAB we can represent an image as a matrix, so it would consist of M rows and N columns. The matrix entry at (m, n) is the sample value $x[m, n]$—called a pixel (short for picture element).

An important property of light images such as photographs and TV pictures is that their values are always non-negative and finite in magnitude; i.e.,

$$0 \leq x[m, n] \leq X_{\text{max}} < \infty$$

\(^1\)The variables t_1 and t_2 do not denote time, they represent spatial dimensions. Thus, their units would be inches or some other unit of length.

\(^2\)For example, an RGB color system needs three values at each spatial location: one for red, one for green and one for blue.
This is because light images are formed by measuring the intensity of reflected or emitted light which must always be a positive finite quantity. When stored in a computer or displayed on a monitor, the values of \(x[m, n] \) have to be scaled relative to a maximum value \(X_{\text{max}} \). Usually an eight-bit integer representation is used. With 8-bit integers, the maximum value (in the computer) would be \(X_{\text{max}} = 2^8 - 1 = 255 \), and there would be \(2^8 = 256 \) different gray levels for the display, from 0 to 255.

1.2 Displaying Images

As you will discover, the correct display of an image on a gray-scale monitor can be tricky, especially after some processing has been performed on the image. We have provided the function `show_img.m` in the *SP First Toolbox* to handle most of these problems,\(^3\) but it will be helpful if the following points are noted:

1. All image values must be non-negative for the purposes of display. Filtering may introduce negative values, especially if differencing is used (e.g., a high-pass filter).

2. The default format for most gray-scale displays is eight bits, so the pixel values \(x[m, n] \) in the image must be converted to integers in the range \(0 \leq x[m, n] \leq 255 = 2^8 - 1 \).

3. The actual display on the monitor is created with the `show_img` function.\(^4\) The `show_img` function will handle the color map and the “true” size of the image. The appearance of the image can be altered by running the pixel values through a “color map.” In our case, we want “grayscale display” where all three primary colors (red, green and blue, or RGB) are used equally, creating what is called a “gray map.” In MATLAB the `gray` color map is set up via

\[
\text{colormap} \left(\text{gray}(256) \right)
\]

which gives a \(256 \times 3 \) matrix where all 3 columns are equal. The function `colormap(gray(256))` creates a linear mapping, so that each input pixel amplitude is rendered with a screen intensity proportional to its value (assuming the monitor is calibrated). For our lab experiments, non-linear color mappings would introduce an extra level of complication, so they will not be used.

4. When the image values lie outside the range \([0,255]\), or when the image is scaled so that it only occupies a small portion of the range \([0,255]\), the display may have poor quality. In this lab, we will use `show_img.m` to *automatically rescale the image*: This requires a linear mapping of the pixel values:\(^5\)

\[
x_s[m, n] = \mu x[m, n] + \beta
\]

The scaling constants \(\mu \) and \(\beta \) can be derived from the min and max values of the image, so that all pixel values are recomputed via:

\[
x_s[m, n] = \left\lfloor 255.999 \left(\frac{x[m, n] - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \right) \right\rfloor
\]

where \(\lfloor x \rfloor \) is the floor function, i.e., the greatest integer less than or equal to \(x \).

1.3 MATLAB Function to Display Images

You can load the images needed for this lab from \(*.mat\) files. Any file with the extension \(*.mat\) is in

\(^3\)If you have the MATLAB Image Processing Toolbox, then the function `imshow.m` can be used instead.

\(^4\)If the MATLAB function `imagesc.m` is used to display the image, two features will be missing: (1) the color map may be incorrect because it will not default to gray, and (2) the size of the image will not be a true pixel-for-pixel rendition of the image on the computer screen.

\(^5\)The MATLAB function `show_img` has an option to perform this scaling while making the image display.
MATLAB format and can be loaded via the `load` command. To find some of these files, look for *.mat in the `SP First` toolbox or in the MATLAB directory called `toolbox/matlab/demos`. Some of the image files are named `echart.mat` and `zone.mat`, but there are others within MATLAB’s demos. The default size is 256×256, but alternate versions are available as 512×512 images under names such as `zone512.mat`. After loading, use the command `whos` to determine the name of the variable that holds the image and its size.

Although MATLAB has several functions for displaying images on the CRT of the computer, we have written a special function `show_img()` for this lab. It is the visual equivalent of `soundsc()`, which we used when listening to speech and tones; i.e., `show_img()` is the “D-to-C” converter for images. This function handles the scaling of the image values and allows you to open up multiple image display windows. Here is the help on `show_img`:

```matlab
function [ph] = show_img(img, figno, scaled, map)
%SHOW_IMG display an image with possible scaling
% usage: ph = show_img(img, figno, scaled, map)
% img = input image
% figno = figure number to use for the plot
% if 0, re-use the same figure
% if omitted a new figure will be opened
% optional args:
% scaled = 1 (TRUE) to do auto-scale (DEFAULT)
% not equal to 1 (FALSE) to inhibit scaling
% map = user-specified color map
% ph = figure handle returned to caller
%----
```

Notice that unless the input parameter `figno` is specified, a new figure window will be opened.

1.4 Get Test Images

In order to probe your understanding of image display, do the following simple displays:

(a) Load and display the 326×426 “lighthouse” image from `lighthouse.mat`. This image can be find in the MATLAB files link. The command `load lighthouse` will put the sampled image into the array `ww`. Use `whos` to check the size of `ww` after loading. When you display the image it might be necessary to set the colormap via `colormap(gray(256))`.

(b) Use the colon operator to extract the 200th row of the “lighthouse” image, and make a plot of that row as a 1-D discrete-time signal.

```matlab
ww200 = ww(200,:);
```

Observe that the range of signal values is between 0 and 255. Which values represent white and which ones black? Can you identify the region where the 200th row crosses the fence?

2 Warm-up

The instructor verification sheet may be found at the end of this lab.

2.1 Synthesize a Test Image

In order to probe your understanding of the relationship between MATLAB matrices and image display, you can generate a synthetic image from a mathematical formula.
(a) Generate a simple test image in which all of the columns are identical by using the following *outer product*:

\[x_{\text{pix}} = \text{ones}(256,1) * \cos(2\pi*(0:255)/16); \]

Display the image and explain the gray-scale pattern that you see. How wide are the bands in number of pixels? How can you predict that width from the formula for \(x_{\text{pix}} \)?

(b) In the previous part, which data value in \(x_{\text{pix}} \) is represented by white? Which one by black?

(c) Explain how you would produce an image with bands that are horizontal. Give the formula that would create a \(400 \times 400 \) image with 5 horizontal black bands separated by white bands. Write the MATLAB code to make this image and display it.

Instructor Verification (separate page)

2.2 Printing Multiple Images on One Page

The phrase “what you see is what you get” can be elusive when dealing with images. It is VERY TRICKY to print images so that the hard copy matches exactly what is on the screen, because there is usually some interpolation being done by the printer or by the program that is handling the images. One way to think about this in signal processing terms is that the screen is one kind of D-to-A and the printer is another kind, but they use different (D-to-A) reconstruction methods to get the continuous-domain (analog) output image that you see.

Furthermore, if you try to put two images of different sizes into subplots of the same MATLAB figure, it won’t work because MATLAB wants to force them to be the same size. Therefore, you should display your images in separate MATLAB Figure windows. In order to get a printout with **MULTIPLE IMAGES ON THE SAME PAGE**, use the following procedure:

1. In MATLAB, use `show_img` and `trusize` to put your images into separate figure windows at the correct pixel resolution.

2. Use the Windows program called PAINT to assemble the different images onto one page. This program can be found under *Accessories*.

3. For each MATLAB figure window, press ALT and the PRINT-SCREEN key at the same time, which will copy the active window contents to the clipboard.

4. After each “window capture” in step 3, paste the clipboard contents into PAINT.

5. Arrange the images so that you can make a comparison for your lab report.

6. Print the assembled images from PAINT to a printer.

2.3 Sampling of Images

Images that are stored in digital form on a computer have to be sampled images because they are stored in an \(M \times N \) array (i.e., a matrix). The sampling rate in the two spatial dimensions was chosen at the time the image was digitized (in units of samples per inch if the original was a photograph). For example, the image

6 An alternative is to use the free program called IRFANVIEW, which can do image editing and also has screen capture capability. It can be obtained from http://www.irfanview.com/english.htm.
might have been “sampled” by a scanner where the resolution was chosen to be 300 dpi (dots per inch). If we want a different sampling rate, we can simulate a lower sampling rate by simply throwing away samples in a periodic way. For example, if every other sample is removed, the sampling rate will be halved (in our example, the 300 dpi image would become a 150 dpi image). Usually this is called sub-sampling or down-sampling.

Down-sampling throws away samples, so it will shrink the size of the image. This is what is done by the following scheme:

\[
wp = ww(1:p:end,1:p:end);
\]

when we are downsampling by a factor of \(p\).

(a) One potential problem with down-sampling is that aliasing might occur. This can be illustrated in a dramatic fashion with the lighthouse image.

Load the lighthouse.mat file which has the image stored in a variable called \(ww\). When you check the size of the image, you’ll find that it is not square. Now down-sample the lighthouse image by a factor of 2. What is the size of the down-sampled image? Notice the aliasing in the down-sampled image, which is surprising since no new values are being created by the down-sampling process. Describe how the aliasing appears visually. Which parts of the image show the aliasing effects most dramatically?

Instructor Verification (separate page)

3 Lab Exercises: Sampling, Aliasing and Reconstruction

3.1 Down-Sampling

For the lighthouse picture, downsampled by two in the warm-up section:

(a) Describe how the aliasing appears visually. Compare the original to the downsampled image. Which parts of the image show the aliasing effects most dramatically?

(b) This part is challenging: explain why the aliasing happens in the lighthouse image by using a “frequency domain” explanation. In other words, estimate the frequency of the features that are being aliased. Give this frequency as a number in cycles per pixel. (Note that the fence provides a sort of “spatial chirp” where the spatial frequency increases from left to right.) Can you relate your frequency estimate to the Sampling Theorem?

You might try zooming in on a very small region of both the original and downsampled images.

7For this example, the sampling periods would be \(T_1 = T_2 = 1/300\) inches.
8The Sampling Theorem applies to digital images, so there is a *Nyquist Rate* that depends on the maximum spatial frequency in the image.
9One difficulty with showing aliasing is that we must display the pixels of the image exactly. This almost never happens because most monitors and printers will perform some sort of interpolation to adjust the size of the image to match the resolution of the device. In MATLAB we can override these size changes by using the function `truesize` which is part of the Image Processing Toolbox. In the *SP First Toolbox*, an equivalent function called `trusize.m` is provided.
3.2 Reconstruction of Images

When an image has been sampled, we can fill in the missing samples by doing interpolation. For images, this would be analogous to the examples shown in Chapter 4 for sine-wave interpolation which is part of the reconstruction process in a D-to-A converter. We could use a “square pulse” or a “triangular pulse” or other pulse shapes for the reconstruction.

![Diagram of 2-D Interpolation]

Figure 1: 2-D Interpolation broken down into row and column operations: the gray dots indicate repeated data values created by a zero-order hold; or, in the case of linear interpolation, they are the interpolated values.

For these reconstruction experiments, use the lighthouse image, down-sampled by a factor of 3 (similar to what you did in Section 2.3). You will have to generate this by loading in the image from lighthouse.mat to get the image which is in the array called xx. A down-sampled lighthouse image should be created and stored in the variable xx3. The objective will be to reconstruct an approximation to the original lighthouse image, which is 256 × 256, from the smaller down-sampled image.

(a) The simplest interpolation would be reconstruction with a square pulse which produces a “zero-order hold.” Here is a method that works for a one-dimensional signal (i.e., one row or one column of the image), assuming that we start with a row vector xr1, and the result is the row vector xr1hold.

```
xr1 = (-2).^(0:6);
L = length(xr1);
nn = ceil((0.999:1:4*L)/4); %<-- Round up to the integer part
xr1hold = xr1(nn);
```

Plot the vector xr1hold to verify that it is a zero-order hold version derived from xr1. Explain what values are contained in the indexing vector nn. If xr1hold is treated as an interpolated version of xr1, then what is the interpolation factor? Your lab report should include an explanation for this part, but plots are optional—use them if they simplify the explanation.

(b) Now return to the down-sampled lighthouse image, and process all the rows of xx3 to fill in the missing points. Use the zero-order hold idea from part (a), but do it for an interpolation factor of 3. Call the result xholdrows. Display xholdrows as an image, and compare it to the downsampled image xx3; compare the size of the images as well as their content.

(c) Now process all the columns of xholdrows to fill in the missing points in each column and and call the result xhold. Compare the result (xhold) to the original image lighthouse. Include your code for parts (b) and (c) in the lab report.
(d) **Linear interpolation** can be done in MATLAB using the `interp1` function (that’s “interp-one”).

When unsure about a command, use `help`.

Its default mode is linear interpolation, which is equivalent to using the ‘*linear*’ option, but `interp1` can also do other types of polynomial interpolation. Here is an example on a 1-D signal:

```matlab
n1 = 0:6;
xr1 = (-2).^n1;
tti = 0:0.1:6;  %-- locations between the n1 indices
xr1linear = interp1(n1,xr1,tti);  %-- function is INTERP-ONE
stem(tti,xr1linear)
```

For the example above, what is the interpolation factor when converting `xr1` to `xr1linear`?

(e) In the case of the lighthouse image, you need to carry out a linear interpolation operation on both the rows and columns of the down-sampled image `xx3`. This requires two calls to the `interp1` function, because one call will only process all the columns of a matrix.\(^1\) Name the interpolated output image `xxlinear`. Include your code for this part in the lab report.

(f) Compare `xxlinear` to the original image `lighthouse`. Comment on the visual appearance of the “reconstructed” image versus the original; point out differences and similarities. Can the reconstruction (i.e., zooming) process remove the aliasing effects from the down-sampled lighthouse image?

(g) Compare the quality of the linear interpolation result to the zero-order hold result. Point out regions where they differ and try to justify this difference by estimating the local frequency content. In other words, look for regions of “low-frequency” content and “high-frequency” content and see how the interpolation quality is dependent on this factor.

A couple of questions to think about: Are edges low frequency or high frequency features? Are the fence posts low frequency or high frequency features? Is the background a low frequency or high frequency feature?

Comment: You might use MATLAB’s zooming feature to show details in small patches of the output image. However, be careful because zooming does its own interpolation, probably a zero-order hold.

\(^1\)Use a matrix transpose in between the interpolation calls. The transpose will turn rows into columns.
3.3 More about Images in MATLAB (Optional)

This section11 is included for those students who might want to relate these MATLAB operations to previous experience with software such as Photoshop. There are many image processing functions in MATLAB. For example, try the help command:

```
help images
```

for more information, but keep in mind that the Image Processing Toolbox may not be on your computer.

3.3.1 Zooming in Software

If you have used an image editing program such as Adobe’s Photoshop, you might have observed how well or how poorly image zooming (i.e., interpolation) is done. For example, if you try to blow up a JPEG file that you’ve downloaded from the web, the result is usually disappointing. Since MATLAB has the capability to read lots of different formats, you can apply the image zooming via interpolation to any photograph that you can acquire. The MATLAB function for reading JPEG images is `imread()` which would be invoked as follows:

```
xx = imread('foo.jpg','jpeg');
```

Since `imread()` is part of the image processing toolbox, this test can be done in the CoC computer labs, but may not be possible on your home computer.

3.3.2 Warnings

Images obtained from JPEG files might come in many different formats. Two precautions are necessary:

1. If MATLAB loads the image and stores it as 8-bit integers, then MATLAB will use an internal data type called `uint8`. The function `show_img()` cannot handle this format, but there is a conversion function called `double()` that will convert the 8-bit integers to double-precision floating-point for use with filtering and processing programs.

   ```matlab
   yy = double(xx);
   ```

 You can convert back to 8-bit values with the function `uint8()`.

2. If the image is a color photograph, then it is actually composed of three “image planes” and MATLAB will store it as a 3-D array. For example, the result of `whos` for a 545 \times 668 color image would give:

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>545x668x3</td>
<td>1092180</td>
<td>uint8 array</td>
</tr>
</tbody>
</table>

 In this case, you should use MATLAB’s image display functions such as `imshow()` to see the color image. Or you can convert the color image to gray-scale with the function `rgb2gray()`.

11Optional means that you don’t have to include this in a lab report. This section provided in case you are curious and want to learn more on your own.
Lab 06

INSTRUCTOR VERIFICATION PAGE

For each verification, be prepared to explain your answer and respond to other related questions that the lab TA’s or professors might ask. Turn this page in at the end of your lab period.

Name: _______________________________ Date of Lab: __________

Part 2.1(c) Create a 400×400 image with 5 horizontal black bands separated by white bands. Write the MATLAB code to make this image and display it.

Verified: _______________ Date/Time: __________

Part 2.3(a) Downsample the lighthouse image to see aliasing. Describe the aliasing, and where it occurs in the image.

Verified: _______________ Date/Time: __________