GPU programming made easier

Jacob Jepsen

6. June 2014

University of Copenhagen

Department of Computer Science
Introduction

- We created a tool that reduces the development time of GPU code.
- The input is a loop nest which is parsed into an internal representation.
- We generate code which makes the loop executable on a GPU.
- We apply optimizations to the code and perform benchmarks on CPU and GPU architectures.
- Our code is 2-258X faster than code generated by an OpenACC compiler, 1-37X faster than optimized CPU code, and attains up to 25% of peak performance.
Ideas

• We want to reduce errors and the development time, while ensuring high performance.
• Optimizations on OpenCL code are regular and the same optimization can be applied to many different pieces of code.
• A tool with a catalogue of optimizations which can be performed semi-automatically by the programmer.
• Move toward fully-automatic optimizations to make the tool usable for novices in GPU programming.
Overview

- Front end and code generation
- OpenCL background
- GPU background
- Transformations
- Pattern-matching rules
- Performance experiments
- Conclusion
Front end and code generation

t_PLUS = r’\+’

def p_native_type(p):
 """ native_type : VOID
 | SIZE_T
 | ...
 """
 p[0] = p[1]

def p_for_loop(p):
 """ for_loop : FOR LPAREN assignment_expression SEMI binop SEMI increment RPAREN compound
 """
 p[0] = ForLoop(p[3], p[5], p[7], p[9])

class ForLoop(Node):
 def __init__(self, init, cond, inc, compound):
 self.init = init
 self.cond = cond
 self.inc = inc
 self.compound = compound
OpenCL background

- The host code sets up data structures and manages the GPU execution.
GPU (GK110) background

- Warps: 32 threads which execute the same instructions in a Single Instruction Multiple Threads (SIMT) fashion.
- Registers: 255 private to each thread. Use as cache for data with time locality.
- Local memory: scratchpad shared between local work group. Effective when data is shared/broadcasted.
- Memory coalescing: data accessed by threads with consecutive thread IDs should be located consecutively in memory.
Transformations

- **DefineArg**: Similar to constant propagation, we can compile the values of variables into the kernel code, in order to allow the compiler to do more optimizations.

- **Transposition**: We transpose the data in an array in order to create coalesced memory access.
HoistToReg and HoistToRegLoop

- Read data once, save it in registers, and reread the data from there, similar to loop-invariant code motion.

```c
for (unsigned j = 0; j < N; j++) {
    float a_x = Pos[0][get_global_id(0)];
    float a_y = Pos[1][get_global_id(0)];
    float a_m = Mas[get_global_id(0)];
    ...
}
```

```c
float Mas0_reg = Mas[get_global_id(0)];
float Pos0_reg = Pos[0][get_global_id(0)];
float Pos1_reg = Pos[1][get_global_id(0)];
for (unsigned j = 0; j < N; j++) {
    float a_x = Pos0_reg;
    float a_y = Pos1_reg;
    float a_m = Mas0_reg;
    ...
}
```
TileInLocal

- Load shared data into local memory once and let each thread read the data they need from local memory.

\[C_{\text{sub}} += A_{\text{local}} \times B_{\text{local}} \]
TileInLocal

Original code

```c
float C_sub = 0;
for (unsigned k = 0; k < wA; k++) {
    C_sub += A[get_global_id(1)][k] * B[k][get_global_id(1)];
}
C[get_global_id(1)][get_global_id(0)] = C_sub;
```

Transformed code

```c
float C_sub = 0;
for (unsigned k = 0; k < wA; k+=16) {
    A_local[get_local_id(1)][get_local_id(0)] =
        A[get_global_id(1)][k + get_local_id(0)];
    B_local[get_local_id(1)][get_local_id(0)] =
        B[k + get_local_id(1)][get_global_id(0)];
    barrier(CLK_LOCAL_MEM_FENCE);
    for (unsigned kk = 0; kk < 16; kk++) {
        C_sub += A_local[get_local_id(1)][kk] * 
            B_local[kk][get_local_id(0)];
    }
    barrier(CLK_LOCAL_MEM_FENCE);
}
C[get_global_id(1)][get_global_id(0)] = C_sub;
```
Pattern matching

- We link each transformations to a pattern. The presence of the pattern in the code, means that the linked transformation is applicable.
- We iterate over the array references and search for patterns. For each found pattern we check a set of conditions, and if met, we perform the linked transformation.
- The conditions are not exhaustive, but sufficiently thorough to make them usable in practice.
- The running time is linear in the number of array references.
DefineArg and Transposition

- For DefineArg we do no pattern matching, and perform the transformation always.
- For Transposition we divide the pattern-matching rule into two cases: 1D- and 2D-parallelization.

For 1D:

\[A[\text{get_global_id}(0)][d] \]

For 2D:

\[A[\text{get_global_id}(0)][\text{get_global_id}(1)] \]
HoistToReg and HoistToRegLoop

- For HoistToReg: an array reference that is inside one or more loops, but contains no loop index.
- For HoistToRegLoop: an array reference that is inside two loops, and the loop index of the outermost loop is not in the subscript of the reference.
- We use at most 20 registers.
- We decide at run-time whether to include the transformation.
For **HoistToReg**

```cpp
for (unsigned k = 0; k < N; k++) {
    ... = A[10];
    ... = B[get_global_id(0)][l];
    for (unsigned g = 0; g < dim; g++) {
        ... = C[get_global_id(1)];
        ... = D[l][10];
    }
}
```

For **HoistToRegLoop**

```cpp
for (unsigned k = 0; k < N; k++) {
    for (unsigned g = 0; g < dim; g++) {
        ... = A[10][g];
        ... = B[g][get_global_id(0)];
        ... = C[get_global_id(1)][g];
        ... = D[g][l];
    }
}
```
TileInLocal

• An array with two subscripts where one contains a loop index and the other a global thread identifier.

• Additional conditions:
 • The loop index must have a stride of one.
 • The number of loop iterations must be divisible by a tiling factor.

• Check last condition at run-time.

```c
for (unsigned k = 0; k < N; k++) {
    ... = A[get_global_id(1)][k];
    ... = B[k][get_global_id(0)];
}
```
Performance experiments

We compare the performance against:

1. Frameworks with comparative capabilities
2. The theoretical peak performance of the test hardware
3. The performance of CPUs

- We found one framework, the OpenACC API, which has similar capabilities as our tool.
- We extended our tool to generate optimized code for CPUs.
- The benchmarks were run on an NVIDIA K20 GPU, and a machine with two Intel Xeon E5-2670 clocked at 2.6 GHz.
Performance experiments (2)

We have a mix of programs: compute/memory bound, small/high N.

<table>
<thead>
<tr>
<th></th>
<th>MatMul</th>
<th>Squared Euclid</th>
<th>NBody</th>
<th>Laplace</th>
<th>Gaussian kernels</th>
<th>Jacobi</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINEARG</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>TRANSPOSITION</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOISTTOREG</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOISTTOREGLOOP</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TILEINLOCAL</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>TILEINLOCALSTENCIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Table: Applicability of the transformations.
Performance experiments (3)

<table>
<thead>
<tr>
<th></th>
<th>MatMul</th>
<th>Jacobi</th>
<th>Squared Euclid</th>
<th>NBody</th>
<th>Laplace</th>
<th>Gaussian kernels</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU Optimized to GPU Basic</td>
<td>3.1</td>
<td>1</td>
<td>55.7</td>
<td>3.4</td>
<td>3.6</td>
<td>1.7</td>
</tr>
<tr>
<td>GPU Basic to PGI</td>
<td>0.9</td>
<td>1.9</td>
<td>4.6</td>
<td>2.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GPU Optimized to PGI</td>
<td>2.8</td>
<td>1.9</td>
<td>257.4</td>
<td>7.5</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table: Speedup in the execution time of the code generated by the different frameworks.
Performance experiments (4)

<table>
<thead>
<tr>
<th></th>
<th>MatMul</th>
<th>Jacobi</th>
<th>Squared Euclid</th>
<th>NBody</th>
<th>Laplace</th>
<th>Gaussian kernels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance [GFlop/s]</td>
<td>205</td>
<td>4</td>
<td>611</td>
<td>872</td>
<td>245</td>
<td>104</td>
</tr>
<tr>
<td>% of peak performance</td>
<td>6</td>
<td>1</td>
<td>18</td>
<td>25</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>CPU Optimized to CPU Basic</td>
<td>6.8</td>
<td>0.7</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>15.6</td>
</tr>
<tr>
<td>GPU Optimized to CPU Optimized</td>
<td>3.3</td>
<td>0.6</td>
<td>36.1</td>
<td>10.9</td>
<td>6.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Conclusion

• Design of a model of how data can be reused.
• We found pattern-matching rules which allow the transformations to be performed automatically.
• Conditions pertaining to the applicability of a transformations needs to be checked at compile time and at run-time.
• Benchmarks show significant improvements, up to one order of magnitude, in time-to-solution when comparing to OpenACC and optimized CPU code.
• For three programs, the generated code attained close to 25% of peak performance of the GPU. For the others, further transformations would be needed to obtain higher performance.