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Abstract
The weighted majority vote is part of the winning strategies in many machine learning
competitions. It is an integral part of random forests and boosting and is also used to
combine predictions of heterogeneous classifiers. While generalization guarantees and
theoretically grounded optimization algorithms of a weighted majority vote have been
a research topic for decades, it is still unclear how to achieve a tight generalization
bound that also serves as a faithful optimization objective for achieving good test
performance of the resulting weighted majority vote.

There have been extensive studies into second-order analysis that take into account
the correlation of errors of the classifiers, which is the key power of the weighted
majority vote. However, the existing bounds are either tight but hard to optimize,
e.g., the C-bounds, or easy to optimize but come at the cost of being less tight, e.g.,
the tandem bound. In this thesis, we derive new second-order oracle bounds, where
we show it’s possible to achieve bounds that are as tight as the C-bounds but remain
easy to optimize as the tandem bound.

The concentration of measure inequalities are also needed to transform oracle bounds
into empirical bounds. In particular, we derive a new second-order concentration
inequality for ternary random variables, which are random variables with a support
size of three. Ternary random variables appear in various applications, including the
analysis of the weighted majority vote, excess losses, and learning with abstention.
The new inequality takes advantage of both the kl inequality that exploits the
combinatorial structure in the case of binary random variables, and the Bernstein-
type inequalities that are effective if the random variables have low variance.

In this thesis, our focus is on ensemble classifiers and randomized classifiers. To
handle this, we use PAC-Bayesian analysis to convert oracle bounds to empirical
bounds. This involves applying standard PAC-Bayesian techniques to obtain the
PAC-Bayesian versions of various concentration inequalities for random variables.
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Resumé
Den weighted majority vote er en del af de vindende strategier i mange konkur-
rencer inden for machine learning. Det er en integreret del af random forests og
boosting og bruges også til at kombinere forudsigelser fra heterogene klassifikatorer.
Mens generaliseringsgarantier og teoretisk funderede optimeringsalgoritmer af en
weighted majority vote har været et forskningsemne i årtier, er det stadig uklart,
hvordan man opnår en stram generaliseringsgrænse, der også fungerer som en pålidelig
optimeringsmål for at opnå god testydelse af det resulterende weighted majority vote.

Der er blevet omfattende undersøgelser af andenordensanalyse, der tager hensyn til
korrelationen af fejl fra klassifikatorerne, som er den centrale styrke i den weighted
majority vote. Imidlertid er eksisterende grænser enten stramme, men svære at
optimere, f.eks. C-bounds, eller lette at optimere, men på bekostning af at være
mindre stramme, f.eks. tandem bound. I denne afhandling udleder vi nye andenordens
orakelgrænser, hvor vi viser, at det er muligt at opnå grænser, der er lige så stramme
som C-bounds, men stadig er lette at optimere som tandem bound.

Koncentration uligheder er også nødvendige for at omdanne orakelgrænser til empiriske
grænser. Vi udleder især en ny andenordens koncentration uligheder for ternære
stokastiske variable, som er stokastiske variable med tre mulige udfald. Ternære
stokastiske variable optræder i forskellige anvendelser, herunder analysen af den
weighted majority vote, excess losses, og learning with abstention. Den nye ulighed
udnytter både kl-uligheden, som udnytter den kombinatoriske struktur i stokastiske
variable, og de uligheder af Bernstein-typen, der er effektive, hvis de stokastiske
variable har lav varians.

I denne afhandling fokuserer vi på ensembleklassifikatorer og randomiserede klassi-
fikatorer. For at håndtere dette bruger vi PAC-Bayesian analyse til at konvertere
orakelgrænser til empiriske grænser. Dette indebærer anvendelse af standard PAC-
Bayesian teknikker til at opnå PAC-Bayesian versioner af forskellige koncentration
uligheder for stokastiske variable.
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Chapter 1

Introduction

Ensemble methods are machine learning methods that combine the predictions of
multiple classifiers to produce more accurate and robust models. One such method is
the weighted majority vote, which assigns a weight to each base classifier, or voter,
and outputs the majority of the predictions based on the assigned weights. It is an
integral part of random forests and boosting, and is also applied to combining the
predictions of heterogeneous classifiers. The power of the majority vote is in the
cancellation of errors effect: when the errors of individual classifiers are independent
or anticorrelated and the error probability of individual classifiers is smaller, then
the errors average out and the majority vote tends to outperform the individual
classifiers.

While generalization guarantees of a weighted majority vote have been a research topic
for decades, with optimal weighting derived under certain assumptions (Berend and
Kontorovich, 2016), the assumptions are typically not satisfied in practice. Therefore,
techniques that estimate and solve for the optimal combination of voter predictions
from the available data are necessary. The most basic result is the first-order oracle
bound, which bounds the expected loss of weighted majority vote by the average of
expected losses of the individual classifiers. However, due to ignoring error correlation
among classifiers, the method assigns excessive weight to the best-performing ones,
reducing the majority vote to just a few classifiers and significantly increasing the
test error (Lorenzen et al., 2019).

To take the correlation of errors into consideration, previous works proposed second-
order oracle bounds, the C-bounds (Lacasse et al., 2007; Germain et al., 2015;
Laviolette et al., 2017), and the tandem bound (Masegosa et al., 2020). While the

1



Chapter 1 | Introduction

C-bounds are tight, they are hard to estimate and optimize. On the other hand, the
tandem bound is easy to optimize but is not as tight as the C-bounds.

One of the focuses of this thesis is to bridge between these two second-order oracle
bounds, where we show it’s possible to achieve bounds that are as tight as the
C-bounds but easy to optimize as the tandem bound.

Since accessing oracle bounds is often impossible, we have to use concentration
inequalities to transform them into empirical bounds. In particular, an example of
the oracle quantities that requires concentration inequalities is a ternary random
variable, which is a random variable with a support size of three. It appears in various
applications, including the analysis of the weighted majority vote, excess losses, and
learning with abstention. Ternary random variables are slightly more complex than
binary random variables but simpler than general bounded random variables.

While the kl inequality (Maurer, 2004; Langford, 2005) is known to be tight for binary
random variables and applicable to any bounded random variables, it is not necessarily
a good choice for bounded random variables that can take more than two values.
Instead, the Bernstein-type inequalities (Maurer and Pontil, 2009; Cesa-Bianchi et al.,
2007; Mhammedi et al., 2019) can be more effective due to their ability to exploit
low variance. However, they can be loose for binary random variables. Previous
studies (Tolstikhin and Seldin, 2013; Mhammedi et al., 2019) have attempted to
balance the need for exploiting low variance while still achieving the same level of
tightness as the kl inequality if a distribution happens to be close to binary, but the
problem remains an open question.

Another focus of this thesis is to resolve this question for the case of ternary random
variables by a new concentration inequality based on the kl inequality.

Finally, because we are dealing with ensemble classifiers and randomized classifiers, we
utilize PAC-Bayesian analysis to transform the oracle bounds into empirical bounds.
This involves using a standard PAC-Bayesian technique to derive the PAC-Bayesian
versions of many concentration inequalities for random variables.

1.1 Outline of the Thesis
The following two chapters contain the papers Wu et al. (2021) and Wu and Seldin
(2022).

Chapter 2 corresponds to Wu et al. (2021), where we present a new second-order
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Chapter 1 | Introduction

oracle bound for the expected risk of a weighted majority vote. The bound is based
on a novel parametric form of the Chebyshev-Cantelli inequality (a.k.a. one-sided
Chebyshev’s), which is amenable to efficient minimization. The new form resolves the
optimization challenge faced by prior oracle bounds based on the Chebyshev-Cantelli
inequality, the C-bounds (Germain et al., 2015), and, at the same time, it improves on
the oracle bound based on second-order Markov’s inequality introduced by Masegosa
et al. (2020). We also derive a new second-order concentration of measure inequality,
which we name PAC-Bayes-Bennett, since it combines PAC-Bayesian bounding with
Bennett’s inequality. We use it for empirical estimation of the oracle bound. The
PAC-Bayes-Bennett inequality improves on the PAC-Bayes-Bernstein inequality of
Seldin et al. (2012). We provide an empirical evaluation demonstrating that the new
bounds can improve on the previous second-order bounds for weighted majority vote.

Chapter 3 corresponds to Wu and Seldin (2022), where we present a new concentration
of measure inequality for sums of independent bounded random variables, which
we name a split-kl inequality. The inequality is particularly well-suited for ternary
random variables, which appear in various problems, including analysis of weighted
majority votes, analysis of excess losses in classification, and learning with abstention.
We demonstrate that for ternary random variables the inequality is simultaneously
competitive with the kl inequality, the Empirical Bernstein inequality, and the
Unexpected Bernstein inequality, and in certain regimes outperforms all of them.
It resolves an open question by Tolstikhin and Seldin (2013) and Mhammedi et al.
(2019) on how to match simultaneously the combinatorial power of the kl inequality
when the distribution happens to be close to binary and the power of Bernstein
inequalities to exploit low variance when the probability mass is concentrated on the
middle value. We also derive a PAC-Bayes-split-kl inequality and compare it with the
PAC-Bayes-kl, PAC-Bayes-Empirical-Bennett, and PAC-Bayes-Unexpected-Bernstein
inequalities in an analysis of excess losses and in an analysis of a weighted majority
vote for several UCI datasets. Last but not least, our study provides the first direct
comparison of the Empirical Bernstein and Unexpected Bernstein inequalities and
their PAC-Bayes extensions.

We finish this work by a discussion of these results in Chapter 4.

1.2 Main Contributions
The main contributions of this work are:

• We propose a new parametric form of the Chebyshev-Cantelli inequality, which
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Chapter 1 | Introduction

has no variance in the denominator and preserves tightness of the original
bound. The new form allows efficient minimization and empirical estimation.

• We propose two new second-order oracle bounds for the weighted majority vote
based on the new form of the Chebyshev-Cantelli inequality. The bounds have
two advantages: (1) they are amenable to tight translation to empirical bounds;
and (2) the resulting empirical bounds are amenable to efficient minimization.

• We propose four new second-order empirical bounds for the weighted majority
vote based on the two newly proposed second-order oracle bounds. The empirical
bounds are amenable to efficient minimization. We show they lead to tighter
bounds and better test performance than the existing second-order bounds.

• We derive a new concentration of measure inequality, which we name the
PAC-Bayes-Bennett inequality. It can be applied to arbitrary loss functions
taking values in an interval with bounded length. Also, it improves on the
PAC-Bayes-Bernstein inequality of Seldin et al. (2012).

• We derive a new concentration of measure inequality, which we name the split-kl
inequality. We also derive its PAC-Bayes counterpart, the PAC-Bayes-split-kl
inequality. They can be applied to arbitrary bounded loss functions and are
particularly well-suited for ternary random variables.

• Importantly, we demonstrate that for ternary random variables, the split-kl
inequality is simultaneously competitive with the kl inequality, the Empirical
Bernstein inequality, and the Unexpected Bernstein inequality, and in certain
regimes outperforms all of them. It resolves an open question by Tolstikhin and
Seldin (2013) and Mhammedi et al. (2019) on how to match simultaneously the
combinatorial power of the kl inequality when the distribution happens to be
close to binary and the power of Bernstein inequalities to exploit low variance
when the probability mass is concentrated on the middle value.

• To the best of our knowledge, this is the first time when the Empirical Bern-
stein and the Unexpected Bernstein inequalities are directly compared, with
and without the PAC-Bayesian extension. We also show that an inequality
introduced by Cesa-Bianchi et al. (2007) yields a relaxation of the Unexpected
Bernstein inequality by Mhammedi et al. (2019).

• We use the ideas of excess losses and informed priors (Ambroladze et al., 2007;
Mhammedi et al., 2019), together with the proposed PAC-Bayes inequalities
to improve the performance of the binary classification problems with linear
classifiers considered by Mhammedi et al. (2019).
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Chapter 2

Chebyshev-Cantelli
PAC-Bayes-Bennett Inequality for
the Weighted Majority Vote

The work presented in this chapter is based on a paper that has been published as:

Yi-Shan Wu, Andres Masegosa, Stephan Sloth Lorenzen, Christian Igel, and Yevgeny
Seldin. Chebyshev-cantelli pac-bayes-bennett inequality for the weighted majority
vote. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
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Chapter 2 | Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote

Abstract
We present a new second-order oracle bound for the expected risk of a weighted
majority vote. The bound is based on a novel parametric form of the Chebyshev-
Cantelli inequality (a.k.a. one-sided Chebyshev’s), which is amenable to efficient
minimization. The new form resolves the optimization challenge faced by prior oracle
bounds based on the Chebyshev-Cantelli inequality, the C-bounds (Germain et al.,
2015), and, at the same time, it improves on the oracle bound based on second-order
Markov’s inequality introduced by Masegosa et al. (2020). We also derive a new
concentration of measure inequality, which we name PAC-Bayes-Bennett, since it
combines PAC-Bayesian bounding with Bennett’s inequality. We use it for empirical
estimation of the oracle bound. The PAC-Bayes-Bennett inequality improves on the
PAC-Bayes-Bernstein inequality of Seldin et al. (2012). We provide an empirical
evaluation demonstrating that the new bounds can improve on the work of Masegosa
et al. (2020). Both the parametric form of the Chebyshev-Cantelli inequality and
the PAC-Bayes-Bennett inequality may be of independent interest for the study of
concentration of measure in other domains.

2.1 Introduction
Weighted majority vote is a central technique for combining predictions of multiple
classifiers. It is an integral part of random forests (Breiman, 1996, 2001), boosting
(Freund and Schapire, 1996), gradient boosting (Friedman, 1999, 2001; Mason et al.,
1999; Chen and Guestrin, 2016), and it is also used to combine predictions of
heterogeneous classifiers. It is part of the winning strategies in many machine learning
competitions. The power of the majority vote is in the cancellation of errors effect:
when the errors of individual classifiers are independent or anticorrelated and the
error probability of individual classifiers is smaller than 0.5, then the errors average
out and the majority vote tends to outperform the individual classifiers.

Generalization bounds for weighted majority vote and theoretically-grounded ap-
proaches to weight-tuning are decades-old research topics. Berend and Kontorovich
(2016) derived an optimal solution under the assumption of known error rates and
independence of errors of individual classifiers, but neither of the two assumptions is
typically satisfied in practice.

In absence of the independence assumption, the most basic result is the first-order
oracle bound, which is based on Markov’s inequality and bounds the expected loss of
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Chapter 2 | Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote

ρ-weighted majority vote by twice the ρ-weighted average of expected losses of the
individual classifiers. This finding is so old and basic that Langford and Shawe-Taylor
(2002) call it “the folk theorem”. The ρ-weighted average of the expected losses
is then bounded using PAC-Bayesian bounds, turning the oracle bound into an
empirical bound (McAllester, 1998; Seeger, 2002; Langford and Shawe-Taylor, 2002).
While the translation from oracle to empirical bound is quite tight (Germain et al.,
2009; Thiemann et al., 2017), the first-order oracle bound ignores the correlation of
errors, which is the main power of the majority vote. As a result, its minimization
overconcentrates the weights on the best-performing classifiers, effectively reducing the
majority vote to very few or even a single best classifier, which leads to a significant
deterioration of the test error (Lorenzen et al., 2019; Masegosa et al., 2020).

In order to take correlation of errors into account, Lacasse et al. (2007) derived
second-order oracle bounds, the C-bounds, which are based on the Chebyshev-Cantelli
inequality. The ideas were further developed by Laviolette et al. (2011), Germain et al.
(2015), and Laviolette et al. (2017). However, they were only able to optimize the
bounds in the highly restrictive setting of binary classification with self-complemented
sets of classifiers and aligned priors and posteriors (Germain et al., 2015). Several
follow-up works resorted to minimization of heuristic surrogates rather than the
bound itself (Bauvin et al., 2020; Viallard et al., 2021). Furthermore, second-order
oracle quantities in the denominator of the oracle bounds lead to looseness in their
translation to empirical bounds (Lorenzen et al., 2019).

Masegosa et al. (2020) proposed an alternative second-order oracle bound, the tandem
bound, based on second-order Markov’s inequality. While the second-order Markov’s
inequality is weaker than the Chebyshev-Cantelli inequality, the resulting bound
has no oracle quantities in the denominator, which allows tight translation to an
empirical bound. Additionally, Masegosa et al. proposed an efficient procedure for
minimization of their empirical bound. They have shown that minimization of the
empirical bound does not lead to deterioration of the test error.

Our work can be seen as a bridge between the tandem bound and the C-bounds,
and as an improvement of both. The key novelty is a new parametric form of
Chebyshev-Cantelli inequality, which preserves the tightness of Chebyshev-Cantelli,
but avoids oracle quantities in the denominator. This allows both efficient translation
to empirical bounds and efficient minimization. We derive two new second-order
oracle bounds based on the new inequality, one using the tandem loss and the other
using the tandem loss with an offset. For empirical estimation of the latter we derive
a PAC-Bayes-Bennett inequality. The overall contributions can be summarized as
follows:

7
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1. We propose a new parametric form of the Chebyshev-Cantelli inequality, which
has no variance in the denominator and preserves tightness of the original bound.
The new form allows efficient minimization and empirical estimation.

2. We propose two new second-order oracle bounds for the weighted majority vote
based on the new form of the Chebyshev-Cantelli inequality. The bounds have
two advantages: (1) they are amenable to tight translation to empirical bounds;
and (2) the resulting empirical bounds are amenable to efficient minimization.

3. We derive a new concentration of measure inequality, which we name the PAC-
Bayes-Bennett inequality. It improves on the PAC-Bayes-Bernstein inequality of
Seldin et al. (2012). We use the inequality for bounding the tandem loss with an
offset.

2.2 Problem setup
The problem setup and notations are borrowed from Masegosa et al. (2020).

Multiclass classification. We let S = {(X1, Y1), . . . , (Xn, Yn)} be an independent
identically distributed sample from X×Y , drawn according to an unknown distribution
D, where Y is finite and X is arbitrary. A hypothesis is a function h : X → Y , and
H denotes a space of hypotheses. We evaluate the quality of h using the zero-one
loss `(h(X), Y ) = 1(h(X) 6= Y ), where 1(·) is the indicator function. The expected
loss of h is denoted by L(h) = E(X,Y )∼D[`(h(X), Y )] and the empirical loss of h on a
sample S of size n is denoted by L̂(h, S) = 1

n

∑n
i=1 `(h(Xi), Yi).

Randomized classifiers. A randomized classifier (a.k.a. Gibbs classifier) associated
with a distribution ρ on H, for each input X randomly draws a hypothesis h ∈ H
according to ρ and predicts h(X). The expected loss of a randomized classifier is
given by Eh∼ρ[L(h)] and the empirical loss by Eh∼ρ[L̂(h, S)]. To simplify the notation
we use ED[·] as a shorthand for E(X,Y )∼D[·] and Eρ[·] as a shorthand for Eh∼ρ[·].

Ensemble classifiers and majority vote. Ensemble classifiers predict by taking
a weighted aggregation of predictions by hypotheses from H. The ρ-weighted majority
vote MVρ predicts MVρ(X) = arg maxy∈Y Eρ[1(h(X) = y)], where ties can be resolved
arbitrarily.

8
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2.3 A review of prior first and second-order oracle
bounds

If majority voting makes an error, we know that at least a ρ-weighted half of the classi-
fiers have made an error and, therefore, `(MVρ(X), Y ) ≤ 1(Eρ[1(h(X) 6= Y )] ≥ 0.5).
This observation leads to the well-known first-order oracle bound for the loss of
weighted majority vote.

Theorem 2.1 (First-Order Oracle Bound).

L(MVρ) ≤ 2Eρ[L(h)].

Proof. We have L(MVρ) = ED[`(MVρ(X), Y )] ≤ P(Eρ[1(h(X) 6= Y )] ≥ 0.5). By
applying Markov’s inequality to random variable Z = Eρ[1(h(X) 6= Y )] we have:

L(MVρ) ≤ P(Eρ[1(h(X) 6= Y )] ≥ 0.5) ≤ 2ED[Eρ[1(h(X) 6= Y )]] = 2Eρ[L(h)].

PAC-Bayesian analysis can be used to bound Eρ[L(h)] in Theorem 2.1 in terms of
Eρ[L̂(h, S)], thus turning the oracle bound into an empirical one. The disadvantage
of the first-order approach is that Eρ[L(h)] ignores correlations of predictions, which
is the main power of the majority vote.

Masegosa et al. (2020) have used second-order Markov’s inequality, by which for a
non-negative random variable Z and ε > 0

P(Z ≥ ε) = P
(
Z2 ≥ ε2

)
≤ E [Z2]

ε2
.

For pairs of hypotheses h and h′ they have defined the tandem loss `(h(X), h′(X), Y ) =
1(h(X) 6= Y ∧ h′(X) 6= Y ) = 1(h(X) 6= Y )1(h′(X) 6= Y ), also termed joint error by
Lacasse et al. (2007), which counts an error only if both h and h′ err on a sample
(X,Y ). The corresponding expected tandem loss is defined by

L(h, h′) = ED[1(h(X) 6= Y )1(h′(X) 6= Y )].

Lacasse et al. (2007) and Masegosa et al. (2020) have shown that expectation of the
second moment of the weighted loss equals expectation of the tandem loss. Using ρ2
as a shorthand for the product distribution ρ× ρ over H×H and Eρ2 [L(h, h′)] as a
shorthand for Eh∼ρ,h′∼ρ[L(h, h′)], the result is the following.
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Lemma 2.1 (Masegosa et al., 2020). In multiclass classification

ED[Eρ[1(h(X) 6= Y )]2] = Eρ2 [L(h, h′)].

By combining second-order Markov’s inequality with Lemma 2.1, Masegosa et al.
have shown the following result.

Theorem 2.2 (Masegosa et al., 2020). In multiclass classification

L(MVρ) ≤ 4Eρ2 [L(h, h′)].

Lacasse et al. (2007) have used the Chebyshev-Cantelli inequality to derive a different
form of a second-order oracle bound. We use V [Z] to denote the variance of a random
variable Z in the statement of Chebyshev-Cantelli inequality.

Theorem 2.3 (Chebyshev-Cantelli inequality). For ε > 0

P(Z − E [Z] ≥ ε) ≤ V [Z]

ε2 + V [Z]
.

Theorem 2.3 together with Lemma 2.1 leads to the following result, known as the
C-bound.

Theorem 2.4 (Lacasse et al., 2007; Masegosa et al., 2020). If Eρ[L(h)] ≤ 1
2
, then

L(MVρ) ≤
Eρ2 [L(h, h′)]− Eρ[L(h)]2

1
4
+ Eρ2 [L(h, h′)]− Eρ[L(h)]

.

Masegosa et al. have shown that the Chebyshev-Cantelli inequality is always at least
as tight as second-order Markov’s inequality (below we provide an alternative and
more intuitive proof of this fact) and, therefore, the oracle bound in Theorem 2.4 is
always at least as tight as the oracle bound in Theorem 2.2. However, the presence
of Eρ2 [L(h, h′)] and Eρ[L(h)] in the denominator make empirical estimation and
optimization of the bound in Theorem 2.4 impractical, and Theorem 2.2 was the only
practically applicable second-order bound so far.

2.4 Main Contributions
We present three main contributions: (1) a new form of the Chebyshev-Cantelli
inequality, which is convenient for optimization; (2) an application of the inequality

10
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to the analysis of weighted majority vote; and (3) a PAC-Bayes-Bennett inequality,
which is used to bound the risk with an offset in the bound for weighted majority
vote. We start with the new form of Chebyshev-Cantelli inequality, which can be
seen as a refinement of second-order Markov’s inequality or as an intermediate step
in the proof of the Chebyshev-Cantelli inequality.

Theorem 2.5. For any ε > 0 and all µ < ε

P(Z ≥ ε) ≤ E [(Z − µ)2]

(ε− µ)2
.

Proof.

P(Z ≥ ε) = P(Z − µ ≥ ε− µ) ≤ P
(
(Z − µ)2 ≥ (ε− µ)2

)
≤ E [(Z − µ)2]

(ε− µ)2
.

The inequality can also be written as

P(Z ≥ ε) ≤ E [(Z − µ)2]

(ε− µ)2
=

E [Z2]− 2µE [Z] + µ2

(ε− µ)2
. (2.1)

The bound is minimized by µ∗ = E [Z] − V[Z]
ε−E[Z] , which can be verified by taking a

derivative of the bound with respect to µ. Note that µ∗ can take negative values.
Substitution of µ∗ into the bound and simple algebraic manipulations recover the
Chebyshev-Cantelli inequality, whereas µ = 0 recovers second-order Markov’s in-
equality. The main advantage of Theorem 2.5 over the Chebyshev-Cantelli inequality
is ease of estimation and optimization due to absence of the variance term in the
denominator.

Equation (2.1) leads to two new second-order oracle bounds for the weighted majority
vote, given in Theorems 2.6 and 2.7.

Theorem 2.6. In multiclass classification, for all ρ and all µ < 0.5

L(MVρ) ≤
Eρ2 [L(h, h′)]− 2µEρ[L(h)] + µ2

(0.5− µ)2
.

Proof. As in the previous section, we take Z = Eρ[1(h(X) 6= Y )], so that L(MVρ) ≤
P(Z ≥ 0.5). The result follows by (2.1) and the calculations of E [Z2] and E [Z] from
the previous section. Note that the result is a deterministic statement.

11
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For µ = 0, Theorem 2.6 recovers Theorem 2.2, but if µ∗ = Eρ[L(h)]−
Eρ2 [L(h,h

′)]−E[L(h)]2

0.5−Eρ[L(h)] 6=
0, then substitution of µ∗ into the theorem yields a tighter oracle bound. At the same
time, substitution of µ∗ recovers Theorem 2.4, but the great advantage of Theorem 2.6
is that the bound allows easy empirical estimation and optimization with respect to ρ,
due to absence of Eρ2 [L(h, h′)] and Eρ[L(h)] in the denominator. Thus, Theorem 2.6
has the oracle tightness of Theorem 2.4 and the ease of estimation and optimization
of Theorem 2.2. The oracle quantities Eρ2 [L(h, h′)] and Eρ[L(h)] can be bounded
using PAC-Bayes-kl or PAC-Bayes-λ inequalities, as discussed in the next section.

In order to present the second oracle bound we introduce a new quantity. For a pair
of hypotheses h and h′ and a constant µ, we define tandem loss with µ-offset, for
brevity µ-tandem loss, as

`µ(h(X), h′(X), Y ) = (1(h(X) 6= Y )− µ)(1(h′(X) 6= Y )− µ). (2.2)

Note that it can take negative values. We denote its expectation by

Lµ(h, h
′) = ED[`µ(h(X), h′(X), Y )] = ED[(1(h(X) 6= Y )− µ)(1(h′(X) 6= Y )− µ)].

With Z = Eρ[1(h(X) 6= Y )] as before, we have

E
[
(Z − µ)2

]
= ED[(Eρ[(1(h(X) 6= Y )− µ)])2]

= Eρ2 [ED[(1(h(X) 6= Y )− µ)(1(h′(X) 6= Y )− µ)]] = Eρ2 [Lµ(h, h′)].

Now we present our second oracle bound.

Theorem 2.7. In multiclass classification, for all ρ and all µ < 0.5

L(MVρ) ≤
Eρ2 [Lµ(h, h′)]
(0.5− µ)2

.

Proof. The result follows by Theorem 2.5 and the calculation above. Note that the
inequality is a deterministic statement.

In order to discuss the advantage of Theorem 2.7, we define the variance of the
µ-tandem loss

Vµ(h, h
′) = ED[((1(h(X) 6= Y )− µ)(1(h′(X) 6= Y )− µ)− Lµ(h, h

′))
2
].

If the variance of the µ-tandem loss is small, we can use Bernstein-type inequalities
to obtain tighter estimates compared to kl-type inequalities.

12
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We bound the µ-tandem loss using our next contribution, the PAC-Bayes-Bennett
inequality, which improves on the PAC-Bayes-Bernstein inequality derived by Seldin
et al. (2012) and may be of independent interest. The inequality holds for any loss
function with bounded length of the range, we use ˜̀ and matching tilde-marked
quantities to distinguish it from the zero-one loss `. We let L̃(h) = ED[˜̀(h(X), Y )]
and Ṽ(h) = ED[(˜̀(h(X), Y )− L̃(h))2] be the expected tilde-loss of h and its variance
and let ˆ̃L(h, S) = 1

n

∑n
i=1

˜̀(h(Xi), Yi) be the empirical tilde-loss of h on a sample S.

Theorem 2.8 (PAC-Bayes-Bennett inequality). Let ˜̀(·, ·) be an arbitrary loss function
taking values in an interval of length b, and assume that Ṽ(h) is finite for all h. Let
φ(x) = ex − x− 1. Then for any distribution π on H that is independent of S and
any γ > 0 and δ ∈ (0, 1), with probability at least 1− δ over a random draw of S, for
all distributions ρ on H simultaneously:

Eρ[L̃(h)] ≤ Eρ[ ˆ̃L(h, S)] +
φ(γb)

γb2
Eρ[Ṽ(h)] +

KL(ρ‖π) + ln 1
δ

γn
.

The proof is based on a change of measure argument combined with Bennett’s
inequality, the details are provided in Appendix 2.8.1. Note that the result holds for a
fixed (but arbitrary) γ > 0. In case of optimization with respect to γ a union bound
has to be applied. For a fixed ρ the bound is convex in γ and for a fixed γ it is convex
in ρ, although it is not necessarily jointly convex in ρ and γ. See Appendix 2.8.4
for optimization details. The PAC-Bayes-Bennett inequality is identical to the PAC-
Bayes-Bernstein inequality of Seldin et al. (2012, Theorem 7), except that in the
latter the coefficient in front of Eρ[Ṽ[h]] is (e − 2)γ instead of φ(γb)

γb2
. The result

improves on the result of Seldin et al. in two ways. First, in the result of Seldin
et al. γ is restricted to the (0, 1/b] interval, whereas in our result γ is unrestricted
from above. And second, we can rewrite the coefficient in front of the variance as
φ(γb)
γb2

= φ(γb)
γ2b2

γ, where φ(γb)
γ2b2

is a monotonically increasing function of γ, which in the
interval γ ∈ (0, 1/b] satisfies limγ→0

φ(γb)
γ2b2

= 1
2

and for γ = 1/b it gives φ(γb)
γ2b2

= (e− 2).
Thus, PAC-Bayes-Bennett is always at least as tight as PAC-Bayes-Bernstein and, at
the same time, for γ < 1/b it improves the constant coefficient in front of the variance
from (e − 2) ≈ 0.72 down to 0.5 for γ → 0. For γ > 1/b PAC-Bayes-Bennett also
improves on PAC-Bayes-Bernstein, because PAC-Bayes-Bernstein uses the suboptimal
value γ = 1/b dictated by its restricted range of γ.
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2.5 From oracle to empirical bounds
We obtain empirical bounds on the oracle quantities Eρ2 [L(h, h′)] and Eρ[L(h)] in
Theorem 2.6 and Eρ2 [Lµ(h, h′)] in Theorem 2.7 by using PAC-Bayesian inequalities.
The empirical counterpart of the expected tandem loss is the empirical tandem loss

L̂(h, h′, S) =
1

n

n∑
i=1

1(h(Xi) 6= Yi)1(h
′(Xi) 6= Yi).

For bounding Eρ2 [L(h, h′)] and Eρ[L(h)] we use either PAC-Bayes-kl or PAC-Bayes-λ
inequalities, both cited below. We use KL(ρ‖π) to denote the Kullback-Leibler
divergence between distributions ρ and π on H and kl(p‖q) to denote the Kullback-
Leibler divergence between two Bernoulli distributions with biases p and q.

Theorem 2.9 (PAC-Bayes-kl Inequality, Seeger, 2002, Maurer, 2004). For any
probability distribution π on H that is independent of S and any δ ∈ (0, 1), with
probability at least 1− δ over a random draw of a sample S, for all distributions ρ on
H simultaneously:

kl
(
Eρ[L̂(h, S)]

∥∥∥Eρ [L(h)]) ≤ KL(ρ‖π) + ln(2
√
n/δ)

n
. (2.3)

Theorem 2.10 (PAC-Bayes-λ Inequality, Thiemann et al., 2017; Masegosa et al.,
2020). For any probability distribution π on H that is independent of S and any
δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample S, for all
distributions ρ on H and all λ ∈ (0, 2) and γ > 0 simultaneously:

Eρ [L(h)] ≤
Eρ[L̂(h, S)]

1− λ
2

+
KL(ρ‖π) + ln(2

√
n/δ)

λ
(
1− λ

2

)
n

, (2.4)

Eρ [L(h)] ≥
(
1− γ

2

)
Eρ[L̂(h, S)]−

KL(ρ‖π) + ln(2
√
n/δ)

γn
. (2.5)

(The upper bound (2.4) is due to Thiemann et al. (2017) and the lower bound (2.5)
is due to Masegosa et al. (2020), and the two bounds hold simultaneously.) The
PAC-Bayes-λ inequality is an optimization-friendly relaxation of the PAC-Bayes-kl
inequality. Therefore, for optimization of ρ we use the PAC-Bayes-λ inequality, the
upper bound for Eρ2 [L(h, h′)] and the lower or upper bound for Eρ[L(h)], depending
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on the positiveness of µ, but once we have converged to a solution we use PAC-Bayes-
kl to compute the final bound. The kl form provides both an upper and a lower
bound through the upper and lower inverse of the kl.1 Taking the oracle bound from
Theorem 2.6 and bounding the oracle quantities using Theorem 3.10 we obtain the
following result.

Theorem 2.11. For any distribution π on H that is independent of S, and any
δ ∈ (0, 1), with probability at least 1− δ over a random draw of S, for all distributions
ρ on H, and all µ, λ, and γ in the ranges specified below simultaneously, we have:

• For µ ∈ [0, 0.5), λ ∈ (0, 2), and γ > 0:

L(MVρ) ≤
1

(0.5− µ)2

[
Eρ2 [L̂(h, h′, S)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
n/δ)

λ
(
1− λ

2

)
n

− 2µ

((
1− γ

2

)
Eρ[L̂(h, S)]−

KL(ρ‖π) + ln(4
√
n/δ)

γn

)
+ µ2

]
.

• For µ < 0, λ ∈ (0, 2), and γ ∈ (0, 2):

L(MVρ) ≤
1

(0.5− µ)2

[
Eρ2 [L̂(h, h′, S)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
n/δ)

λ
(
1− λ

2

)
n

− 2µ

(
Eρ[L̂(h, S)]

1− γ
2

+
KL(ρ‖π) + ln(4

√
n/δ)

γ
(
1− γ

2

)
n

)
+ µ2

]
.

Proof. The result follows by substitution of the upper bound (2.4) on Eρ2 [L(h, h′)]
and the lower bound (2.5) on Eρ[L(h)] in the case of positive µ, or the upper
bound (2.4) on Eρ[L(h)] in the case of negative µ, into Theorem 2.6. We note that
KL(ρ2‖π2) = 2KL(ρ‖π) (Germain et al., 2015, Page 814), which gives the factor 2 in
front of the first KL term. The factor 4 in the logarithms comes from a union bound
over the bounds on Eρ2 [L(h, h′)] and Eρ[L(h)].

We note that both the loss and the tandem loss are Bernoulli random variables, and
for Bernoulli random variables the PAC-Bayes-kl inequality is tighter than the PAC-
Bayes-Bennett (Tolstikhin and Seldin, 2013). However, the empirical counterpart of

1Reeb et al. (2018) and Letarte et al. (2019) provide alternative ways of direct minimization of the
upper bound on Eρ[L(h)] given by the upper inverse of kl in the PAC-Bayes-kl bound. We use the
PAC-Bayes-λ relaxation due to its simplicity, and because it provides an easy way of simultaneous
optimization of an upper bound on Eρ2 [L(h, h′)] and a lower or upper bound on Eρ[L(h)] (depending
on µ).
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the expected µ-tandem loss is the empirical µ-tandem loss

L̂µ(h, h
′, S) =

1

n

n∑
i=1

(1(h(Xi) 6= Yi)− µ)(1(h′(Xi) 6= Yi)− µ),

and the µ-tandem losses are not Bernoulli. Therefore, we use the PAC-Bayes-Bennett
inequality, which provides an advantage if the variance of the µ-tandem losses happens
to be small. The expected and empirical variance of the µ-tandem losses of a pair of
hypotheses h and h′ are, respectively, defined by

Vµ(h, h
′) = ED[((1(h(X) 6= Y )− µ)(1(h′(X) 6= Y )− µ)− Lµ(h, h

′))
2
],

V̂µ(h, h
′, S) =

1

n− 1

n∑
i=1

(
(1(h(Xi) 6= Yi)− µ)(1(h′(Xi) 6= Yi)− µ)− L̂µ(h, h

′, S)
)2
.

The empirical variance V̂µ(h, h
′, S) is an unbiased estimate of Vµ(h, h

′).

Since the PAC-Bayes-Bennett inequality is stated in terms of the oracle variance
Eρ[Ṽ(h)], we use the result by Tolstikhin and Seldin (2013, Equation (15)) to
bound it in terms of the empirical variance. For a general loss function ˜̀(·, ·)
(not necessarily within [0, 1]), we define the empirical variance of the loss of h by
ˆ̃V(h, S) = 1

n−1

∑n
i=1(

˜̀(h(Xi), Yi)− L̃(h))2. We recall that L̃, Ṽ, and ˆ̃L were defined
above Theorem 2.8. We note that the result of Tolstikhin and Seldin assumes that
the losses are bounded in the [0, 1] interval. Rescaling to a general range introduces
the squared range factor c2 in front of the last term in the inequality below, since
scaling a random variable by c scales the variance by c2.

Theorem 2.12 (Tolstikhin and Seldin, 2013). Let ˜̀(·, ·) be an arbitrary bounded loss
function and let c be the length of the loss range. Then for any distribution π on
H that is independent of S, any λ ∈

(
0, 2(n−1)

n

)
, and any δ ∈ (0, 1), with probability

at least 1 − δ over a random draw of the sample S, for all distributions ρ on H
simultaneously:

Eρ[Ṽ(h)] ≤
Eρ[ ˆ̃V(h, S)]
1− λn

2(n−1)

+
c2
(
KL(ρ‖π) + ln 1

δ

)
nλ
(
1− λn

2(n−1)

) .

We note that, similar to the PAC-Bayes-Bennett inequality, but in contrast to the
PAC-Bayes-λ inequality, the inequality above holds for a fixed value of λ and in case
of optimization over λ a union bound has to be applied.
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The last thing that is left is to bound the length of the range of µ-tandem losses
defined in equation (2.2).

Lemma 2.2. For µ < 0.5 we have that the length of the range of `µ(·, ·, ·) is Kµ =
max{1− µ, 1− 2µ}.

A proof is provided in Appendix 2.8.2. Taking together the results of Theorems 2.7,
2.8, 2.12, and Lemma 2.2 we obtain the following result.

Theorem 2.13. For any parameter grid {γ1, . . . , γkγ} and {λ1, . . . , λkλ}, where γi > 0

for all i and λi ∈
(
0, 2(n−1)

n

)
for all i, any distribution π on H that is independent of

S, and any δ ∈ (0, 1), with probability at least 1− δ over a random draw of S, for all
values of µ < 0.5, all distributions ρ on H, and all values of γ and λ in the parameter
grid simultaneously:

L(MVρ) ≤
1

(0.5− µ)2

(
Eρ2 [L̂µ(h, h′, S)] +

2KL(ρ‖π) + ln 2kγkλ
δ

γn

+
φ(γKµ)

γK2
µ

Eρ2 [V̂µ(h, h
′, S)]

1− λn
2(n−1)

+
K2
µ

(
2KL(ρ‖π) + ln 2kγkλ

δ

)
nλ
(
1− λn

2(n−1)

)
).

Proof. The result follows by reverse substitution of the result of Lemma 2.2 into The-
orem 2.12, then into Theorem 2.8, and finally into Theorem 2.7. Since KL(ρ2‖π2) =
2KL(ρ‖π), we have factor 2 in front of the KL terms. The factor 2kγkλ comes from a
union bound over the parameter grid and the bounds in Theorems 2.8 and 2.12.

2.6 Experiments
We start with a simulated comparison of the oracle bounds and then present an empir-
ical evaluation on real data. The python source code for replicating the experiments
is available at Github2.

Comparison of the oracle bounds

Figure 2.1 depicts a comparison of the second-order oracle bound based on the
Chebyshev-Cantelli inequality (Theorems 2.4, 2.6 and 2.7, which, as oracle bounds,
are equivalent) and the second-order oracle bound based on the second-order Markov’s

2https://github.com/StephanLorenzen/MajorityVoteBounds
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inequality (Theorem 2.2). We plot the ratio of the right hand side of the bound in

Figure 2.1: Theorem 2.6 vs. Theorem 2.2
Theorem 2.6 for the optimal value µ∗ = Eρ[L(h)]−

Eρ2 [L(h,h
′)]−Eρ[L(h)]2

0.5−Eρ[L(h)] to the value of
the right hand side of the bound in Theorem 2.2. A simple calculation shows that if
Eρ2 [L(h, h′)] = 0.5Eρ[L(h)], then µ∗ = 0, which recovers the bound in Theorem 2.2.
The line Eρ2 [L(h, h′)] = 0.5Eρ[L(h)] is shown in black in Figure 2.1. We also note that
Eρ[L(h)]2 ≤ Eρ2 [L(h, h′)] ≤ Eρ[L(h)], which defines the feasible region in Figure 2.1.
Whenever Eρ2 [L(h, h′)] 6= 0.5Eρ[L(h)] the Chebyshev-Cantelli inequality provides an
improvement over second-order Markov’s inequality. The region above the black line,
where Eρ2 [L(h, h′)] > 0.5Eρ[L(h)], is the region of high correlation of errors and in
this case majority vote yields little improvement over individual classifiers. In this
region the first-order oracle bound is tighter than the second-order oracle bounds (see
Appendix 2.8.3). The region below the black line, where Eρ2 [L(h, h′)] < 0.5Eρ[L(h)],
is the region of low correlation of errors. In this region the second-order oracle bounds
are tighter than the first-order oracle bound. Note that the potential for improvement
below the black line is much higher than above it.

Empirical evaluation on real datasets

We studied the empirical performance of the bounds using standard random forest
(Breiman, 2001) and a combination of heterogeneous classifiers on a subset of data
sets from UCI and LibSVM repositories (Dua and Graff, 2019; Chang and Lin, 2011).
An overview of the data sets is given in Appendix 2.8.5.1. The number of points
varied from 3000 to 70000 with dimensions d < 1000. For each data set, we set aside
20% of the data for the test set Stest and used the remaining data S for ensemble
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construction, weight optimization and bound evaluation. We evaluate the classifiers
and bounds obtained by minimizing the tandem bound TND (Masegosa et al., 2020,
Theorem 9), which is the empirical bound on the oracle tandem bound in Theorem 2.2,
the Chebyshev-Cantelli bound with TND empirical loss estimate bound CCTND
(Theorem 2.11), and the Chebyshev-Cantelli bound with PAC-Bayes-Bennett loss
estimate bound CCPBB (Theorem 2.13). We made 10 repetitions of each experiment.

Ensemble construction and minimization of the bounds. We follow the
construction used by Masegosa et al. (2020). The idea is to generate multiple random
splits of the data set S into pairs of subsets S = Th ∪ Sh, such that Th ∩ Sh = ∅.
Each hypothesis is trained on Th and the empirical loss on Sh provides an unbiased
estimate of its expected loss. Note that the splits cannot depend on the data. For our
experiments, we generate these splits by bagging, where out-of-bag (OOB) samples
Sh provide unbiased estimates of expected losses of individual hypotheses h. The
resulting set of hypotheses produces an ensemble. As in the work of Masegosa et al.,
two modifications are required to apply the bounds: the empirical losses L̂(h, S) in
the bounds are replaced by the validation losses L̂(h, Sh), and the sample size n is
replaced by the minimal validation size minh |Sh|. For pairs of hypotheses (h, h′), we
take the overlaps of their validation sets Sh ∩ Sh′ to calculate an unbiased estimate of
their tandem loss L̂(h, h′, Sh∩Sh′), µ-tandem loss L̂µ(h, h′, Sh∩Sh′), and the variance
of the µ-tandem loss V̂µ(h, h

′, Sh ∩ Sh′), which replaces the corresponding empirical
losses in the bounds. The sample size is then replaced by minh,h′ |Sh ∩ Sh′|. The
details on bound minimization are provided in Appendix 2.8.4.

Optimizing weighted random forest. In the first experiment we compare TND,
CCTND, and CCPBB bounds in the setting studied by Masegosa et al. (2020). We
take 100 fully grown trees, use the Gini criterion for splitting, and consider

√
d

features in each split. Figure 2.2a compares the loss of the random forest on Stest
using either uniform weighting ρu or optimized weighting ρ∗ found by minimization
of the three bounds (we exclude the first-order bound from the comparison, since it
was shown by Masegosa et al. that it significantly deteriorates the test error of the
ensemble). While CCTND often performs similar to TND, we find that optimizing
using CCPBB often improves accuracy. Figure 2.2b compares the tightness of the
optimized CCTND and CCPBB bounds to the optimized TND bound. The CCTND
is generally comparable to TND, while CCPBB is consistently looser than TND,
mainly due to the union bounds. The numerical values for the losses and the bounds
can be found in Tables 2.2 and 2.3 in Appendix 2.8.5.2.
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Figure 2.2: (a,b) Optimized weighted random forest. (c,d) Ensembles with
heterogeneous classifiers. The median, 25%, and 75% quantiles of: (a,c) the
ratio L̂(MVρ∗ , Stest)/L̂(MVu, Stest) of the test loss of the majority vote with optimized
weighting ρ∗ generated by TND, CCTND and CCPBB to the test loss of majority
vote with uniform weighting, and (b,d) the ratio BOUND(ρ?)/TND(ρ?TND) of the
CCTND and CCPBB bounds to the TND bound with the corresponding optimized
weighting . The plots are on a logarithmic scale. Values above 1 represent degradation
and values below 1 represent improvement. Data sets with L(MVu, Stest) = 0 are left
out in (a,c).

Ensembles with heterogeneous classifiers. In the second experiment, we con-
sider ensembles of heterogeneous classifiers (Linear Discriminant Analysis, k-Nearest
Neighbors, Decision Tree, Logistic Regression, and Gaussian Naive Bayes). A de-
tailed description is provided in Appendix 2.8.5.3. Compared to random forests, the
variation in performance of ensemble members is larger here. Figure 2.2c compares
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the ratio of the loss of the majority vote with optimized weighting to the loss of
majority vote with uniform weighting on Stest for ρ∗ found by minimization of the
first-order bound (FO), TND, CCTND, and CCPBB. The numerical values are given
in Table 2.5 in Appendix 2.8.5.3. We observed that optimizing the FO tends to
improve the ensemble accuracy in some cases but degrade in others. However, TND,
CCTND, and CCPBB almost always improve the performance w.r.t. the uniform
weighting. Table 2.5 also shows that choosing the best single hypothesis gives almost
identical results as optimizing FO. Figure 2.2d compares the tightness of the CCTND
and CCPBB bounds relative to the TND bound. The numerical values are given in
Table 2.6 in Appendix 2.8.5.3. In this case, we have that CCTND is usually tighter
than TND, while CCPBB is usually looser than TND due to the union bounds.

2.7 Discussion
We derived an optimization-friendly form of the Chebyshev-Cantelli inequality and
applied it to derive two new forms of second-order oracle bounds for the weighted
majority vote. The new oracle bounds bridge between the C-bounds (Germain et al.,
2015) and the tandem bound (Masegosa et al., 2020) and take the best of both: the
tightness of the Chebyshev-Cantelli inequality and the optimization and estimation
convenience of the tandem bound. We also derived the PAC-Bayes-Bennett inequality,
improving on the PAC-Bayes-Bernstein inequality of Seldin et al. (2012).

Our paper opens several directions for future research. One of them is a better
treatment of parameter search in parametric bounds that would give tighter bounds
than a union bound over a grid. It would also be interesting to find other applications
for the new form of Chebyshev-Cantelli inequality and the PAC-Bayes-Bennett
inequality.

2.8 Appendix

2.8.1 A proof of the PAC-Bayes-Bennett inequality (The-
orem 2.8) and a comparison with the PAC-Bayes-
Bernstein inequality

In this section we provide a proof of Theorem 2.8 and a numerical comparison with
the PAC-Bayes-Bernstein inequality. The proof is based on the standard change of
measure argument. We use the following version by Tolstikhin and Seldin (2013).
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Lemma 2.3 (PAC-Bayes Lemma). For any function fn : H× (X × Y)n → R and
for any distribution π on H, such that π is independent of S, with probability at least
1− δ over a random draw of S, for all distributions ρ on H simultaneously:

Eρ[fn(h, S)] ≤ KL(ρ‖π) + ln 1

δ
+ lnEπ[ES′ [efn(h,S

′)]].

The second ingredient is Bennett’s lemma, which is a bound on the moment generating
function used in the proof of Bennett’s inequality. Since we are unaware of a reference,
we provide a proof below, which is essentially an intermediate step in the proof of
Bennett’s inequality (Boucheron et al., 2013, Theorem 2.9).

Lemma 2.4 (Bennett’s Lemma). Let b > 0 and let Z1, . . . , Zn be i.i.d. zero-mean
random variables with finite variance, such that Zi ≤ b for all i. Let Mn =

∑n
i=1 Zi

and Vn =
∑n

i=1 E [Z2
i ]. Let φ(u) = eu − u− 1. Then for any λ > 0:

E
[
eλMn−φ(bλ)

b2
Vn
]
≤ 1.

Proof. Since u−2φ(u) is a non-decreasing function of u ∈ R (where at zero we
continuously extend the function), for all i ∈ [n] and λ > 0 we have

eλZi − λZi − 1 ≤ Z2
i

φ(bλ)

b2
,

which implies

E
[
eλZi

]
≤ 1 + λE [Zi] +

φ(bλ)

b2
E
[
Z2
i

]
≤ e

φ(bλ)

b2
E
[
Z2
i

]
,

where the second inequality uses the assumption that E [Zi] = 0 and the fact that
1 + x ≤ ex for all x ∈ R. By the above inequality and independence of the random
variables,

E
[
eλMn−φ(bλ)

b2
Vn
]
= E

[
n∏
i=1

eλZi−
φ(bλ)

b2
E
[
Z2
i

]]
=

n∏
i=1

E
[
eλZi−

φ(bλ)

b2
E
[
Z2
i

]]
≤ 1.

Now we are ready to prove the theorem.

Proof of Theorem 2.8. We take fn(h, S) = γn
(
L̃(h)− ˆ̃L(h, S)

)
− φ(γb)

b2
nṼ(h). Then

by Lemma 2.4 we have ES[efn(h,S)] ≤ 1. By plugging this into Lemma 2.3, normalizing
by γn, and changing sides, we obtain the result.
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Numerical comparison of PAC-Bayes-Bennett and PAC-Bayes-Bernstein
bound

Figure 2.3 provides a numerical comparison of PAC-Bayes-Bennett and PAC-Bayes-
Bernstein inequalities (Theorem 2.8 and Theorem 7 by Tolstikhin and Seldin (2013)).

(a) n = 1000 (b) n = 10000

Figure 2.3: The ratio of PAC-Bayes Bennett to PAC-Bayes Bernstein bound as a
function of Eρ[ ˆ̃L(h, S)] and Eρ[Ṽ(h)]. We set KL(ρ‖π) = 5 and δ = 0.05. The value
of n is provided in the captions of the subfigures.

2.8.2 Proof of Lemma 2.2
Proof. Recall that

`µ(h(X), h′(X), Y ) = (1(h(X) 6= Y )−µ)(1(h′(X) 6= Y )−µ) ∈
{
(1− µ)2,−µ(1− µ), µ2

}
.

For µ < 0.5, we have −µ(1 − µ) < (1 − µ)2 and µ2 < (1 − µ)2. Therefore,
`µ(h(X), h′(X), Y ) ≤ (1−µ)2. Furthermore, for µ < 0 we have µ2 < −µ(1−µ), and for
µ > 0 we have −µ(1− µ) ≤ µ2. Therefore, for µ < 0.5 we have `µ(h(X), h′(X), Y ) ≥
min{−µ(1− µ), µ2}.

By combining the upper and the lower bound, we obtain

Kµ = (1− µ)2 − min{−µ(1− µ), µ2}
= max{(1− µ)2 − (−µ(1− µ)), (1− µ)2 − µ2}
= max{1− µ, 1− 2µ}.
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2.8.3 Comparison of the first and second-order oracle bounds
In this section we show that if Eρ[L(h)] < 0.5 and Eρ2 [L(h, h′)] > 0.5Eρ[L(h)], then
the first-order oracle bound is tighter than the second-order oracle bounds, and if
Eρ[L(h)] < 0.5 and Eρ2 [L(h, h′)] < 0.5Eρ[L(h)], then it is the other way around.

For comparison of the first-order oracle bound L(MVρ) ≤ 2Eρ[L(h)] vs. the second-
order oracle tandem bound L(MVρ) ≤ 4Eρ2 [L(h, h′)] the statement above is evident.

For the second-order oracle bounds based on the Chebyshev-Cantelli inequality we
have

Eρ2 [L(h, h′)]− Eρ[L(h)]2

0.25 + Eρ2 [L(h, h′)]− Eρ[L(h)]
vs. 2Eρ[L(h)],

Eρ2 [L(h, h′)]− Eρ[L(h)]2 vs. 0.5Eρ[L(h)] + 2Eρ[L(h)]Eρ2 [L(h, h′)]− 2Eρ[L(h)]2,
Eρ2 [L(h, h′)](1− 2Eρ[L(h)]) vs. 0.5Eρ[L(h)](1− 2Eρ[L(h)]),

Eρ2 [L(h, h′)] vs. 0.5Eρ[L(h)],

where under the assumption that Eρ[L(h)] < 0.5 we can cancel (1− 2Eρ[L(h)]), since
it is positive, and the result is again evident.

2.8.4 Minimization of the bounds
In this section we provide technical details on minimization of the bounds in Theo-
rems 2.11 and 2.13. As most of the other PAC-Bayesian works, we take π to be a
union distribution over the hypotheses in both cases. As discussed in Section 2.6,
we build a set of data-dependent hypotheses by splitting the data set S into pairs
of subsets S = Th ∪ Sh, such that Th ∩ Sh = ∅, training h on Th and calculating an
unbiased loss estimate L̂(h, Sh) on Sh. For tandem losses we compute the unbiased
estimates L̂(h, h′, Sh ∩ Sh′) on the intersections of the corresponding sets Sh and Sh′ .

2.8.4.1 Minimization of the bound in Theorem 2.11

The adjustment of the bound from Theorem 2.11 to this construction is for µ ≥ 0:

L(MVρ) ≤
1

(0.5− µ)2

[
Eρ2 [L̂(h, h′, Sh ∩ Sh′)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ
(
1− λ

2

)
m

− 2µ

((
1− γ

2

)
Eρ[L̂(h, Sh)]−

KL(ρ‖π) + ln(4
√
n/δ)

γn

)
+ µ2

]
,
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and for µ < 0:

L(MVρ) ≤
1

(0.5− µ)2

[
Eρ2 [L̂(h, h′, Sh ∩ Sh′)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ
(
1− λ

2

)
m

− 2µ

(
Eρ[L̂(h, Sh)]

1− γ
2

+
KL(ρ‖π) + ln(4

√
n/δ)

γ
(
1− γ

2

)
n

)
+ µ2

]
,

where m = minh,h′ |Sh ∩ Sh′| and n = minh |Sh|. Below we provide the pseudocode
and derive update rules for µ, λ, γ, and ρ for alternating minimization of this bound.

Algorithm 1: Minimization of the bound in Theorem 2.11
Input: m,n, tandem losses L̂(h, h′, Sh ∩ Sh′) for all h, h′, and Gibbs losses
L̂(h, Sh) for all h
Initialize: ρ = π and µ = 0
while The improvement of the bound is larger than 10−9 do

Compute λ∗ρ, the optimal λ given ρ
Compute γ∗ρ , the optimal γ given ρ and µ
Compute the bound using ρ, µ, λ∗ρ and γ∗ρ
Compute new µ∗

ρ, the optimal µ given ρ, λ∗ρ and γ∗ρ
Update the new distribution ρ′ with gradient descent given µ, λ∗ρ and γ∗ρ
Let ρ = ρ′ and µ = µ∗

ρ

end while

Optimal λ given ρ Minimization of the bound with respect to λ is identical to
minimization of the tandem bound by Masegosa et al. (2020, Theorem 9). Masegosa
et al. derive the optimal value of λ:

λ∗ρ =
2√

2mEρ2 [L̂(h,h′,Sh∩Sh′ )]

2KL(ρ||π)+ln 4
√
m
δ

+ 1 + 1

.

Optimal γ given ρ and µ Minimization of the bound with respect to γ in the
case of µ ≥ 0 is analogous to minimization of the bound by Masegosa et al. (2020,
Theorem 10) with respect to γ. Masegosa et al. derive the optimal value of γ:

γ∗ρ =

√
2KL(ρ||π) + ln(16n/δ2)

nEρ[L̂(h, Sh)]
.
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On the other hand, the optimal γ in the case of µ < 0 is analogous to the optimal λ
above:

γ∗ρ =
2√

2nEρ[L̂(h,Sh)]
KL(ρ||π)+ln 4

√
n
δ

+ 1 + 1

.

Optimal µ given ρ Given ρ, we can compute the optimal λ∗ρ and γ∗ρ by the above
formulas. Let

UT (ρ) :=
Eρ2 [L̂(h, h′, Sh ∩ Sh′)]

1− λ∗ρ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ∗ρ

(
1− λ∗ρ

2

)
m

,

LG(ρ) :=


(
1− γ∗ρ

2

)
Eρ[L̂(h, Sh)]− KL(ρ‖π)+ln(4

√
n/δ)

γ∗ρn
, µ ≥ 0

Eρ[L̂(h,Sh)]

1− γ∗ρ
2

+ KL(ρ‖π)+ln(4
√
n/δ)

γ∗ρ

(
1− γ∗ρ

2

)
n

, µ < 0

Then the optimal µ is

µ∗
ρ =

1
2
LG(ρ)− UT (ρ)

1
2
− LG(ρ)

.

Gradient w.r.t. ρ given λ, γ and µ Minimization of the bound w.r.t. ρ is equiva-
lent to constrained optimization of f(ρ) = aEρ2 [L̂(h, h′, Sh ∩ Sh′)]− 2bEρ[L̂(h, Sh)] +
2cKL(ρ||π), where for µ ≥ 0, a = 1/(1 − λ/2), b = µ(1 − γ/2) and c = 1/(λ(1 −
λ/2)m) + µ/(γn), and for µ < 0, a = 1/(1 − λ/2), b = µ/(1 − γ/2), and c =
1/(λ(1 − λ/2)m) − µ/(γ(1 − γ/2)n). The constraint is that ρ is a probability dis-
tribution. We optimize ρ by projected gradient descent, where we iteratively take
steps in the direction of the negative gradient of f and project the result onto the
probability simplex.

We use L̂ to denote the vector of empirical losses and L̂tnd to denote the matrix
of tandem losses. Let ∇f denote the gradient of f w.r.t. ρ and (∇f)h the h-th
coordinate of the gradient. We have:

(∇f)h = 2

(
a
∑
h′

ρ(h′)L̂(h, h′, Sh ∩ Sh′)− bL̂(h, Sh) + c

(
1 + ln ρ(h)

π(h)

))
,

∇f = 2
(
aL̂tndρ− bL̂+ c

(
1 + ln ρ

π

))
.
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Gradient descent optimization w.r.t. ρ To optimize the weighting ρ, we applied
iRProp+ for the gradient based optimization, a first-order method with adaptive
individual step sizes (Igel and Hüsken, 2003; Florescu and Igel, 2018), until the bound
did not improve for 10 iterations.

2.8.4.2 Minimization of the bound in Theorem 2.13

We start with the details on construction of the grid of µ, λ and γ.

The µ grid for Theorem 2.13

We were unable to find a closed-form solution for minimization of the bound w.r.t. µ
and applied a heuristic. Empirically we observed that the bound was quasiconvex in
µ (we were unable to prove that it is always the case) and applied binary search for
µ in the grid. Note that even if we take a grid of µ, we don’t need a union bound
since the bound holds with high probability for all µ simultaneously.

We then consider the relevant range of µ. By Theorem 2.5, we have µ < 0.5. At
the same time, µ∗ =

0.5Eρ[L(h)]−Eρ2 [L(h,h)]
0.5−Eρ[L(h)] , and in Section 2.6 we have shown that the

primary region of interest is where Eρ2 [L(h, h′)] < 0.5Eρ[L(h)], which corresponds
to µ∗ > 0. However, since Eρ2 [L(h, h)] and Eρ[L(h)] are unobserved and we use an
upper bound for the first and a lower bound for the second instead, we take a broader
range of µ. By making a mild assumption that the upper bound for the tandem
loss Eρ2 [L(h, h′)] is at most 0.25 and the lower bound for the Gibbs loss Eρ[L(h)] is
at most 0.5, we have µ ∈ [−0.5, 0.5). We take 400 uniformly spaced points in the
selected range for the CCPBB bound.

The λ grid for Theorem 2.13

The parameter λ comes from Theorem 2.12. The theorem is identical to the result by
Tolstikhin and Seldin (2013, Equation (15)), except rescaling, but rescaling happens
on top of the bound and has no effect on the λ-grid. Therefore, we use the grid
proposed by Tolstikhin and Seldin. Namely, we take

λi = ci−1
1

2(n− 1)

n

(√
n− 1

ln(1/δ1)
+ 1 + 1

)−1
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for i ∈ {1, . . . , kλ} and

kλ =

⌈
1

ln c1
ln

(
1

2

√
n− 1

ln(1/δ1)
+ 1 +

1

2

)⌉
.

In the experiments we took c1 = 1.05 and δ1 = δ/2.

The γ grid for Theorem 2.13

The parameter γ comes from Theorem 2.8. By taking the first two derivatives we
can verify that for a fixed ρ the PAC-Bayes-Bennett bound is convex in γ and at the
minimum point the optimal value of γ satisfies

e(γ
∗
ρb−1)

(
γ∗ρb− 1

)
=

1

e

b2
(

KL(ρ‖π) + ln 1
δ2

)
nEρ[Ṽ(h)]

− 1

 .

Thus, the optimal value of γ is given by

γ∗ρ =
1

b

W0

1

e

b2
(

KL(ρ‖π) + ln 1
δ2

)
nEρ[Ṽ(h)]

− 1

+ 1

 ,

where W0 is the principal branch of the Lambert W function, which is defined as the
inverse of the function f(x) = xex.

In order to define a grid for γ we first determine the relevant range for γ∗ρ . We note
that the variance Eρ[Ṽ(h)] is estimated using Theorem 2.12, which assumes that the
length of the range of the loss ˜̀(·, ·) is c. The loss range provides a trivial upper bound
on the variance Eρ[Ṽ(h)] ≤ c2

4
. At the same time, we have λ

(
1− λn

2(n−1)

)
≤ n−1

2n
(it

is a downward-pointing parabola) and, therefore, the right hand side of the bound
in Theorem 2.12 is at least the value of its second term, which is at least

2c2 ln 1
δ1

n−1
,

since KL(ρ‖π) ≥ 0. Thus, we obtain that the estimate of Eρ[Ṽ(h)] is in the range[
2c2 ln 1

δ1

n−1
, c

2

4

]
. We use Vmin =

2c2 ln 1
δ1

n−1
to denote the lower bound of this range.

Since W0(·) is a monotonically increasing function, KL(ρ‖π) ≥ 0, and the estimate of
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Eρ[Ṽ(h)] is at most c2

4
, we obtain that γ∗ρ satisfies

γ∗ρ =
1

b

W0

1

e

b2
(

KL(ρ‖π) + ln 1
δ2

)
nEρ2 [Ṽ(h)]

− 1

+ 1


≥ 1

b

(
W0

(
1

e

(
4b2

nc2
ln 1

δ2
− 1

))
+ 1

)
def
= γmin.

For an upper bound we observe that since Eρ[L̃(h)]−Eρ[ ˆ̃L(h, S)] is trivially bounded
by b, the bound in Theorem 2.12 is only interesting if it is smaller than b and, in
particular, φ(γb)

γb2
Eρ[Ṽ(h)] ≤ b.

This gives
b ≥ φ(γb)

γb2
Eρ[Ṽ(h)] ≥

φ(γb)

γb2
Vmin.

Thus, γ should satisfy
φ(γb) ≤ γb3

Vmin
,

which gives that the maximal value of γ, denoted γmax, is the positive root of

H(γ) = eγb − γb

(
1 +

b2

Vmin

)
− 1 = 0.

Let α = (1 + b2/Vmin)
−1 ∈ (0, 1), and x = −γb − α. Then the above problem is

equivalent to finding the root of f(x) = xex − d for d = −αe−α, which can again
be solved by applying the Lambert W function. Since for α ∈ (0, 1), we have
d ∈ (−1/e, 0), which indicates that there are two roots (Corless et al., 1996). We
denote the root greater than −1 as W0(d) and the root less than −1 as W−1(d). It
is obvious that W0(d) = −α. However, W0(d) is not the desired solution, since for
b > 0, x = −α implies γ = 0, but we assume γ > 0. Hence, W−1(d) is the desired
root, which gives the corresponding γ = −1

b
(W−1(d) + α) > 0. Thus, we obtain

γmax = −1

b

(
W−1

(
− 1

1 + b2

Vmin

· e
− 1

1+ b2
Vmin

)
+

1

1 + b2

Vmin

)
.

We construct the grid by taking γi = ci−1
2 γmin for i ∈ {1, . . . , kγ}, were kγ =

dln(γmax/γmin)/ ln c2e. In the experiments we took c2 = 1.05, and δ1 = δ2 = δ/2.
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Minimization of the bound

The adjustment of the bound in Theorem 2.13 to our hypothesis space construction,
as described above, is:

L(MVρ) ≤
1

(0.5− µ)2

(
Eρ2 [L̂µ(h, h′, Sh ∩ Sh′)] +

2KL(ρ‖π) + ln 2k
δ

γn

+
φ(γKµ)

γK2
µ

Eρ2 [V̂µ(h, h
′, Sh ∩ Sh′)]

1− λn
2(n−1)

+
K2
µ

(
2KL(ρ‖π) + ln 2k

δ

)
nλ
(
1− λn

2(n−1)

)
),

where n = minh,h′ |Sh∩Sh′| and k = kλkγ . We minimize the bound without considering
kγ and kλ since we define the grid without taking them into consideration. However,
we put back kγ and kλ when computing the generalization bound. Thus, when doing
the optimization we take k = 1, but when we compute the bound we take the proper
k = kλkγ.

Algorithm 2: Minimization of the bound in Theorem 2.13
Input: n, grid of µ and losses 1(h(Xi) 6= Yi) for all (Xi, Yi) ∈ Sh for all h
for µ selected by the binary search in the grid do

Initialize: ρ = π
Compute L̂µ(h, h′, Sh ∩ Sh′) and V̂µ(h, h

′, Sh ∩ Sh′) for all h, h′
while The improvement of the bound for a fixed µ is larger than 10−9 do

Compute λ∗µ,ρ, the optimal λ given ρ and µ
Compute γ∗µ,ρ, the optimal γ given ρ and µ
Apply gradient descent to the bound w.r.t. ρ given µ, λ∗µ,ρ and γ∗µ,ρ

end while
Proceed to the next µ in the grid proposed by the binary search

end for

Optimal λ given µ and ρ Given µ and ρ, λ can be computed in the same way as
in the optimization of Theorem 2.12, since the optimization problem is the same, and
get

λ∗µ,ρ =
2(n− 1)

n

(√
2(n− 1)Eρ2 [V̂µ(h, h′, Sh ∩ Sh′)]

K2
µ(2KL(ρ‖π) + ln 2k

δ
)

+ 1 + 1

)−1

.

In our implementation at every optimization step we took the closest λ to the above
value from the λ-grid.
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Optimal γ given µ and ρ Given µ and ρ, the bound for the variance is obtained
by plugging in the optimal λ∗µ,ρ computed above. Let

UV(ρ, µ) =
Eρ2 [V̂µ(h, h

′, Sh ∩ Sh′)]
1− λ∗µ,ρn

2(n−1)

+
K2
µ

(
2KL(ρ‖π) + ln 2k

δ

)
nλ∗µ,ρ

(
1− λ∗µ,ρn

2(n−1)

) .

Then

γ∗µ,ρ =
1

Kµ

(
W0

(
1

e

(
K2
µ

(
2KL(ρ‖π) + ln 2k

δ

)
nUV(ρ, µ)

− 1

))
+ 1

)
,

where W0 is the principal branch of the Lambert W function, which is defined as the
inverse of the function f(x) = xex. In our implementation at every optimization step
we took the closest γ to the above value from the γ-grid.

Gradient w.r.t. ρ given λ, γ, and µ Optimizing the bound w.r.t. ρ is equivalent to
constrained optimization of f(ρ) = Eρ2 [L̂µ(h, h′, S ′)]+aEρ2 [V̂µ(h, h′, S ′)]+2bKL(ρ||π),
where

a =
φ(Kµγ)

K2
µγ

1

1− nλ
2(n−1)

, b =
1

γn
+
φ(Kµγ)

K2
µγ

K2
µ

nλ(1− nλ
2(n−1)

)
,

and the constraint is that ρ must be a probability distribution. We optimize ρ in
the same way as presented in Appendix 2.8.4.1. We use L̂µ to denote the matrix of
empirical µ-tandem losses and V̂µ to denote the matrix of empirical variance of the
µ-tandem losses. Then, the gradient w.r.t. ρ is given by:

(∇f)h = 2

(∑
h′

ρ(h′)(L̂µ(h, h
′, S ′) + aV̂µ(h, h′, S ′)) + b

(
1 + ln ρ(h)

π(h)

))
,

∇f = 2
(
L̂µρ+ aV̂µρ+ b

(
1 + ln ρ

π

))
.

We applied gradient descent in the same way as presented in Appendix 2.8.4.1.

2.8.5 Experiments
2.8.5.1 Data sets

As mentioned, we considered data sets from the UCI and LibSVM repositories
(Dua and Graff, 2019; Chang and Lin, 2011), as well as Fashion-MNIST (Fashion)
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Table 2.1: Data set overview. cmin and cmax denote the minimum and maximum class
frequency.

Data set N d c cmin cmax Source
Adult 32561 123 2 0.2408 0.7592 LIBSVM (a1a)
Cod-RNA 59535 8 2 0.3333 0.6667 LIBSVM
Connect-4 67557 126 3 0.0955 0.6583 LIBSVM
Fashion 70000 784 10 0.1000 0.1000 Zalando Research
Letter 20000 16 26 0.0367 0.0406 UCI
MNIST 70000 780 10 0.0902 0.1125 LIBSVM
Mushroom 8124 22 2 0.4820 0.5180 LIBSVM
Pendigits 10992 16 10 0.0960 0.1041 LIBSVM
Phishing 11055 68 2 0.4431 0.5569 LIBSVM
Protein 24387 357 3 0.2153 0.4638 LIBSVM
SVMGuide1 3089 4 2 0.3525 0.6475 LIBSVM
SatImage 6435 36 6 0.0973 0.2382 LIBSVM
Sensorless 58509 48 11 0.0909 0.0909 LIBSVM
Shuttle 58000 9 7 0.0002 0.7860 LIBSVM
Splice 3175 60 2 0.4809 0.5191 LIBSVM
USPS 9298 256 10 0.0761 0.1670 LIBSVM
w1a 49749 300 2 0.0297 0.9703 LIBSVM

from Zalando Research3. We used data sets with size 3000 ≤ N ≤ 70000 and
dimension d ≤ 1000. These relatively large data sets were chosen in order to provide
meaningful bounds in the standard bagging setting, where individual trees are trained
on n = 0.8N randomly subsampled points with replacement and the size of the
overlap of out-of-bag sets is roughly n/9. An overview of the data sets is given in
Table 2.1.

For all experiments, we removed patterns with missing entries and made a stratified
split of the data set. For data sets with a training and a test set (SVMGuide1, Splice,
Adult, w1a, MNIST, Shuttle, Pendigits, Protein, SatImage, USPS) we combined the
training and test sets and shuffled the entire set before splitting.

3https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
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Table 2.2: Numerical values of the test loss obtained by the RFs with optimized
weighting. The smallest loss is highlighted in bold, while the smallest optimized loss
is underlined.

Data set L(MVu) L(MVρλ) L(MVρTND) L(MVρCCTND) L(MVρCCPBB)

SVMGuide1 0.0284 (0.0037) 0.0372 (0.0066) 0.0287 (0.0035) 0.0286 (0.0036) 0.0287 (0.0039)
Phishing 0.0292 (0.004) 0.0371 (0.0073) 0.0292 (0.0036) 0.0292 (0.0036) 0.0292 (0.004)
Mushroom 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Splice 0.0299 (0.009) 0.1087 (0.021) 0.0306 (0.0099) 0.0309 (0.0092) 0.0302 (0.01)
w1a 0.0108 (0.0007) 0.016 (0.0025) 0.0108 (0.0006) 0.0107 (0.0006) 0.0108 (0.0006)
Cod-RNA 0.0402 (0.0013) 0.0712 (0.0064) 0.0395 (0.0014) 0.0395 (0.0014) 0.0395 (0.0015)
Adult 0.1693 (0.0027) 0.1942 (0.0151) 0.1698 (0.0031) 0.1701 (0.003) 0.1698 (0.0031)
Connect-4 0.1706 (0.0023) 0.2803 (0.0165) 0.1699 (0.002) 0.1705 (0.0024) 0.1695 (0.0019)
Shuttle 0.0002 (0.0001) 0.0003 (0.0002) 0.0002 (0.0001) 0.0002 (0.0001) 0.0002 (0.0001)
Pendigits 0.0096 (0.0023) 0.0452 (0.0124) 0.0092 (0.0022) 0.0093 (0.0021) 0.0092 (0.0025)
Letter 0.0378 (0.0036) 0.1408 (0.0356) 0.0398 (0.0041) 0.0402 (0.0042) 0.0383 (0.0034)
SatImage 0.0828 (0.0068) 0.1321 (0.0268) 0.0835 (0.0061) 0.0839 (0.0062) 0.0832 (0.006)
Sensorless 0.0014 (0.0004) 0.0138 (0.0019) 0.0012 (0.0003) 0.0012 (0.0003) 0.0012 (0.0003)
USPS 0.0394 (0.0043) 0.1325 (0.0251) 0.0401 (0.0055) 0.0405 (0.0052) 0.0404 (0.005)
MNIST 0.0316 (0.0017) 0.16 (0.0352) 0.0323 (0.0017) 0.0324 (0.0017) 0.0317 (0.0014)
Fashion 0.1175 (0.0018) 0.2122 (0.0299) 0.1192 (0.0022) 0.1197 (0.0022) 0.1178 (0.0021)

2.8.5.2 Optimized weighted random forest

Experimental Setting This section describes in detail the settings and the results
of the empirical evaluation using random forest (RF) majority vote classifiers.

We construct the ensemble from decision trees available in scikit-learn. For each data
set, an ensemble of 100 trees is trained using bagging (as described in Section 2.6).
For each tree, the Gini criterion is used for splitting and

√
d features are considered

in each split.

We compare the RF using the default uniform weighting ρu and the optimized
weighting obtained by FO (Thiemann et al., 2016), TND (Masegosa et al., 2020),
CCTND (Theorem 2.11) and CCPBB (Theorem 2.13). Optimization is based on
the out-of-bag sets (see Section 2.6). For each optimized RF, we also compute the
optimized bound.

Numerical Results This section lists the numerical results for the empirical
evaluation using RF. Table 2.2 provides the numerical values of the test loss obtained
by the RFs with uniform weighting and with weighting optimized by FO, TND,
CCTND and CCPBB; a visual presentation is given in Figure 2.2a. As observed

33



Chapter 2 | Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote

Table 2.3: Numerical values of the bounds for the RFs with optimized weighting.
The tightest bound is highlighted in bold, while the tightest second-order bound is
underlined.

Data set FO(ρλ) TND(ρTND) CCTND(ρCCTND) CCPBB(ρCCPBB)

SVMGuide1 0.1079 (0.0079) 0.1836 (0.0062) 0.1853 (0.0059) 0.2806 (0.0071)
Phishing 0.1189 (0.0035) 0.1642 (0.0043) 0.1674 (0.0042) 0.2336 (0.005)
Mushroom 0.0068 (0.0001) 0.0353 (0.0002) 0.0388 (0.0002) 0.1121 (0.0006)
Splice 0.3245 (0.0218) 0.4077 (0.0062) 0.4247 (0.0065) 0.6562 (0.0056)
w1a 0.0424 (0.0015) 0.0633 (0.0009) 0.0642 (0.0009) 0.0805 (0.0011)
Cod-RNA 0.1629 (0.0018) 0.1663 (0.0014) 0.1698 (0.0014) 0.19 (0.0018)
Adult 0.4388 (0.0042) 0.5701 (0.0051) 0.5508 (0.004) 0.5976 (0.0042)
Connect-4 0.5978 (0.0067) 0.6831 (0.0039) 0.6758 (0.0036) 0.7112 (0.0038)
Shuttle 0.0026 (0.0002) 0.0078 (0.0002) 0.0083 (0.0002) 0.018 (0.0003)
Pendigits 0.142 (0.0035) 0.1445 (0.0026) 0.1504 (0.0042) 0.2155 (0.003)
Letter 0.3858 (0.0067) 0.4504 (0.0032) 0.4513 (0.003) 0.5134 (0.0039)
SatImage 0.3762 (0.0075) 0.4902 (0.0079) 0.4851 (0.007) 0.6158 (0.0083)
Sensorless 0.0348 (0.0031) 0.0257 (0.0006) 0.0265 (0.0006) 0.0376 (0.0007)
USPS 0.3394 (0.0065) 0.4059 (0.0048) 0.4097 (0.0044) 0.5086 (0.0042)
MNIST 0.3795 (0.0031) 0.3537 (0.0014) 0.3598 (0.0014) 0.3853 (0.0014)
Fashion 0.4806 (0.003) 0.5436 (0.0023) 0.5408 (0.0021) 0.5728 (0.0021)

by Masegosa et al. (2020), optimization using FO leads to overfitting, while the
second-order bounds does not significantly degrade the performance. Among the
second-order bounds, optimizing using CCPBB produces the best classifier in most
cases.

Table 2.3 provides the numerical values of the optimized bounds; a visual presentation
is given in Figure 2.2b. Table 2.4 provides the Gibbs loss and tandem loss using the
optimized ρ. The optimal µ found is reported for CCTND and CCPBB as well.

2.8.5.3 Ensemble of multiple heterogeneous classifiers

Experimental Setting This section describes in detail the settings and the results
of the experimental evaluation using an ensemble of multiple heterogeneous classifiers.

The ensemble is defined by a set of standard classifiers available in scikit-learn:

• Linear Discriminant Analysis, with default parameters, which includes a
singular value decomposition solver.
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Table 2.4: Numerical values for Gibbs loss, tandem loss and optimized µ for the RFs
with optimized weighting. We use Eρ[L] and Eρ2 [L] as short-hands for the Gibbs and
the tandem loss respectively.

FO TND CCTND CCPBB
Data set Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] µ Eρ[L] Eρ2 [L] µ

SVMGuide1 0.0325 0.0217 0.0406 0.0185 0.0403 0.0184 -0.0527 0.0413 0.0194 -0.0258
Phishing 0.041 0.0255 0.0486 0.0197 0.0484 0.0196 -0.0295 0.049 0.0202 -0.0125
Mushroom 0.0 0.0 0.0002 0.0 0.0002 0.0 -0.0317 0.0002 0.0 -0.01
Splice 0.1068 0.0903 0.1564 0.0424 0.1522 0.0415 -0.057 0.16 0.044 0.0045
w1a 0.0156 0.0123 0.0179 0.0091 0.0179 0.009 -0.0111 0.018 0.0092 -0.0065
Cod-RNA 0.0712 0.0602 0.0802 0.0314 0.0803 0.0314 -0.0178 0.0815 0.0318 0.0102
Adult 0.1995 0.1474 0.2061 0.1184 0.2056 0.1182 -0.1216 0.2068 0.1194 -0.0918
Connect-4 0.2824 0.2564 0.2953 0.1523 0.2943 0.1521 -0.0959 0.2974 0.1535 -0.0615
Shuttle 0.0003 0.0001 0.0006 0.0002 0.0006 0.0002 -0.0044 0.0006 0.0002 0.0
Pendigits 0.0502 0.0346 0.061 0.0163 0.0609 0.0163 -0.0099 0.0614 0.0166 0.0092
Letter 0.1685 0.1249 0.1803 0.0851 0.1797 0.0849 -0.0501 0.1816 0.0861 -0.0228
SatImage 0.1478 0.0968 0.1612 0.0746 0.1602 0.0741 -0.1104 0.1617 0.0755 -0.0535
Sensorless 0.0125 0.0113 0.0192 0.0027 0.0192 0.0027 0.0008 0.0195 0.0027 0.01
USPS 0.1363 0.0989 0.1517 0.0644 0.1509 0.0641 -0.053 0.1522 0.065 -0.0173
MNIST 0.1763 0.1286 0.1837 0.075 0.1835 0.075 0.0281 0.185 0.0756 0.037
Fashion 0.2256 0.1715 0.2325 0.1196 0.2322 0.1195 -0.0577 0.2334 0.1203 -0.0382

• Three versions of k-Nearest Neighbors: (i) k=3 and uniform weights (i.e.,
all points in each neighborhood are weighted equally); (ii) k=5 and uniform
weights; and (iii) k=5 where points are weighted by the inverse of their distance.
In all cases, it is employed the Euclidean distance.

• Decision Tree, with default parameters, which includes Gini criterion for
splitting and no maximum depth.

• Logistic Regression, with default parameters, which includes L2 penalization.

• Gaussian Naive Bayes, with default parameters.

We included three versions of the kNN classifier to test if our bounds could deal with
a heterogeneous set of classifiers where some of them are expected to provide highly
correlated errors while others are expected to provide much less correlated errors.

Each of the seven classifiers of the ensemble was learned from a bootstrap sample of
the training data set. We did it in the way to be able to compute and optimize our
bounds with the out-of-bag-samples as described in Section 2.6.

Numerical Results This section lists the numerical results for the empirical
evaluation using ensembles of multiple heterogeneous classifiers.
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Table 2.5: Numerical values of the test loss obtained by ensembles of multiple
heterogeneous classifiers with optimized weighting. The smallest loss is highlighted
in bold, while the smallest optimized loss is underlined.

Data set L(MVu) L(MVρλ) L(MVρTND) L(MVρCCTND) L(MVρCCPBB)

SVMGuide1 0.0284 (0.0037) 0.0372 (0.0066) 0.0287 (0.0035) 0.0286 (0.0036) 0.0287 (0.0039)
Phishing 0.0292 (0.004) 0.0371 (0.0073) 0.0292 (0.0036) 0.0292 (0.0036) 0.0292 (0.004)
Mushroom 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Splice 0.0299 (0.009) 0.1087 (0.021) 0.0306 (0.0099) 0.0309 (0.0092) 0.0302 (0.01)
w1a 0.0108 (0.0007) 0.016 (0.0025) 0.0108 (0.0006) 0.0107 (0.0006) 0.0108 (0.0006)
Cod-RNA 0.0402 (0.0013) 0.0712 (0.0064) 0.0395 (0.0014) 0.0395 (0.0014) 0.0395 (0.0015)
Adult 0.1693 (0.0027) 0.1942 (0.0151) 0.1698 (0.0031) 0.1701 (0.003) 0.1698 (0.0031)
Connect-4 0.1706 (0.0023) 0.2803 (0.0165) 0.1699 (0.002) 0.1705 (0.0024) 0.1695 (0.0019)
Shuttle 0.0002 (0.0001) 0.0003 (0.0002) 0.0002 (0.0001) 0.0002 (0.0001) 0.0002 (0.0001)
Pendigits 0.0096 (0.0023) 0.0452 (0.0124) 0.0092 (0.0022) 0.0093 (0.0021) 0.0092 (0.0025)
Letter 0.0378 (0.0036) 0.1408 (0.0356) 0.0398 (0.0041) 0.0402 (0.0042) 0.0383 (0.0034)
SatImage 0.0828 (0.0068) 0.1321 (0.0268) 0.0835 (0.0061) 0.0839 (0.0062) 0.0832 (0.006)
Sensorless 0.0014 (0.0004) 0.0138 (0.0019) 0.0012 (0.0003) 0.0012 (0.0003) 0.0012 (0.0003)
USPS 0.0394 (0.0043) 0.1325 (0.0251) 0.0401 (0.0055) 0.0405 (0.0052) 0.0404 (0.005)
MNIST 0.0316 (0.0017) 0.16 (0.0352) 0.0323 (0.0017) 0.0324 (0.0017) 0.0317 (0.0014)
Fashion 0.1175 (0.0018) 0.2122 (0.0299) 0.1192 (0.0022) 0.1197 (0.0022) 0.1178 (0.0021)

Table 2.5 provides the numerical values of the test loss obtained by these ensembles
with uniform weighting and with weighting optimized by FO, TND, CCTND and
CCPBB; a visual presentation is given in Figure 2.2c. In this case, uniform voting is
not a competitive weighting scheme. The second-order bounds perform much better
than uniform weighting and than the weights computed according to the first-order
bound. There is not any clear winner among the second-order bounds.

Table 2.6 provides the numerical values of the optimized bounds; a visual presentation
is given in Figure 2.2d. Among the second-order bounds, the CCTND bound is often
tighter in this setting.

Table 2.7 provides the recorded Gibbs loss and tandem loss using the optimized ρ.
The optimal µ found is reported for CCTND and CCPBB as well.
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Table 2.6: Numerical values of the bounds for ensembles of multiple heterogeneous
classifiers with optimized weighting. The tightest bound is highlighted in bold, while
the tightest second-order bound is underlined.

Data set FO(ρλ) TND(ρTND) CCTND(ρCCTND) CCPBB(ρCCPBB)

SVMGuide1 0.1079 (0.0079) 0.1836 (0.0062) 0.1853 (0.0059) 0.2806 (0.0071)
Phishing 0.1189 (0.0035) 0.1642 (0.0043) 0.1674 (0.0042) 0.2336 (0.005)
Mushroom 0.0068 (0.0001) 0.0353 (0.0002) 0.0388 (0.0002) 0.1121 (0.0006)
Splice 0.3245 (0.0218) 0.4077 (0.0062) 0.4247 (0.0065) 0.6562 (0.0056)
w1a 0.0424 (0.0015) 0.0633 (0.0009) 0.0642 (0.0009) 0.0805 (0.0011)
Cod-RNA 0.1629 (0.0018) 0.1663 (0.0014) 0.1698 (0.0014) 0.19 (0.0018)
Adult 0.4388 (0.0042) 0.5701 (0.0051) 0.5508 (0.004) 0.5976 (0.0042)
Connect-4 0.5978 (0.0067) 0.6831 (0.0039) 0.6758 (0.0036) 0.7112 (0.0038)
Shuttle 0.0026 (0.0002) 0.0078 (0.0002) 0.0083 (0.0002) 0.018 (0.0003)
Pendigits 0.142 (0.0035) 0.1445 (0.0026) 0.1504 (0.0042) 0.2155 (0.003)
Letter 0.3858 (0.0067) 0.4504 (0.0032) 0.4513 (0.003) 0.5134 (0.0039)
SatImage 0.3762 (0.0075) 0.4902 (0.0079) 0.4851 (0.007) 0.6158 (0.0083)
Sensorless 0.0348 (0.0031) 0.0257 (0.0006) 0.0265 (0.0006) 0.0376 (0.0007)
USPS 0.3394 (0.0065) 0.4059 (0.0048) 0.4097 (0.0044) 0.5086 (0.0042)
MNIST 0.3795 (0.0031) 0.3537 (0.0014) 0.3598 (0.0014) 0.3853 (0.0014)
Fashion 0.4806 (0.003) 0.5436 (0.0023) 0.5408 (0.0021) 0.5728 (0.0021)

Table 2.7: Numerical values for Gibbs loss, tandem loss and optimized µ for the
heterogeneous classifiers with optimized weighting. We use Eρ[L] and Eρ2 [L] as
short-hands for the Gibbs loss and the tandem loss respectively.

FO TND CCTND CCPBB
Data set Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] µ Eρ[L] Eρ2 [L] µ

SVMGuide1 0.0325 0.0217 0.0406 0.0185 0.0403 0.0184 -0.0527 0.0413 0.0194 -0.0258
Phishing 0.041 0.0255 0.0486 0.0197 0.0484 0.0196 -0.0295 0.049 0.0202 -0.0125
Mushroom 0.0 0.0 0.0002 0.0 0.0002 0.0 -0.0317 0.0002 0.0 -0.01
Splice 0.1068 0.0903 0.1564 0.0424 0.1522 0.0415 -0.057 0.16 0.044 0.0045
w1a 0.0156 0.0123 0.0179 0.0091 0.0179 0.009 -0.0111 0.018 0.0092 -0.0065
Cod-RNA 0.0712 0.0602 0.0802 0.0314 0.0803 0.0314 -0.0178 0.0815 0.0318 0.0102
Adult 0.1995 0.1474 0.2061 0.1184 0.2056 0.1182 -0.1216 0.2068 0.1194 -0.0918
Connect-4 0.2824 0.2564 0.2953 0.1523 0.2943 0.1521 -0.0959 0.2974 0.1535 -0.0615
Shuttle 0.0003 0.0001 0.0006 0.0002 0.0006 0.0002 -0.0044 0.0006 0.0002 0.0
Pendigits 0.0502 0.0346 0.061 0.0163 0.0609 0.0163 -0.0099 0.0614 0.0166 0.0092
Letter 0.1685 0.1249 0.1803 0.0851 0.1797 0.0849 -0.0501 0.1816 0.0861 -0.0228
SatImage 0.1478 0.0968 0.1612 0.0746 0.1602 0.0741 -0.1104 0.1617 0.0755 -0.0535
Sensorless 0.0125 0.0113 0.0192 0.0027 0.0192 0.0027 0.0008 0.0195 0.0027 0.01
USPS 0.1363 0.0989 0.1517 0.0644 0.1509 0.0641 -0.053 0.1522 0.065 -0.0173
MNIST 0.1763 0.1286 0.1837 0.075 0.1835 0.075 0.0281 0.185 0.0756 0.037
Fashion 0.2256 0.1715 0.2325 0.1196 0.2322 0.1195 -0.0577 0.2334 0.1203 -0.0382
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Chapter 3

Split-kl and PAC-Bayes-split-kl
Inequalities for Ternary Random
Variables

The work presented in this chapter is based on a paper that has been published as:

Yi-Shan Wu and Yevgeny Seldin. Split-kl and pac-bayes-split-kl inequalities for
ternary random variables. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.
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Abstract
We present a new concentration of measure inequality for sums of independent
bounded random variables, which we name a split-kl inequality. The inequality is
particularly well-suited for ternary random variables, which naturally show up in
a variety of problems, including analysis of excess losses in classification, analysis
of weighted majority votes, and learning with abstention. We demonstrate that
for ternary random variables the inequality is simultaneously competitive with the
kl inequality, the Empirical Bernstein inequality, and the Unexpected Bernstein
inequality, and in certain regimes outperforms all of them. It resolves an open
question by Tolstikhin and Seldin (2013) and Mhammedi et al. (2019) on how
to match simultaneously the combinatorial power of the kl inequality when the
distribution happens to be close to binary and the power of Bernstein inequalities to
exploit low variance when the probability mass is concentrated on the middle value.
We also derive a PAC-Bayes-split-kl inequality and compare it with the PAC-Bayes-kl,
PAC-Bayes-Empirical-Bennett, and PAC-Bayes-Unexpected-Bernstein inequalities in
an analysis of excess losses and in an analysis of a weighted majority vote for several
UCI datasets. Last but not least, our study provides the first direct comparison of
the Empirical Bernstein and Unexpected Bernstein inequalities and their PAC-Bayes
extensions.

3.1 Introduction
Concentration of measure inequalities for sums of independent random variables are
the most fundamental analysis tools in statistics and many other domains (Boucheron
et al., 2013). Their history stretches almost a century back, and inequalities such as
Hoeffding’s (Hoeffding, 1963) and Bernstein’s (Bernstein, 1946) are the main work
horses of learning theory.

For binary random variables, one of the tightest concentration of measure inequalities
is the kl inequality (Maurer, 2004; Langford, 2005; Foong et al., 2021, 2022), which
is based on combinatorial properties of a sum of n independent random variables.1
However, while being extremely tight for binary random variables and applicable to
any bounded random variables, the kl inequality is not necessarily a good choice for
sums of bounded random variables that can take more than two values. In the latter

1The Binomial tail bound is slightly tighter, but it does not extend to the PAC-Bayes setting
(Langford, 2005). Our split-kl approach can be directly applied to obtain a “split-Binomial-tail”
inequality.
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case, the Empirical Bernstein (Mnih et al., 2008; Audibert et al., 2009; Maurer and
Pontil, 2009) and the Unexpected Bernstein (Cesa-Bianchi et al., 2007; Mhammedi
et al., 2019) inequalities can be significantly tighter due to their ability to exploit
low variance, as shown by Tolstikhin and Seldin (2013). However, the Empirical and
Unexpected Bernstein inequalities are loose for binary random variables (Tolstikhin
and Seldin, 2013).

The challenge of exploiting low variance and, at the same time, matching the tightness
of the kl inequality if a distribution happens to be close to binary, was faced by
multiple prior works (Tolstikhin and Seldin, 2013; Mhammedi et al., 2019; Wu
et al., 2021), but remained an open question. We resolve this question for the
case of ternary random variables. Such random variables appear in a variety of
applications, and we illustrate two of them. One is a study of excess losses, which
are differences between the zero-one losses of a prediction rule h and a reference
prediction rule h∗, Z = `(h(X), Y ) − `(h∗(X), Y ) ∈ {−1, 0, 1}. Mhammedi et al.
(2019) have applied the PAC-Bayes-Unexpected-Bernstein bound to excess losses in
order to improve generalization bounds for classification. Another example of ternary
random variables is the tandem loss with an offset, defined by `α(h(X), h′(X), Y ) =
(`(h(X), Y )−α)(`(h′(X), Y )−α) ∈ {α2,−α(1− α), (1− α)2}. Wu et al. (2021) have
applied the PAC-Bayes-Empirical-Bennett inequality to the tandem loss with an
offset to obtain a generalization bound for the weighted majority vote. Yet another
potential application, which we leave for future work, is learning with abstention
(Cortes et al., 2018; Thulasidasan et al., 2019).

We present the split-kl inequality, which simultaneously matches the tightness of
the Empirical/Unexpected Bernstein and the kl, and outperforms both for certain
distributions. It works for sums of any bounded random variables Z1, . . . , Zn, not
only the ternary ones, but it is best suited for ternary random variables, for which it is
almost tight (in the same sense, as the kl is tight for binary random variables). The idea
behind the split-kl inequality is to write a random variable Z as Z = µ+ Z+ − Z−,
where µ is a constant, Z+ = max{0, Z − µ}, and Z− = max{0, µ − Z}. Then
E [Z] = µ+E [Z+]−E [Z−] and, given an i.i.d. sample Z1, . . . , Zn, we can bound the
distance between 1

n

∑n
i=1 Zi and E [Z] by using kl upper and lower bounds on the

distances between 1
n

∑n
i=1 Z

+
i and E [Z+], and 1

n

∑n
i=1 Z

−
i and E [Z−], respectively.

For ternary random variables Z ∈ {a, b, c} with a ≤ b ≤ c, the best split is to take
µ = b, then both Z+ and Z− are binary and the kl upper and lower bounds for their
rescaled versions are tight and, therefore, the split-kl inequality for Z is also tight.
Thus, this approach provides the best of both worlds: the combinatorial tightness
of the kl bound and exploitation of low variance when the probability mass on the
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middle value happens to be large, as in Empirical Bernstein inequalities. We further
elevate the idea to the PAC-Bayes domain and derive a PAC-Bayes-split-kl inequality.

We present an extensive set of experiments, where we first compare the kl, Empirical
Bernstein, Unexpected Bernstein, and split-kl inequalities applied to (individual)
sums of independent random variables in simulated data, and then compare the
PAC-Bayes-kl, PAC-Bayes-Unexpected-Bersnstein, PAC-Bayes-split-kl, and, in some
of the setups, PAC-Bayes-Empirical-Bennett, for several prediction models on several
UCI datasets. In particular, we evaluate the bounds in the linear classification setup
studied by Mhammedi et al. (2019) and in the weighted majority prediction setup
studied by Wu et al. (2021). To the best of our knowledge, this is also the first time
when the Empirical Bernstein and the Unexpected Bernstein inequalities are directly
compared, with and without the PAC-Bayesian extension. In Appendix 3.6.1.2 we also
show that an inequality introduced by Cesa-Bianchi et al. (2007) yields a relaxation
of the Unexpected Bernstein inequality by Mhammedi et al. (2019).

3.2 Concentration of Measure Inequalities for Sums
of Independent Random Variables

We start with the most basic question in probability theory and statistics: how far can
an average of an i.i.d. sample Z1, . . . , Zn deviate from its expectation? We cite the
major existing inequalities, the kl, Empirical Bernstein, and Unexpected Bernstein,
then derive the new split-kl inequality, and then provide a numerical comparison.

3.2.1 Background
We use KL(ρ‖π) to denote the Kullback-Leibler divergence between two probability
distributions, ρ and π (Cover and Thomas, 2006). We further use kl(p‖q) as a
shorthand for the Kullback-Leibler divergence between two Bernoulli distributions
with biases p and q, namely kl(p‖q) = KL((1 − p, p)‖(1 − q, q)). For p̂ ∈ [0, 1] and
ε ≥ 0 we define the upper and lower inverse of kl, respectively, as kl−1,+(p̂, ε) :=
max {p : p ∈ [0, 1] and kl(p̂‖p) ≤ ε} and kl−1,−(p̂, ε) := min {p : p ∈ [0, 1] and kl(p̂‖p) ≤ ε}.

The first inequality that we cite is the kl inequality.

Theorem 3.1 (kl Inequality (Langford, 2005; Foong et al., 2021, 2022)). Let
Z1, · · · , Zn be i.i.d. random variables bounded in the [0, 1] interval and with E [Zi] = p
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for all i. Let p̂ = 1
n

∑n
i=1 Zi be their empirical mean. Then, for any δ ∈ (0, 1):

P
(

kl(p̂‖p) ≥
ln 1

δ

n

)
≤ δ

and, by inversion of the kl,

P
(
p ≥ kl−1,+

(
p̂,

1

n
ln 1

δ

))
≤ δ, (3.1)

P
(
p ≤ kl−1,−

(
p̂,

1

n
ln 1

δ

))
≤ δ. (3.2)

We note that the PAC-Bayes-kl inequality (Theorem 3.5 below) is based on the

inequality E
[
en kl(p̂‖p)] ≤ 2

√
n (Maurer, 2004), which gives P

(
kl(p̂‖p) ≥ ln 2

√
n
δ

n

)
≤ δ.

Foong et al. (2021, 2022) reduce the logarithmic factor down to ln 1
δ

by basing the
proof on Chernoff’s inequality, but this proof technique cannot be combined with
PAC-Bayes. Therefore, when we move on to PAC-Bayes we pay the extra ln 2

√
n

factor in the bounds. It is a long-standing open question whether this factor can be
reduced in the PAC-Bayesian setting (Foong et al., 2021).

Next we cite two versions of the Empirical Bernstein inequality.

Theorem 3.2 (Empirical Bernstein Inequality (Maurer and Pontil, 2009)). Let
Z1, · · · , Zn be i.i.d. random variables bounded in a [a, b] interval for some a, b ∈ R,
and with E [Zi] = p for all i. Let p̂ = 1

n

∑n
i=1 Zi be the empirical mean and let

σ̂ = 1
n−1

n∑
i=1

(Zi − p̂)2 be the empirical variance. Then for any δ ∈ (0, 1) :

P

p ≥ p̂+

√
2σ̂ ln 2

δ

n
+

7(b− a) ln 2
δ

3(n− 1)

 ≤ δ. (3.3)

Theorem 3.3 (Unexpected Bernstein Inequality (Fan et al., 2015; Mhammedi et al.,
2019)). Let Z1, · · · , Zn be i.i.d. random variables bounded from above by b for some
b > 0, and with E [Zi] = p for all i. Let p̂ = 1

n

∑n
i=1 Zi be the empirical mean and let

σ̂ = 1
n

∑n
i=1 Z

2
i be the empirical mean of the second moments. Let ψ(u) := u−ln(1+u)

for u > −1. Then, for any γ ∈ (0, 1/b) and any δ ∈ (0, 1):

P
(
p ≥ p̂+

ψ(−γb)
γb2

σ̂ +
ln 1

δ

γn

)
≤ δ. (3.4)
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To facilitate a comparison with other bounds, Theorem 3.3 provides a slightly different
form of the Unexpected Bernstein inequality than the one used by Mhammedi et al.
(2019). We provide a proof of the theorem in Appendix 3.6.1.1, which is based on
the Unexpected Bernstein Lemma (Fan et al., 2015). We note that an inequality
proposed by Cesa-Bianchi et al. (2007) can be used to derive a relaxed version of the
Unexpected Bernstein inequality, as discussed in Appendix 3.6.1.2.

3.2.2 The Split-kl Inequality
Let Z be a random variable bounded in a [a, b] interval for some a, b ∈ R and let
µ ∈ [a, b] be a constant. We decompose Z = µ+Z+−Z−, where Z+ = max(0, Z−µ)
and Z− = max(0, µ− Z). Let p = E [Z], p+ = E [Z+], and p− = E [Z−]. For an i.i.d.
sample Z1, . . . , Zn let p̂+ = 1

n

∑n
i=1 Z

+
i and p̂− = 1

n

∑n
i=1 Z

−
i .

With these definitions we present the split-kl inequality.

Theorem 3.4 (Split-kl inequality). Let Z1, . . . , Zn be i.i.d. random variables in a
[a, b] interval for some a, b ∈ R, then for any µ ∈ [a, b] and δ ∈ (0, 1):

P
(
p ≥ µ+ (b− µ) kl−1,+

(
p̂+

b− µ
,
1

n
ln 2

δ

)
− (µ− a) kl−1,−

(
p̂−

µ− a
,
1

n
ln 2

δ

))
≤ δ.

(3.5)

Proof.

P
(
p ≥ µ+ (b− µ) kl−1,+

(
p̂+

b− µ
,
1

n
ln 2

δ

)
− (µ− a) kl−1,−

(
p̂−

µ− a
,
1

n
ln 2

δ

))
≤ P

(
p+ ≥ (b− µ) kl−1,+

(
p̂+

b− µ
,
1

n
ln 2

δ

))
+ P

(
p− ≤ (µ− a) kl−1,−

(
p̂−

µ− a
,
1

n
ln 2

δ

))
≤ δ,

where the last inequality follows by application of the kl upper and lower bounds
from Theorem 3.1 to the first and second terms in the middle line, respectively.

For ternary random variables the best choice is to take µ to be the middle value, then
the resulting Z+ and Z− are binary and the corresponding kl upper and lower bounds
on p+ and p− are tight, and the resulting split-kl bound is tight. The inequality can
be applied to any bounded random variables, but same way as the kl inequality is
not necessarily a good choice for bounded random variables, if the distribution is not
binary, the split-kl in not necessarily a good choice if the distribution is not ternary.
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3.2.3 Empirical Comparison
We present an empirical comparison of the tightness of the above four concentration
inequalities: the kl, the Empirical Bernstein, the Unexpected Bernstein, and the
split-kl. We take n i.i.d. samples Z1, . . . , Zn taking values in {−1, 0, 1}. The choice
is motivated both by instructiveness of presentation and by subsequent applications
to excess losses. We let p−1 = P(Z = −1), p0 = P(Z = 0), and p1 = P(Z = 1), where
p−1 + p0 + p1 = 1. Then p = E [Z] = p1 − p−1. We also let p̂ = 1

n

∑n
i=1 Zi.

In Figure 3.1 we plot the difference between the bounds on p given by the inequalities
(3.1), (3.3), (3.4), and (3.5), and p̂. Lower values in the plot correspond to tighter
bounds. To compute the kl bound we first rescale the losses to the [0, 1] interval,
and then rescale the bound back to the [−1, 1] interval. For the Empirical Bernstein
bound we take a = −1 and b = 1. For the Unexpected Bernstein bound we take a
grid of γ ∈ {1/(2b), · · · , 1/(2kb)} for k = dlog2(

√
n/ ln(1/δ)/2)e and a union bound

over the grid, as proposed by Mhammedi et al. (2019). For the split-kl bound we
take µ to be the middle value, 0, of the ternary random variable. In the experiments
we take δ = 0.05, and truncate the bounds at 1.

In the first experiment, presented in Figure 3.1a, we take p−1 = p1 = (1 − p0)/2
and plot the difference between the values of the bounds and p̂ as a function of p0.
For p0 = 0 the random variable Z is Bernoulli and, as expected, the kl inequality
performs the best, followed by split-kl, and then Unexpected Bernstein. As p0 grows
closer to 1, the variance of Z decreases and, also as expected, the kl inequality falls
behind, whereas split-kl and Unexpected Bernstein go closely together. Empirical
Bernstein falls behind all other bounds throughout most of the range, except slightly
outperforming kl when p0 gets very close to 1.

In the second experiment, presented in Figure 3.1b, we take a skewed random variable
with p1 = 0.99(1− p0) and p−1 = 0.01(1− p0), and again plot the difference between
the values of the bounds and p̂ as a function of p0. This time the kl also starts well
for p0 close to zero, but then falls behind due to its inability of properly handling the
values inside the interval. Unexpected Bernstein exhibits the opposite trend due to
being based on uncentered second moment, which is high when p0 is close to zero,
even though the variance is small in this case. Empirical Bernstein lags behind all
other bounds for most of the range due to poor constants, whereas split-kl matches
the tightest bounds, the kl and Unexpected Bernstein, at the endpoints of the range
of p0, and outperforms all other bounds in the middle of the range, around p0 = 0.6,
due to being able to exploit the combinatorics of the problem.
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The experiments demonstrate that for ternary random variables the split-kl is a
powerful alternative to existing concentration of measure inequalities. To the best of
our knowledge, this is also the first empirical evaluation of the Unexpected Bernstein
inequality, and it shows that in many cases it is also a powerful inequality. We also
observe that in most settings the Empirical Bernstein is weaker than the other three
inequalities we consider. Numerical evaluations in additional settings are provided in
Appendix 3.6.4.

(a) Comparison of the concentration
bounds with n = 100, δ = 0.05 and
p−1 = p1 = 0.5(1− p0).

(b) Comparison of the concentration
bounds with n = 100, δ = 0.05, p1 =
0.99(1− p0), and p−1 = 0.01(1− p0).

Figure 3.1: Empirical comparison of the concentration bounds.

3.3 PAC-Bayesian Inequalities
Now we elevate the basic concentration of measure inequalities to the PAC-Bayesian
domain. We start with the supervised learning problem setup, then provide a
background on existing PAC-Bayesian inequalities, and finish with presentation of
the PAC-Bayes-split-kl inequality.

3.3.1 Supervised Learning Problem Setup and Notations
Let X be a sample space, Y be a label space, and let S = {(Xi, Yi)}ni=1 be an
i.i.d. sample drawn according to an unknown distribution D on the product-space
X × Y . Let H be a hypothesis space containing hypotheses h : X → Y . The quality
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of a hypothesis h is measured using the zero-one loss `(h(X), Y ) = 1(h(X) 6= Y ),
where 1(·) is the indicator function. The expected loss of h is denoted by L(h) =
E(X,Y )∼D [`(h(X), Y )], and the empirical loss of h on a sample S is denoted by
L̂(h, S) = 1

|S|
∑

(X,Y )∈S `(h(X), Y ). We use ED[·] as a shorthand for E(X,Y )∼D[·].

PAC-Bayesian bounds bound the generalization error of Gibbs prediction rules. For
each input X ∈ X , Gibbs prediction rule associated with a distribution ρ on H
randomly draws a hypothesis h ∈ H according to ρ and predicts h(X). The expected
loss of the Gibbs prediction rule is Eh∼ρ[L(h)] and the empirical loss is Eh∼ρ[L̂(h, S)].
We use Eρ[·] as a shorthand for Eh∼ρ[·].

3.3.2 PAC-Bayesian Analysis Background
Now we present a brief background on the relevant results from the PAC-Bayesian
analysis.

PAC-Bayes-kl Inequality The PAC-Bayes-kl inequality cited below is one of the
tightest known generalization bounds on the expected loss of the Gibbs prediction
rule.

Theorem 3.5 (PAC-Bayes-kl Inequality, Seeger, 2002, Maurer, 2004). For any
probability distribution π on H that is independent of S and any δ ∈ (0, 1):

P
(
∃ρ ∈ P : kl

(
Eρ[L̂(h, S)]

∥∥∥Eρ [L(h)]) ≥ KL(ρ‖π) + ln(2
√
n/δ)

n

)
≤ δ, (3.6)

where P is the set of all possible probability distributions on H that can depend on S.

The following relaxation of the PAC-Bayes-kl inequality based on Refined Pinsker’s re-
laxation of the kl divergence helps getting some intuition about the bound (McAllester,
2003). With probability at least 1− δ, for all ρ ∈ P we have

Eρ[L(h)] ≤ Eρ[L̂(h, S)]+
√

2Eρ[L̂(h, S)]
KL(ρ‖π) + ln(2

√
n/δ)

n
+
2 (KL(ρ‖π) + ln(2

√
n/δ))

n
.

(3.7)
If Eρ[L̂(h, S)] is close to zero, the middle term in the inequality above vanishes, leading
to so-called “fast convergence rates” (convergence of Eρ[L̂(h, S)] to Eρ[L(h)] at the
rate of 1/n). However, achieving low Eρ[L̂(h, S)] is not always possible (Dziugaite
and Roy, 2017; Zhou et al., 2019). Subsequent research in PAC-Bayesian analysis
has focused on two goals: (1) achieving fast convergence rates when the variance of
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prediction errors is low (and not necessarily the errors themselves), and (2) reducing
the KL(ρ‖π) term, which may be quite large for large hypothesis spaces. For the
first goal Tolstikhin and Seldin (2013) developed the PAC-Bayes-Empirical-Bernstein
inequality and Mhammedi et al. (2019) proposed to use excess losses and also derived
the alternative PAC-Bayes-Unexpected-Bernstein inequality. For the second goal
Ambroladze et al. (2007) suggested to use informed priors and Mhammedi et al.
(2019) perfected the idea by proposing to average over “forward” and “backward”
construction with informed prior. Next we explain the ideas behind the excess losses
and informed priors in more details.

Excess Losses Let h∗ be a reference prediction rule that is independent of S. We
define the excess loss of a prediction rule h with respect to the reference h∗ by

∆`(h(X), h∗(X), Y ) = `(h(X), Y )− `(h∗(X), Y ).

If ` is the zero-one loss, the excess loss naturally gives rise to ternary random
variables, but it is well-defined for any real-valued loss function. We use ∆L(h, h

∗) =
ED[∆`(h(X), h∗(X), Y )] = L(h) − L(h∗) to denote the expected excess loss of h
relative to h∗ and ∆L̂(h, h

′, S) = 1
|S|
∑

(X,Y )∈S ∆`(h(X), h∗(X), Y ) = L̂(h)− L̂(h∗) to
denote the empirical excess loss of h relative to h∗. The expected loss of a Gibbs
prediction rule can then be written as

Eρ[L(h)] = Eρ[∆L(h, h
∗)] + L(h∗).

A bound on Eρ[L(h)] can thus be decomposed into a summation of a PAC-Bayes
bound on Eρ[∆L(h, h

∗)] and a bound on L(h∗). When the variance of the excess loss is
small, we can use tools that exploit small variance, such as the PAC-Bayes-Empirical-
Bernstein, PAC-Bayes-Unexpected-Bernstein, or PAC-Bayes-Split-kl inequalities pro-
posed below, to achieve fast convergence rates for the excess loss. Bounding L(h∗)
involves just a single prediction rule and does not depend on the value of KL(ρ‖π).
We note that it is essential that the variance and not just the magnitude of the excess
loss is small. For example, if the excess losses primarily take values in {−1, 1} and
average out to zero, fast convergence rates are impossible.

Informed Priors The idea behind informed priors is to split the data into two
subsets, S = S1 ∪ S2, and to use S1 to learn a prior πS1 , and then use it to learn a
posterior on S2 Ambroladze et al. (2007). Note that since the size of S2 is smaller
than the size of S, this approach gains in having potentially smaller KL(ρ‖πS1), but
loses in having a smaller sample size in the denominator of the PAC-Bayes bounds.
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The balance between the advantage and disadvantage depends on the data: for some
data sets it strengthens the bounds, but for some it weakens them. Mhammedi et al.
(2019) perfected the approach by proposing to use it in the “forward” and “backward”
direction and average over the two. Let S1 and S2 be of equal size. The “forward” part
uses S1 to train πS1 and then computes a posterior on S2, while the “backward” part
uses S2 to train πS2 and then computes a posterior on S1. Finally, the two posteriors
are averaged with equal weight and the KL term becomes 1

2
(KL(ρ‖πS1) + KL(ρ‖πS2)).

See (Mhammedi et al., 2019) for the derivation.

Excess Losses and Informed Priors Excess losses and informed priors make
an ideal combination. If we split S into two equal parts, S = S1 ∪ S2, we can use
S1 to train both a reference prediction rule hS1 and a prior πS1 , and then learn a
PAC-Bayes posterior on S2, and the other way around. By combining the “forward”
and “backward” approaches we can write

Eρ[L(h)] =
1

2
Eρ[∆L(h, hS1)] +

1

2
Eρ[∆L(h, hS2)] +

1

2
(L(hS1) + L(hS2)) , (3.8)

and we can use PAC-Bayes to bound the first term using the prior πS1 and the data in
S2, and to bound the second term using the prior πS2 and the data in S1, and we can
bound L(hS1) and L(hS2) using the “complementary” data in S2 and S1, respectively.

PAC-Bayes-Empirical-Bernstein Inequalities The excess losses are ternary
random variables taking values in {−1, 0, 1} and, as we have already discussed, the
kl inequality is not well-suited for them. PAC-Bayesian inequalities tailored for
non-binary random variables were derived by Seldin et al. (2012), Tolstikhin and
Seldin (2013), Wu et al. (2021), and Mhammedi et al. (2019). Seldin et al. (2012)
derived the PAC-Bayes-Bernstein oracle bound, which assumes knowledge of the
variance. Tolstikhin and Seldin (2013) made it into an empirical bound by deriving
the PAC-Bayes-Empirical-Bernstein bound for the variance and plugging it into the
PAC-Bayes-Bernstein bound of Seldin et al.. Wu et al. (2021) derived an oracle
PAC-Bayes-Bennett inequality, which again assumes oracle knowledge of the variance,
and showed that it is always at least as tight as the PAC-Bayes-Bernstein, and
then also plugged in the PAC-Bayes-Empirical-Bernstein bound on the variance.
Mhammedi et al. (2019) derived the PAC-Bayes-Unexpected-Bernstein inequality,
which directly uses the empirical second moment. Since we have already shown
that the Unexpected Bernstein inequality is tighter than the Empirical Bernstein,
and since the approach of Wu et al. requires a combination of two inequalities,
PAC-Bayes-Empirical-Bernstein for the variance and PAC-Bayes-Bennett for the
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loss, whereas the approach of Mhammedi et al. only makes a single application of
PAC-Bayes-Unexpected-Bernstein, we only compare our work to the latter.

We cite the inequality of Mhammedi et al. (2019), which applies to an arbitrary loss
function. We use ˜̀ and matching tilde-marked quantities to distinguish it from the
zero-one loss `. For any h ∈ H, let L̃(h) = ED[˜̀(h(X), Y )] be the expected tilde-loss
of h, and let ˆ̃L(h, S) = 1

|S|
∑

(X,Y )∈S
˜̀(h(X), Y ) be the empirical tilde-loss of h on S.

Theorem 3.6 (PAC-Bayes-Unexpected-Bernstein inequality (Mhammedi et al.,
2019)). Let ˜̀(·, ·) be an arbitrary loss function bounded from above by b for some
b > 0, and assume that ˆ̃V(h, S) = 1

|S|
∑

(X,Y )∈S
˜̀(h(X), Y )2 is finite for all h. Let

ψ(u) := u−ln(1+u) for u > −1. Then for any distribution π on H that is independent
of S, any γ ∈ (0, 1/b), and any δ ∈ (0, 1):

P
(
∃ρ ∈ P : Eρ[L̃(h)] ≥ Eρ[ ˆ̃L(h, S)] +

ψ(−γb)
γb2

Eρ[ ˆ̃V(h, S)] +
KL(ρ‖π) + ln 1

δ

γn

)
≤ δ,

where P is the set of all possible probability distributions on H that can depend on S.

In optimization of the bound, we take a grid of γ ∈ {1/(2b), · · · , 1/(2kb)} for k =
dlog2(

√
n/ ln(1/δ)/2)e and a union bound over the grid, as we did for Theorem 3.3.

3.3.3 PAC-Bayes-Split-kl Inequality
Now we present our PAC-Bayes-Split-kl inequality. For an arbitrary loss function
˜̀ taking values in a [a, b] interval for some a, b ∈ R, let ˜̀+ := max{0, ˜̀− µ} and
˜̀− := max{0, µ− ˜̀} for some µ ∈ [a, b]. For any h ∈ H, let L̃+(h) = ED[˜̀+(h(X), Y )]
and L̃−(h) = ED[˜̀−(h(X), Y )]. The corresponding empirical losses are denoted by
ˆ̃L+(h, S) = 1

n

∑n
i=1

˜̀+(h(Xi), Yi) and ˆ̃L−(h, S) = 1
n

∑n
i=1

˜̀−(h(Xi), Yi).

Theorem 3.7 (PAC-Bayes-Split-kl Inequality). Let ˜̀(·, ·) be an arbitrary loss function
taking values in a [a, b] interval for some a, b ∈ R. Then for any distribution π on H
that is independent of S, any µ ∈ [a, b], and any δ ∈ (0, 1):

P

[
∃ρ ∈ P : Eρ[L̃(h)] ≥ µ+ (b− µ) kl−1,+

(
Eρ[ ˆ̃L+(h, S)]

b− µ
,
KL(ρ‖π) + ln 4

√
n
δ

n

)

− (µ− a) kl−1,−

(
Eρ[ ˆ̃L−(h, S)]

µ− a
,
KL(ρ‖π) + ln 4

√
n
δ

n

)]
≤ δ,

where P is the set of all possible probability distributions on H that can depend on S.
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Proof. We have Eρ[L̃(h)] = µ + Eρ[L̃+(h)] − Eρ[L̃−(h)]. Similar to the proof of
Theorem 3.4, we take a union bound of PAC-Bayes-kl upper bound on Eρ[L̃+(h)] and
PAC-Bayes-kl lower bound on Eρ[L̃−(h)].

3.3.4 PAC-Bayes-split-kl with Excess Loss and Informed
Prior

Looking back at the expected loss decomposition in equation (3.8), we can use PAC-
Bayes-split-kl to bound the first two terms and a bound on the binomial tail distribu-
tion to bound the last term. For n i.i.d. Bernoulli random variables Z1, . . . , Zn with
bias p ∈ (0, 1), we define the binomial tail distribution Bin(n, k, p) = P(

∑n
i=1Xi ≤ k)

and its inverse Bin−1(n, k, δ) = max {p : p ∈ [0, 1] and Bin(n, k, p) ≥ δ}. The follow-
ing theorem relates p̂ = 1

n

∑n
i=1 Zi and p.

Theorem 3.8 (Test Set Bound (Langford, 2005)). Let Z1, . . . , Zn be n i.i.d. Bernoulli
random variables with bias p ∈ (0, 1) and let p̂ = 1

n

∑n
i=1 Zi be the empirical mean.

Then for any δ ∈ (0, 1):
P
(
p ≥ Bin−1(n, np̂, δ)

)
≤ δ.

By applying Theorems 3.7 and 3.8 to equation (3.8) we obtain the following result.

Theorem 3.9. For any µ ∈ [−1, 1] and any δ ∈ (0, 1):

P
(
∃ρ ∈ P : Eρ[L(h)] ≥ µ+ (1− µ)(a)− (µ+ 1)(b) +

1

2
(c)

)
≤ δ,

where P is the set of all possible probability distributions on H that can depend on S,

(a) = kl−1,+

(
1

2

Eρ[∆+

L̂
(h, hS1 , S2)]

1− µ
+

1

2

Eρ[∆+

L̂
(h, hS2 , S1)]

1− µ
,
KL(ρ‖π) + ln 8

√
n/2

δ

n/2

)
,

(b) = kl−1,−

(
1

2

Eρ[∆−
L̂
(h, hS1 , S2)]

µ+ 1
+

1

2

Eρ[∆−
L̂
(h, hS2 , S1)]

µ+ 1
,
KL(ρ‖π) + ln 8

√
n/2

δ

n/2

)
,

in which π = 1
2
πS1 +

1
2
πS2, and

(c) = Bin−1

(
n

2
,
n

2
L̂(hS1 , S2),

δ

4

)
+ Bin−1

(
n

2
,
n

2
L̂(hS2 , S1),

δ

4

)
.

The proof is postponed to Appendix 3.6.3.
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3.4 Experiments
We evaluate the performance of the PAC-Bayes-split-kl inequality in linear classifica-
tion and in weighted majority vote using several data sets from UCI and LibSVM
repositories (Dua and Graff, 2019; Chang and Lin, 2011). An overview of the data
sets is provided in Appendix 3.6.5.1. For linear classification we reproduce the ex-
perimental setup of Mhammedi et al. (2019), and for the weighted majority vote we
reproduce the experimental setup of Wu et al. (2021).

3.4.1 The Experimental Setup of Mhammedi et al. (2019):
Linear Classifiers

In the first experiment we follow the experimental setup of Mhammedi et al. (2019),
who consider binary classification problems with linear classifiers in Rd and Gaussian
priors and posteriors. A classifier hw associated with a vector w ∈ Rd makes a
prediction on an input X by hw(X) = 1

(
w>X > 0

)
. The posteriors have the form

of Gaussian distributions centered at wS ∈ Rd, with covariance ΣS that depends
on a sample S, ρ = N (wS,ΣS). The informed priors πS1 = N (wS1 ,ΣS1) and πS2 =
N (wS2 ,ΣS2) are also taken to be Gaussian distributions centered at wS1 and wS2 ,
with covariance ΣS1 and ΣS2 , respectively. We take the classifier associated with wS1

as the reference classifier hS1 and the classifier associated with wS2 as the reference
classifier hS2 . More details on the construction are provided in Appendix 3.6.5.2.

Figure 3.2 compares the PAC-Bayes-Unexpected-Bernstein bound PBUB and the
PAC-Bayes-split-kl bound PBSkl with excess losses and informed priors. The ternary
random variables in this setup take values in {−1, 0, 1}, and we select µ to be the
middle value 0. Since the PAC-Bayes-kl bound (PBkl) is one of the tightest known
generalization bounds, we take PBkl with informed priors as a baseline. The details
on bound calculation and optimization are provided in Appendix 3.6.5.2. In this
experiment all the three bounds, PBkl, PBUB, and PBSkl performed comparably.
We believe that the reason is that with informed priors the KL(ρ‖π) term is small.
From the relaxation of the PBkl bound in equation (3.7), we observe that a small
KL(ρ‖π) term implies smaller difference between fast and slow convergence rates,
and thus smaller advantage to bounding the excess loss instead of the raw loss. In
other words, we believe that the effect of using informed priors dominates the effect
of using excess losses. We note that in order to use excess losses we need to train the
reference hypothesis h∗ on part of the data and, therefore, training an informed prior
on the same data comes at no extra cost.
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Figure 3.2: Comparison of the bounds and the test losses of the optimized Gaussian
posterior ρ∗ generated by PBkl with informed priors, PBUB with excess losses and
informed priors, and PBSkl with excess losses and informed priors. The test losses of
the corresponding bounds are shown in black. We report the mean and the standard
deviation over 20 runs of the experiments.

3.4.2 The Experimental Setup of Wu et al. (2021): Weighted
Majority Vote

In the second experiment we reproduce the experimental setup of Wu et al. (2021),
who consider multiclass classification by a weighted majority vote. Given an input
X ∈ X , a hypothesis space H, and a distribution ρ on H, a ρ-weighted majority
vote classifier predicts MVρ(X) = arg maxy∈Y Eρ[1(h(X) = y)]. One of the tightest
bound for the majority vote is the tandem bound (TND) proposed by Masegosa et al.
(2020), which is based on tandem losses for pairs of hypotheses, `(h(X), h′(X), Y ) =
1(h(X) 6= Y )1(h′(X) 6= Y ), and the second-order Markov’s inequality. Wu et al.
(2021) proposed two improved forms of the bound, both based on a parametric form of
the Chebyshev-Cantelli inequality. The first, CCTND, using Chebyshev-Cantelli with
the tandem losses and the PAC-Bayes-kl bound for bounding the tandem losses. The
second, CCPBB, using tandem losses with an offset, defined by `α(h(X), h′(X), Y ) =
(1(h(X) 6= Y )−α)(1(h′(X) 6= Y )−α) for α < 0.5, and PAC-Bayes-Empirical-Bennett
inequality for bounding the tandem losses with an offset. We note that while the
tandem losses are binary random variables, tandem losses with an offset are ternary
random variables taking values in {α2,−α(1−α), (1−α)2} and, therefore, application
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of Empirical Bernstein type inequalities makes sense. However, in the experiments
of Wu et al. CCPBB lagged behind TND and CCTND. We replaced PAC-Bayes-
Empirical-Bennett with PAC-Bayes-Unexpected-Bernstein (CCPBUB) and PAC-
Bayes-split-kl (CCPBSkl) and showed that the weakness of CCPBB was caused
by looseness of PAC-Bayes-Empirical-Bernstein, and that CCPBUB and CCPBSkl
lead to tighter bounds that are competitive and sometimes outperforming TND and
CCTND. For the PAC-Bayes-split-kl bound we took µ to be the middle value of the
tandem loss with an offset, namely, for α ≥ 0 we took µ = α2, and for α < 0 we took
µ = −α(1− α).

In Figure 3.3 we present a comparison of the TND, CCTND, CCPBB, CCPBUB,
and CCPBSkl bounds on weighted majority vote of heterogeneous classifiers (Linear
Discriminant Analysis, k-Nearest Neighbors, Decision Tree, Logistic Regression, and
Gaussian Naive Bayes), which adds the two new bounds, CCPBUB and CCPBSkl
to the experiment done by Wu et al. (2021). A more detailed description of the
experiment and results for additional data sets are provided in Appendix 3.6.5.3. We
note that CCPBUB and CCPBSkl consistently outperform CCPBB, demonstrating
that they are more appropriate for tandem losses with an offset. The former two
bounds perform comparably to TND and CCTND, which operate on tandem losses
without an offset. In Appendix 3.6.5.4 we replicate another experiment of Wu et al.,
where we use the bounds to reweigh trees in a random forest classifier. The results
are similar to the results for heterogeneous classifiers.

3.5 Discussion
We have presented the split-kl and PAC-Bayes-split-kl inequalities. The inequalities
answer a long-standing open question on how to exploit the structure of ternary
random variables in order to provide tight concentration bounds. The proposed
split-kl and PAC-Bayes-split-kl inequalities are as tight for ternary random variables,
as the kl and PAC-Bayes-kl inequalities are tight for binary random variables.

In our empirical evaluation the split-kl inequality was always competitive with the
kl and Unexpected Bernstein inequalities and outperformed both in certain regimes,
whereas Empirical Bernstein typically lagged behind. In our experiments in the
PAC-Bayesian setting the PAC-Bayes-split-kl was always comparable to PAC-Bayes-
Unexpected-Bernstein, whereas PAC-Bayes-Empirical-Bennett most often lagged
behind. The first two inequalities were usually comparable to PAC-Bayes-kl, although
in some cases the attempt to exploit low variance did not pay off and PAC-Bayes-kl

53



Chapter 3 | Split-kl and PAC-Bayes-split-kl Inequalities for Ternary Random Variables

Figure 3.3: Comparison of the bounds and the test losses of the weighted majority
vote on ensembles of heterogeneous classifiers with optimized posterior ρ∗ generated
by TND, CCTND, CCPBB, CCPBUB, and CCPBSkl. The test losses of the corre-
sponding bounds are shown in black. We report the mean and the standard deviation
over 10 runs of the experiments.

outperformed, which is also the trend observed earlier by Mhammedi et al. (2019).
To the best of our knowledge, this is the first time when the various approaches
to exploitation of low variance were directly compared, and the proposed split-kl
emerged as a clear winner in the basic setting, whereas in the PAC-Bayes setting in
our experiments the PAC-Bayes-Unexpected-Bernstein and PAC-Bayes-split-kl were
comparable, and preferable over PAC-Bayes-Empirical-Bernstein and PAC-Bayes-
Empirical-Bennett.

3.6 Appendix

3.6.1 Unexpected Bernstein Inequality
3.6.1.1 A Proof of the Unexpected Bernstein Inequality (Theorem 3.3)

The proof is based on the Unexpected Bernstein lemma.

Lemma 3.1 (Unexpected Bernstein lemma (Fan et al., 2015; Mhammedi et al.,
2019)). Let Z1, · · · , Zn be i.i.d. random variables bounded from above by b > 0, and
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assume that
∑n

i=1 Z
2
i is finite. Let ψ(u) := u − ln(1 + u) for u ∈ R. Then for any

γ ∈ (0, 1
b
):

E
[
eγ
∑n
i=1(E[Zi]−Zi)−

ψ(−bγ)
b2

∑n
i=1 Z

2
i

]
≤ 1.

Proof of Theorem 3.3. Recall that by the assumption of the theorem Z1, . . . , Zn are
i.i.d., bounded from above by b > 0, and that p = E [Zi] for all i, p̂ = 1

n

∑n
i=1 Zi, and

σ̂ = 1
n

∑n
i=1 Z

2
i . For any γ ∈ (0, 1/b) we have:

P
(
p− p̂− ψ(−γb)

γb2
σ̂ ≥ ε

)
= P

(
n∑
i=1

(
E [Zi]− Zi −

ψ(−γb)
γb2

Z2
i

)
≥ nε

)

= P
(
e
γ
∑n
i=1

(
E[Zi]−Zi−ψ(−γb)

γb2
Z2
i

)
≥ eγnε

)
≤ E

[
e
γ
∑n
i=1

(
E[Z]−Zi−ψ(−γb)

γb2
Z2
i

)]
/eγnε

≤ e−γnε,

where the first inequality is by application of Markov’s inequality and the second
inequality is by application of Lemma 3.1. By taking δ = e−γnε and solving for ε we
complete the proof.

3.6.1.2 A relaxation of the Unexpected Bernstein lemma

We show that a concentration inequality introduced by Cesa-Bianchi et al. (2007)
yields a relaxation of the Unexpected Bernstein Lemma. The inequality of Cesa-
Bianchi et al. can be used to directly derive a relaxed version of the Unexpected
Bernstein lemma, but as we show the result is weaker than the Unexpected Bernstein
lemma. Cesa-Bianchi et al. (2007, Lemma 1) have shown that

∀γ ≥ −1/2 : γ − γ2 ≤ ln(1 + γ). (3.9)

Thus,
∀γ ≤ 1/2 : − γ2 ≤ γ + ln(1− γ) = −ψ(−γ). (3.10)

This gives a relaxed version of the Unexpected Bernstein lemma. For simplicity, we
present it with b = 1.

Lemma 3.2 (Relaxed Unexpected Bernstein lemma). Let Z1, · · · , Zn be i.i.d. random
variables bounded from above by 1, and assume that

∑n
i=1 Z

2
i is finite. Then for any

γ ∈ [0, 1
2
]:

E
[
eγ
∑n
i=1(E[Zi]−Zi)−γ2

∑n
i=1 Z

2
i

]
≤ 1.
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Proof. By (3.10) and Lemma 3.1 we have

E
[
eγ
∑n
i=1(E[Zi]−Zi)−γ2

∑n
i=1 Z

2
i

]
≤ E

[
eγ
∑n
i=1(E[Zi]−Zi)−ψ(−γ)

∑n
i=1 Z

2
i

]
≤ 1.

We note that it is possible to prove Lemma 3.2 directly by using inequality (3.9) and
without using Lemma 3.1, as done by Wintenberger (2017). The first inequality in
our proof of Lemma 3.2 shows that it is a relaxation of Lemma 3.1.

3.6.2 A Proof of the PAC-Bayes Unexpected Bernstein In-
equality (Theorem 3.6)

The proof is based on using the Unexpected Bernstein lemma within a standard
change of measure argument cited in Lemma 2.3 below. We cite the version before
the expectations of S ′ and π are exchanged, which is an intermediate step in the
proof of Tolstikhin and Seldin (2013, Lemma 1).

Lemma 3.3 (PAC-Bayes Lemma (Tolstikhin and Seldin, 2013) ). For any function
fn : H × (X × Y)n → R and for any distribution π on H, with probability at least
1− δ over a random draw of S, for all distributions ρ on H simultaneously:

Eρ[fn(h, S)] ≤ KL(ρ‖π) + ln 1

δ
+ lnES′ [Eπ[efn(h,S

′)]].

Proof of Theorem 3.6. Let fn(h, S) = γn
(
L̃(h)− ˆ̃L(h, S)

)
− ψ(−bγ)

b2
n ˆ̃V(h, S). Since

π is independent of S by assumption, we can exchange the expectations of S and π.
Then by Lemma 3.1 we have E

[
efn(h,S)

]
≤ 1. By plugging this into Lemma 3.3 and

dividing both sides by γn, we complete the proof.

3.6.3 Proof of Theorem 3.9
To prove the theorem, we need the test set bound (Theorem 3.8), the PAC-Bayes
Lemma (Lemma 3.3), and the following lemma.

Lemma 3.4 ((Maurer, 2004)). Let X1, · · · , Xn be i.i.d. random variables with mean
p and bounded in the [0, 1] interval. Let p̂ = 1

n

∑n
i=1Xi be the empirical mean. Then:

E
[
en kl(p̂‖p)] ≤ 2

√
n.
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Proof of Theorem 3.9. Recall that

Eρ[L(h)] =
1

2
Eρ[∆L(h, hS1)] +

1

2
Eρ[∆L(h, hS2)] +

1

2
(L(hS1) + L(hS2)) . (3.11)

First, by applying Theorem 3.8 to L(hS1) and L(hS2), respectively, we have:

P
(
L(hS1) ≥ Bin−1

(n
2
,
n

2
L̂(hS1 , S2), δ

))
≤ δ (3.12)

and
P
(
L(hS2) ≥ Bin−1

(n
2
,
n

2
L̂(hS2 , S1), δ

))
≤ δ. (3.13)

Next, since

Eρ[∆L(h, hS1)] = µ+ Eρ[∆+
L(h, hS1)]− Eρ[∆−

L(h, hS1)]

and
Eρ[∆L(h, hS2)] = µ+ Eρ[∆+

L(h, hS2)]− Eρ[∆−
L(h, hS2)],

for any µ ∈ [a, b] we have

1

2
Eρ[∆L(h, hS1)] +

1

2
Eρ[∆L(h, hS2)]

= µ+

(
1

2
Eρ[∆+

L(h, hS1)] +
1

2
Eρ[∆+

L(h, hS2)]

)
−
(
1

2
Eρ[∆−

L(h, hS1)] +
1

2
Eρ[∆−

L(h, hS2)]

)
.

(3.14)

Let π = 1
2
πS1 +

1
2
πS2 , and let S∗ be either S1 or S2 and S̄∗ = S\S∗. If h is sampled

from πS∗ , we take hS∗ as a reference hypothesis and estimate the excess loss on S̄∗.
Then,

ESEπ

en2 kl
(

∆+

L̂
(h,hS∗ ,S̄∗)

1−µ

∥∥∥∥∥∆+
L

(h,hS∗ )

1−µ

) =
1

2

∑
i=1,2

ESEπSi

en2 kl
(

∆+

L̂
(h,hSi

,S̄i)

1−µ

∥∥∥∥∥∆+
L

(h,hSi
)

1−µ

)
=

1

2

∑
i=1,2

ESiEπSiES̄i

en2 kl
(

∆+

L̂
(h,hSi

,S̄i)

1−µ

∥∥∥∥∥∆+
L

(h,hSi
)

1−µ

)
≤ 2
√
n/2,
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where the second equality is due to the fact that πS∗ is independent of S̄∗ so they are
exchangeable, and the inequality follows by Lemma 3.4.

Therefore, by applying Lemma 3.3 with f(h, S) = n
2

kl
(

∆+

L̂
(h,hS∗ ,S̄∗)

1−µ

∥∥∥∥∆+
L (h,hS∗ )

1−µ

)
, we

have with probability at least 1− δ over S, for all ρ on H simultaneously:

Eρ

[
n

2
kl

(
∆+

L̂
(h, hS∗ , S̄∗)

1− µ

∥∥∥∥∥∆+
L(h, hS∗)

1− µ

)]
≤ KL(ρ‖π) + ln

2
√
n/2

δ
.

By the convexity of KL, we further have

kl

(
Eρ

[
∆+

L̂
(h, hS∗ , S̄∗)

1− µ

]∥∥∥∥∥Eρ
[
∆+
L(h, hS∗)

1− µ

])
≤ Eρ

[
kl

(
∆+

L̂
(h, hS∗ , S̄∗)

1− µ

∥∥∥∥∥∆+
L(h, hS∗)

1− µ

)]
,

which together gives with probability at least 1−δ over S, for all ρ on H simultaneously:

kl

(
Eρ

[
∆+

L̂
(h, hS∗ , S̄∗)

1− µ

]∥∥∥∥∥Eρ
[
∆+
L(h, hS∗)

1− µ

])
≤

KL(ρ‖π) + ln 2
√
n/2

δ

n/2
.

Similarly, ∆−
L̂
(h, hS∗ , S̄∗) and ∆−

L(h, hS∗) also satisfy with probability at least 1− δ
over S, for all ρ on H simultaneously:

kl

(
Eρ

[
∆−
L̂
(h, hS∗ , S̄∗)

µ+ 1

]∥∥∥∥∥Eρ
[
∆−
L(h, hS∗)

µ+ 1

])
≤

KL(ρ‖π) + ln 2
√
n/2

δ

n/2
.

Let ρ = 1
2
ρ1+

1
2
ρ2 be constructed in a similar way to π, where ρ1 and ρ2 are probability

distributions on H. If h is sampled from ρ∗, then we take hS∗ as a reference hypothesis
and estimate the excess loss on S̄∗. In our case, ρ1 = ρ2 = ρ. Let ∆◦ denote either
∆+ or ∆−. Then,

Eρ[∆◦
L(h, hS∗)] =

1

2
Eρ[∆◦

L(h, hS1)] +
1

2
Eρ[∆◦

L(h, hS2)]

and
Eρ[∆◦

L̂
(h, hS∗ , S̄∗)] =

1

2
Eρ[∆◦

L̂
(h, hS1 , S2)] +

1

2
Eρ[∆◦

L̂
(h, hS2 , S1)].
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By taking the inverse of kl, we obtain that with probability at least 1− δ over S, for
all ρ on H simultaneously:

1

2

Eρ[∆+
L(h, hS1)]

1− µ
+

1

2

Eρ[∆+
L(h, hS2)]

1− µ

≤ kl−1,+

(
1

2

Eρ[∆+

L̂
(h, hS1 , S2)]

1− µ
+

1

2

Eρ[∆+

L̂
(h, hS2 , S1)]

1− µ
,
KL(ρ‖π) + ln 2

√
n/2

δ

n/2

)
,

(3.15)

and with the same probability

1

2

Eρ[∆−
L(h, hS1)]

µ+ 1
+

1

2

Eρ[∆−
L(h, hS2)]

µ+ 1

≥ kl−1,−

(
1

2

Eρ[∆−
L̂
(h, hS1 , S2)]

µ+ 1
+

1

2

Eρ[∆−
L̂
(h, hS2 , S1)]

µ+ 1
,
KL(ρ‖π) + ln 2

√
n/2

δ

n/2

)
.

(3.16)

Thus, we can bound Eq. (3.14) by Eq.(3.15) and Eq.(3.16). By replacing Eq.(3.11) by
the upper bound of each term and taking a union bound, we complete the proof.

3.6.4 Empirical Comparison
We present more results on empirical comparison of the concentration inequalities: the
kl, the Empirical Bernstein, the Unexpected Bernstein, and the split-kl. In particular,
Section 3.6.4.1 expands the empirical comparison in Section 3.2.3 in the body for
ternary random variables, and Section 3.6.4.2 studies the empirical comparison of
bounded random variables. The source code for replicating the experiments is available
at Github2.

3.6.4.1 Ternary Random Variables

In this section, we follow the settings and the parameters in Section 3.2.3, considering
n i.i.d. samples taking values in {−1, 0, 1}. For completeness, Figure 3.4b and
Figure 3.4c repeats Figures 3.1a and 3.1b while we add Figure 3.4a, where the
probability is defined by p1 = 0.01(1 − p0) and p−1 = 0.99(1 − p0). In this case,
the kl starts well for p0 close to zero, but similar to the case in Figure 3.4c falls
behind due to its inability of properly handling the values inside the interval. The

2https://github.com/YiShanAngWu/Split-KL-R/tree/main/simulation
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Unexpected Bernstein and the Empirical Bernstein perform similarly when p0 is small
in Figure 3.4c since the bounds are cut to 1, while Unexpected Bernstein falls behind
Empirical Bernstein when p0 is small in Figure 3.4a due to the uncentered second
moment. The split-kl matches, and in many cases outperforms, the tightest bounds.

(a) (b) (c)

Figure 3.4: Comparison of the concentration bounds with n = 100, δ = 0.05, and
(a) p1 = 0.01(1 − p0) and p−1 = 0.99(1 − p0), (b) p−1 = p1 = 0.5(1 − p0), (c)
p1 = 0.99(1− p0) and p−1 = 0.01(1− p0).

(a) (b) (c)

Figure 3.5: Comparison of the concentration bounds with n = 1000, δ = 0.05,
and (a) p1 = 0.01(1 − p0) and p−1 = 0.99(1 − p0), (b) p−1 = p1 = 0.5(1 − p0), (c)
p1 = 0.99(1− p0) and p−1 = 0.01(1− p0).

Figure 3.5 has the same setting with a larger number of samples n = 1000. The trends
of the bounds are similar to Figure 3.4. However, the Empirical Bernstein performs
better than the Unexpected Bernstein in Figure 3.5a and Figure 3.5c when p0 is less
than 0.6. In both cases, split-kl keeps its leading position. When p1 = p−1 = (1−p0)/2
(Figure 3.5b), as p0 = 0, the random variable becomes Bernoulli and, as expected,
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(a) n = 100. (b) n = 1000.

Figure 3.6: Comparison of the concentration bounds for beta distributions with
parameters α = β taking values in the [0.01, 10] interval, with δ = 0.05, and with the
number of samples n = 100 and n = 1000, respectively.

the kl bound performs the best, followed by the split-kl, and then the two Bernstein
bounds. As p0 grows larger, the kl bound falls behind the other three bounds due
to inability of properly handling the values inside the interval. The Unexpected
Bernstein, the Empirical Bernstein and the split-kl perform similarly well.

3.6.4.2 Bounded Random Variables

In this section, we study a more general setting, where the i.i.d. random variables
Z1, · · · , Zn taking values in [0, 1]. Naturally, we consider the random variables
following beta distribution with parameters α > 0 and β > 0, where the mean
p = α

α+β
and the variance V[Z] = αβ

(α+β)2(α+β+1)
. For the Empirical Bernstein bound,

we take a = 0 and b = 1. For the Unexpected Bernstein bound we take a grid of
γ ∈ {1/(2b), · · · , 1/(2kb)} for b = 1, k = dlog2(

√
n/ ln(1/δ)/2)e, and a union bound

over the grid, as in Section 3.2.3. For the split-kl bound we take µ to be the middle
value 0.5. Again, in the experiments we take δ = 0.05 and cut the bounds to 1.

In Figure 3.6 we take α = β in an interval of [0.01, 10]. The mean is a constant p = 0.5
throughout the interval and the variance is in an interval of [0, 012, 0.245], where a
small α and β corresponds to a large variance, and a large α and β corresponds to
a small variance. We plot the difference between the values of the bounds and p̂ as
a function of the variance V[Z]. Since the true mean is a constant, the kl bound
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(a) n = 100. (b) n = 100.

Figure 3.7: Empirical comparison of concentration bounds for beta distribution with
parameters α and β and with the number of samples n = 100 and n = 1000. For
p ∈ [0, 0.5], we take β = 5 and α ∈ [0.01, 5] while for p ∈ [0.5, 1], we take α = 5 and
β ∈ [0.01, 5].

is also almost a constant throughout the interval. When the variance large, the kl
bound performs the best, followed by spli-kl and the two Bernstein bounds. When
the variance is small, the Empirical Bernstein bound exploit the low variance and
outperform all the others when the number of samples is sufficiently large. The
Unexpected Bernstein falls behind due the uncentered second moment. The split-kl
bound is comparable to the kl bound when the variance is large and also comparable
to the tightest bound when the variance is small.

In Figure 3.7 we consider another case where the variances stay similar but the means
lie across the spectrum in between 0 and 1. We define the distributions being studied
by a combination of two sets of probability distributions. First of all, we take β = 5
and α ∈ [0.01, 5], resulting in the mean p in between 0 and 0.5. We define another
part by taking α = 5 and β ∈ [0.01, 5], resulting in the mean p in between 0.5 and
1. We plot the difference between the values of the bounds and p̂ as a function of
p. The kl bound is relatively weak around p = 0.5 as expected. Since the variances
stay similar across the interval, the performance of the Empirical Bernstein stay
similar throughout the spectrum, and is tighter than the kl bound when the number
of samples is sufficiently large. The split-kl bound is comparable and sometimes
outperform the tightest bounds. The Unexpected Bernstein bound again falls behind
due to the uncentered second moments.
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3.6.5 Experiments
3.6.5.1 Data Sets

As mentioned in Section 3.4, we consider data sets from UCI and LibSVM repos-
itories (Dua and Graff, 2019; Chang and Lin, 2011), as well as Fashion-MNIST
from Zalando Research 3. An overview of the data sets is listed in Table 3.1, where
Banknote stands for Banknote Authentication, Breast-C stands for Breast Cancer
Wisconsin, Fashion stands for Fashion-MNIST, Haberman stands for Haberman’s
Survival, and kr-vs-kp stands for Chess (King-Rook vs. King-Pawn). For data sets
with a training and a testing set, we combine the training and the testing sets.

Linear Classifiers. For the linear classifiers experiments, we consider selected data
sets with binary class (c = 2). We rescale all the real-valued attributes to the [−1, 1]
interval and use one-hot encoding to encode categorical variables to {−1, 1}, which
increases the dimension of the attributes for some of the data sets. In particular,
the effective dimension of Adult becomes 108, kr-vs-kp becomes 73, and Mushroom
becomes 116. We remove rows containing missing features. For each data set, we
shuffle the data sets and take four 5-fold train-test split, which gives 20 runs in total.

Weighted Majority Vote. For the weighted majority vote experiments, including
the ensemble of multiple heterogeneous classifiers and the random forest, we consider
several binary and multiclass (c > 2) data sets. We encode the categorical variables
into integers and remove rows containing missing features. For each data set we take
10 runs, and for each run we randomly set aside 20% of sample as the test set.

3.6.5.2 Linear Classifiers

In this section, we describe the details of the experimental setting of the linear
classifiers, the details of the bounds, and the details of optimization. The source code
for replicating the experiments is available at Github4.

Experimental Setting

In this section, we detail the settings and the construction of informed priors and excess
losses using linear classifiers with Gaussian posterior. We follow the construction
by Mhammedi et al. (2019).

3https://github.com/zalandoresearch/fashion-mnist
4https://github.com/YiShanAngWu/Split-KL-R
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Table 3.1: Data set overview. cmin and cmax denote the minimum and maximum class
frequency.

Data set N d c cmin cmax Source
Adult 32561 14 2 0.2408 0.7592 LIBSVM (a1a)
Banknote 1372 4 2 0.4447 0.5553 UCI
Breast-C 699 9 2 0.3448 06552 UCI
Cod-RNA 59535 8 2 0.3333 0.6667 LIBSVM
Connect-4 67557 126 3 0.0955 0.6583 LIBSVM
Fashion 70000 784 10 0.1000 0.1000 Zalando Research
Haberman 306 3 2 0.2647 0.7353 UCI
kr-vs-kp 3196 36 2 0.48 0.52 UCI
Letter 20000 16 26 0.0367 0.0406 UCI
MNIST 70000 780 10 0.0902 0.1125 LIBSVM
Mushroom 8124 22 2 0.4820 0.5180 LIBSVM
Pendigits 10992 16 10 0.0960 0.1041 LIBSVM
Phishing 11055 68 2 0.4431 0.5569 LIBSVM
Protein 24387 357 3 0.2153 0.4638 LIBSVM
SVMGuide1 3089 4 2 0.3525 0.6475 LIBSVM
SatImage 6435 36 6 0.0973 0.2382 LIBSVM
Sensorless 58509 48 11 0.0909 0.0909 LIBSVM
Shuttle 58000 9 7 0.0002 0.7860 LIBSVM
Spambase 4601 57 2 0.394 0.606 UCI
Splice 3175 60 2 0.4809 0.5191 LIBSVM
TicTacToe 958 9 2 0.347 0.653 UCI
USPS 9298 256 10 0.0761 0.1670 LIBSVM
w1a 49749 300 2 0.0297 0.9703 LIBSVM

As described in Section 3.4, the posterior ρ = N (wS,ΣS) is a Gaussian distribution
centered at wS, which is learned on S using regularized logistic regression

wS = arg min
w∈Rd

λ‖w‖2

2
+

1

|S|
∑

(X,Y )∈S

−
(
Y lnφ(w>X) + (1− Y ) ln(1− φ(w>X))

)
,

(3.17)
where φ(x) := 1/(1 + e−x) for x ∈ R is the sigmoid function. The covariance of
the posterior is a diagonal matrix σ2Id, where the variance σ2 is learned from the
corresponding PAC-Bayes bounds. We use the informed priors in all the PAC-Bayes
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bounds. The informed priors πS1 = N (wS1 ,ΣS1) and πS2 = N (wS2 ,ΣS2) are also
chosen to be Gaussian distributions over Rd, where the centers of the distributions
are learned similarly using regularized logistic regression on the corresponding sample
S1 and S2. If using excess losses, we take the classifier associated with wS1 as the
reference classifier hS1 for the “forward” approach and take the classifier associated
with wS2 as the reference classifier hS2 for the “backward” approach. We let the
covariance of the informed priors to be also diagonal matrices ΣS1 = ΣS2 = σ2

πId,
where σ2

π is selected from a grid G = {1/2, · · · , 1/2j} for j = dlog2 |S|e.

For all data sets, we use λ = 0.01 in equation (3.17) and solve it using the BFGS
algorithm. For all the bounds, we take δ = 0.05. Note that to be able to select the
variance of the priors from a grid G, we have to take a union bound over G. Since
the hypothesis space is infinitely large, we approximate the excess risk by drawing
100 classifiers from the posterior ρ and compute the excess losses with respect to the
reference classifiers.

Bounds

As mentioned in the body that we used informed priors for all the bounds we applied.
The PBSklEx bound is presented in Theorem 3.9, while the PBUBEx bound and
the PBkl bound will be presented in the following. The idea to derive PAC-Bayes
bounds with informed priors in general is similar to the technique used in the proof
of Theorem 3.9 in Appendix 3.6.3.

The key element of the derivations is to bound ES′ [Eπ[efn(h,S
′)]] for a given function

fn : H× (X × Y)n → R in Lemma 2.3. Let the prior π = 1
2
πS1 +

1
2
πS2 , and let S∗ be

either S1 or S2. If h is sampled from πS∗ , we estimate the loss on S̄∗ = S\S∗. Then,

ESEπ
[
efn(h,S)

]
=

1

2

∑
i=1,2

ESEπSi
[
efn(h,S)

]
=

1

2

∑
i=1,2

ESiEπSiES̄i
[
efn(h,S)

]
,

where the second equality is due to the fact that πS∗ is independent of S̄∗ so
they are exchangeable. We will then select the function fn(h, S) later such that
ESiEπSiES̄i [e

fn(h,S)] is bounded for i = 1, 2.

Similarly, we let ρ = 1
2
ρ1 +

1
2
ρ2. If h is sampled from ρ∗, we estimate the loss on

S̄∗ = S\S∗. Then we have

Eρ[L̃(h)] =
1

2
Eρ1 [L̃(h)] +

1

2
Eρ2 [L̃(h)] (3.18)
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and
Eρ[ ˆ̃L(h, S∗)] =

1

2
Eρ1 [

ˆ̃L(h, S2)] +
1

2
Eρ2 [

ˆ̃L(h, S1)] (3.19)

for any loss ˜̀and the corresponding quantities following the definitions in Section 3.3.3.
We assume that ρ1 = ρ2 = ρ in all the bounds. Note that for simpler computation,
we replace kl(ρ‖π) by its upper bound 1

2
kl(ρ‖πS1) +

1
2

kl(ρ‖πS2) for all the bounds in
the experiments.

PAC-Bayes-kl bound with Informed Priors (PBkl). We take the PAC-Bayes-kl
bound with informed priors as the baseline:

Eρ[L(h)] ≤ kl−1,+

(
1

2
Eρ[L̂(h, S1)] +

1

2
Eρ[L̂(h, S2)],

KL(ρ‖π) + ln 2|G|
√
n/2

δ

n/2

)
,

which is obtained by letting fn(h, S) = n
2

kl(L̂(h, S̄∗)‖L(h)) and plugging it into
Lemma 2.3. In particular, we have ESiEπSiES̄i [e

fn(h,S)] = ESiEπSiES̄i [e
n
2

kl(L̂(h,S̄i)‖L(h))] ≤
2
√
n/2 for i = 1, 2 by Lemma 3.4. Also, by the convexity of KL, we further have

kl
(
Eρ[L̂(h, S∗)]‖Eρ[L(h)]

)
≤ Eρ

[
kl(L̂(h, S∗)‖L(h))

]
.

By taking the inverse of kl, applying the relations in Eq. (3.18) and Eq. (3.19), and
taking a union bound over G, we obtain the desired formula.

PAC-Bayes-Unexpected Bernstein Bound with Excess Loss and Informed
Priors (PBUBEx). Let ∆V̂(h, h

∗, S) = 1
|S|
∑

(X,Y )∈S(∆`(h(X), h∗(X), Y ))2 denote
the average of the second moment of the excess losses. Then, the PBUBEx has the
form:

Eρ[L(h)] ≤
1

2
Eρ[∆L̂(h, hS1 , S2)] +

1

2
Eρ[∆L̂(h, hS2 , S1)]

+
ψ(−γb)
γb2

(
1

2
Eρ[∆V̂(h, hS1 , S2)] +

1

2
Eρ[∆V̂(h, hS2 , S1)]

)
+

KL(ρ‖π) + ln 3|G||Γ|
δ

γ(n/2)

+ Bin−1

(
n

2
,
n

2
L̂(hS1 , S2),

δ

3|G|

)
+ Bin−1

(
n

2
,
n

2
L̂(hS2 , S1),

δ

3|G|

)
,

where |Γ| comes from a union bound over a grid of γ ∈ Γ = {1/(2b), · · · , 1/(2kb)} for
k = dlog2(

√
|S|/ ln(1/δ)/2)e when applying the PAC-Bayes-Unexpected-Bernstein

inequality.
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The last line of the bound is by applying Theorem 3.8 to L(hS1) and L(hS2) as in
Theorem 3.9, while the first two lines of the bound are derived from applying the
PAC-Bayes-Unexpected-Bernstein inequality to the first two terms in equation (3.8).
In particular, let fn(h, S) = γ n

2

(
∆L(h, hS∗)−∆L̂(h, hS∗ , S̄∗)

)
− ψ(−bγ)

b2
n
2
∆V̂(h, hS∗ , S̄∗)

and plug it into Lemma 2.3. Then we have

ESiEπSiES̄i [e
fn(h,S)] = ESiEπSiES̄i [e

γ n
2

(
∆L(h,hSi )−∆L̂(h,hSi ,S̄i)

)
−ψ(−bγ)

b2
n
2
∆V̂(h,hSi ,S̄i)] ≤ 1

for i = 1, 2 by Lemma 3.1. By moving the empirical quantities to the right hand side,
applying the relations in Eq. (3.18) and Eq. (3.19), and taking the union bounds, we
obtain the desired formula.

PAC-Bayes-spli-kl Bound with Excess Loss and Informed Priors (PBSklEx).
The bound is stated in Theorem 3.9, except that we replace δ by δ/|G| for the union
bound of G. We take µ = 0 for the bound in the experiments.

Optimization

Since the center of the posterior wS is learned using regularized logistic regression, the
only thing remains is to decide the variance of the posterior σ2 using the PAC-Bayes
bounds. In general, the variance can be any non-negative values since the bound
holds with high probability for all ρ simultaneously. For simpler computation, we only
consider the variance taking the same value as the variance of the priors i.e., taking
σ2 = σ2

π ∈ G. For each PAC-Bayes bounds, we find the optimal σ2 by iterating over
variances σ2 = σ2

π ∈ G and return the one that corresponds to the tightest bound.
We approximate Eρ[·] by sampling 100 classifiers from ρ.

The inverse kl in the PBkl and the PBSklEx bounds can be computed by binary
search. The inverse of the binomial tail distribution in the PBUBEx and the PBSklEx
bounds can also be computed by binary search. To optimize the PBUBEx bound, we
also need to iterate over γ ∈ Γ.

3.6.5.3 Ensemble of Multiple Heterogeneous Classifiers

In this section, we describe the details of the experimental setting of the ensemble of
multiple heterogeneous classifiers, the details of bounds and optimization, and lastly,
the results. The source code for replicating the experiments is available at Github5.

5https://github.com/StephanLorenzen/MajorityVoteBounds
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Experimental Setting

In this experiment, we follow the setting in Wu et al. (2021). We take the following
standard classifiers available in scikit-learn using default parameters to build the
ensemble: 1. Linear Discriminant Analysis 2. Decision Tree 3. Logistic
Regression 4. Gaussian Naive Bayes. We also take three versions of k-Nearest
Neighbors: 1. k = 3 with uniform weights (i.e., all points in each neighborhood are
weighted equally) 2. k = 5 with uniform weights, and 3. k = 5 with the weights of
the points are defined by the inverse of their L2 distance. Thus, there are 7 classifiers
for ensemble in total.

Ensemble Construction by Bagging. We follow the construction used by Masegosa
et al. (2020); Wu et al. (2021). For each classifier h, we generate a random split of
the data set S into a pair of subsets S = Sh ∪ S̄h, where S̄h = S\Sh. We generate the
split by the standard bagging method, where Sh contains 0.8|S| samples randomly
subsampled with replacement from S. We train the classifier on Sh, and estimate the
expected loss on the out-of-bag (OOB) sample S̄h to make an unbiased estimation.
The resulting set of classifiers produces an ensemble, while the estimates are used for
calculating the bounds and deciding the weights of the ensemble. In particular, we
estimate the expected loss by L̂(h, S̄h), and let n = minh |S̄h|. In the remaining of the
paper, we call the tandem loss with an offset α by the α-tandem loss. Then for a pair
of classifiers h and h′, we take the overlap of the OOB sample S̄h∩ S̄h′ to estimate the
unbiased tandem loss L̂(h, h′, S̄h ∩ S̄h′), α-tandem loss L̂α(h, h′, S̄h ∩ S̄h′), the second
moment of the α-tandem loss V̂α(h, h

′, S̄h ∩ S̄h′), the variance of the α-tandem loss
V̂arα(h, h′, S̄h ∩ S̄h′), as well as the splits of the α-tandem loss L̂+

α (h, h
′, S̄h ∩ S̄h′) and

L̂−
α (h, h

′, S̄h ∩ S̄h′). Let m = minh,h′ |S̄h ∩ S̄h′| be the minimum size of the overlap.

Bounds and Optimization

The bounds we are comparing in this section are the TND, CCTND, CCPBB,
CCPBUB, and CCPBSkl bounds. The derivations of the first three bounds are
provided in Masegosa et al. (2020); Wu et al. (2021), while we will provide the
derivations of the CCPBUB bound and the CCPBSkl bound.

In the experiments, we take δ = 0.05 and take π to be a uniform distribution over
the classifiers. For CCPBB,CCPBUB and CCPBSkl bounds, we take a grid of
α ∈ [−0.5, 0.5] since the bounds are not differentiable w.r.t α. Note that we don’t
need a union bound over α (Wu et al., 2021). To optimize the weighting ρ, we applied
iRProp+ for the gradient based optimization (Igel and Hüsken, 2003; Florescu and
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Igel, 2018), until the bound did not improve more than 10 for 10 iterations. To
find the optimal ρ and the parameters, we start by ρ = π, and apply alternating
minimization until the bound doesn’t change for more than 10−9. The details of
alternating minimization for each bound are provided below.

We first cite the three existing bounds.

Tandem Bound (TND) (Masegosa et al., 2020) They used the following
formula to compute the bound after obtaining the optimal weights ρ:

L(MVρ) ≤ 4 kl−1,+

(
Eρ2 [L̂(h, h′, S̄h ∩ S̄h′)],

2KL(ρ‖π) + ln(4
√
m/δ)

m

)
,

and used the following relaxation, based on the PAC-Bayes-λ inequality 3.6.6, for
easier optimization:

L(MVρ) ≤ 4

(
Eρ2 [L̂(h, h′, S̄h ∩ S̄h′)]

1− λ/2
+

2KL(ρ‖π) + ln(2
√
m/δ)

λ(1− λ/2)m

)
(3.20)

for any λ ∈ (0, 2). The bound can be optimized by implementing alternating
minimization: Given ρ, starting with ρ = π, find the corresponding optimal λ
(Sec. 3.6.6). Then given λ, optimize ρ by projected gradient descent.

Chebyshev-Cantelli bound with TND empirical loss estimate bound (CCTND) (Wu
et al., 2021) They used the following formula to compute the bound after obtaining
the optimal weights ρ:

L(MVρ) ≤
1

(0.5− α)2

[
kl−1,+

(
Eρ2 [L̂(h, h′, S̄h ∩ S̄h′)],

2KL(ρ‖π) + ln(4
√
m/δ)

m

)
− 2α kl−1,◦

(
Eρ[L̂(h, S̄h)],

KL(ρ‖π) + ln(4
√
n/δ)

n

)
+ α2

]
,

for α < 0.5, where ◦ is “−” for α ≥ 0 and “+” otherwise. On the other hand, they
used the following relaxations, based on the PAC-Bayes-λ inequality 3.6.6, for easier
optimization:

L(MVρ) ≤
1

(0.5− α)2

[
Eρ2 [L̂(h, h′, S̄h ∩ S̄h′)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ
(
1− λ

2

)
m

− 2α

((
1− γ

2

)
Eρ[L̂(h, S̄h)]−

KL(ρ‖π) + ln(4
√
n/δ)

γn

)
+ α2

]
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for 0 ≤ α < 0.5, and

L(MVρ) ≤
1

(0.5− α)2

[
Eρ2 [L̂(h, h′, S̄h ∩ S̄h′)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ
(
1− λ

2

)
m

− 2α

(
Eρ[L̂(h, S̄h)]

1− γ
2

+
KL(ρ‖π) + ln(4

√
n/δ)

γ
(
1− γ

2

)
n

)
+ α2

]
for α < 0. The optimization of the bound can, again, be done by alternating
minimization of the following steps: 1. Given α and ρ, where we start with α = 0
and ρ = π, compute the corresponding closed-form minimizer λ and γ (Sec. 3.6.6). 2.
Given ρ, λ and γ, find the closed-form minimizer α. 3. Given parameters α, λ, and
γ, optimize over ρ using projected gradient descent.

Chebyshev-Cantelli bound with PAC-Bayes-Bennett loss estimate bound
(CCPBB) (Wu et al., 2021) The CCPBB bound has the following formula for
both computing the bound and optimization:

L(MVρ) ≤
1

(0.5− α)2

[
Eρ2 [L̂α(h, h′, S̄h ∩ S̄h′)] +

2KL(ρ‖π) + ln 2kλkγ
δ

γm

+
φ(γKα)

γK2
α

Eρ2 [V̂arα(h, h′, S̄h ∩ S̄h′)]
1− λm

2(m−1)

+
K2
α

(
2KL(ρ‖π) + ln 2kλkγ

δ

)
nλ
(
1− λm

2(m−1)

)
],

where φ(x) = ex − x− 1 and Kα = max{1− α, 1− 2α} is the length of the range of
the α-tandem loss. The parameter γ is taken in a grid

{
γ1, · · · , γkγ

}
, where γi > 0

for all i and λ is taken in a grid {λ1, · · · , λkλ}, where λi ∈
(
0, 2(n−1)

n

)
for all i. kγ

and kλ in the bound come from the union bounds over a grid of γ and a grid of λ.

To optimize the bound, we take a grid of α ∈ [−0.5, 0.5] and iterate over α in the
grid. For a given α, we first compute L̂α(h, h′, S̄h ∩ S̄h′) and V̂arα(h, h′, S̄h ∩ S̄h′) for
all h, h′. Then, optimize the bound for a fix α by alternating the following steps: 1.
Given ρ, starting with ρ = π, find the corresponding optimal λ, and then the optimal
γ in the grids. 2. Given λ and γ, optimize ρ by projected gradient descent.

Next, we present the two new bounds CCPBUB and CCPBSkl, which are based
on the oracle parametric form of the Chebyshev-Cantelli bound (Wu et al., 2021,
Theorem 8): For all ρ and for all α < 0.5

L(MVρ) ≤
Eρ2 [Lα(h, h′)]
(0.5− α)2

. (3.21)
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By applying the PAC-Bayes-Unexpected-Bernstein inequality to the α-tandem loss,
we obtain the CCPBUB bound, while by applying the PAC-Bayes-split-kl inequality
to the α-tandem loss, we obtain the CCPBSkl bound.

Chebyshev-Cantelli bound with PAC-Bayes-Unexpected-Bernstein loss
estimate bound (CCPBUB) By applying the PAC-Bayes-Unexpected-Bernstein
inequality to the α-tandem loss in equation (3.21), with the upper bound of the
α-tandem loss b = (1− α)2 for α < 0.5, we obtain the bound:

L(MVρ) ≤
1

(0.5− α)2

[
Eρ2 [L̂α(h, h′, S̄h∩S̄h′)]+

ψ(−γ(1− α)2)

γ(1− α)4
Eρ2 [V̂α(h, h

′, S̄h∩S̄h′)]

+
2KL(ρ‖π) + ln kγ

δ

γm

]
,

where the 2 in front of KL comes from the fact that KL(ρ2‖π2) = 2KL(ρ‖π). As in
the previous experiments, we take a grid of γ ∈ {1/(2(1− α)2), · · · , 1/(2kγ (1− α)2)}
for kγ = dlog2(

√
m/ ln(1/δ)/2)e when applying the PAC-Bayes-Unexpected-Bernstein

inequality.

Similar to the optimization of the CCPBB bound, we again take a grid of α ∈
[−0.5, 0.5] and iterate over α in the grid. For a given α, we first compute L̂α(h, h′, S̄h∩
S̄h′) and V̂α(h, h

′, S̄h ∩ S̄h′) for all h, h′. Then, optimize the bound for a fix α by
alternating minimization of ρ and γ in the grid. We initialize ρ = π and optimize it
by pojected gradient descent.

Chebyshev-Cantelli bound with PAC-Bayes-split-kl loss estimate bound
(CCPBSkl) Similarly, by applying the PAC-Bayes-split-kl inequality to the α-tandem
loss in equation (3.21), we obtain the following formula to compute the bound after
obtaining the optimal weights ρ:

L(MVρ) ≤
1

(0.5− α)2

[
µ+(b− µ) kl−1,+

(
Eρ2 [L̂+

α (h, h
′, S̄h ∩ S̄h′)]

b− µ
,
2KL(ρ‖π) + ln 4

√
m
δ

m

)

− (µ− a) kl−1,−

(
Eρ2 [L̂−

α (h, h
′, S̄h ∩ S̄h′)]

µ− a
,
2KL(ρ‖π) + ln 4

√
m
δ

m

)]
.

71



Chapter 3 | Split-kl and PAC-Bayes-split-kl Inequalities for Ternary Random Variables

We use the following relaxation formula, which is based on the PAC-Bayes-λ inequal-
ity 3.6.6, for optimization.

L(MVρ) ≤
1

(0.5− α)2

[
µ+(b− µ)

(
Eρ2 [L̂+

α (h, h
′, S̄h ∩ S̄h′)]

(b− µ) (1− λ/2)
+

2KL(ρ‖π) + ln 4
√
m
δ

λ(1− λ/2)m

)

− (µ− a)

((
1− γ

2

) Eρ2 [L̂−
α (h, h

′, S̄h ∩ S̄h′)]
µ− a

−
2KL(ρ‖π) + ln 4

√
m
δ

γm

)]
.

2KL(ρ‖π) in both bounds again comes from KL(ρ2‖π2) = 2KL(ρ‖π). Recall that
the α-tandem loss takes values in {(1− α)2,−α(1− α), α2}. For α < 0.5, (1 − α)2

has the largest value. Therefore, we take b = (1−α)2 in the bound. Furthermore, for
α < 0 we have α2 < −α(1− α), and for α ≥ 0 we have −α(1− α) ≤ α2. Therefore,
for α < 0, we take a = α2 and µ to be the middle value −α(1− α), while for α ≥ 0,
we take a = −α(1− α) and µ = α2.

To optimize the bound, we again take a grid of α ∈ [−0.5, 0.5] and iterate over α in
the grid. For a given α, we compute the parameters a, b, µ, and then compute the
losses L̂+

α (h, h
′, S̄h ∩ S̄h′) and L̂−

α (h, h
′, S̄h ∩ S̄h′) for all h, h′. The optimization of the

bound for a fixed α can be done by alternating minimization: 1. Given ρ, starting
with ρ = π, compute the corresponding optimal λ and γ (Sec. 3.6.6). 2. Given λ and
γ, optimize over ρ using projected gradient descent.

Results

We presented in the body the results of the selected data sets. Here we show the
results on more data sets. We present the results for binary data sets in Figure 3.8,
while we present the results for multiclass data sets in Figure 3.9. Taking α = 0 for
CCTND, CCPBB, CCPBUB, and CCPBSkl bounds collapses to the TND bound.
Therefore, we take TND as a baseline. In both figures, CCTND performs similar
to, and often better than the baseline. The second bound, CCPBB, using the α-
tandem loss, lags behind due to nested application of concentration bounds. The two
new bounds based the α-tandem loss, CCPBUB and CCPBSkl, clearly improve the
shortage of the CCPBB bound and often provide tighter bounds than the rest.

3.6.5.4 Random Forest Majority Vote Classifiers

In this section, we describe the details of the experimental setting of random forest
and the results of the experiments. Since both the ensemble of the heterogeneous
classifiers and the random forest are examples of weighted majority vote, the bounds

72



Chapter 3 | Split-kl and PAC-Bayes-split-kl Inequalities for Ternary Random Variables

Figure 3.8: Comparison of the bounds and the test losses of the weighted majority
vote on ensembles of heterogeneous classifiers with optimized posterior ρ∗ generated
by TND, CCTND, CCPBB, CCPBUB, and CCPBSkl. The data sets are binary
labeled. The test losses of the corresponding bounds are shown in black. We report
the mean and the standard deviation over 10 runs of the experiments.

and optimization methods in this experiment are the same as described in Sec. 3.6.5.3
under “Bounds and Optimization”. The source code for replicating the experiments
is available at Github6.

Experimental Setting

In this section, we follow the construction used by Wu et al. (2021). We construct
the ensemble from decision trees, which is available in scikit-learn. We take 100 fully
grown trees to build the random forest. The ensemble is again construct by bagging
as described in 3.6.5.3, where each tree h is trained on a subset of a random split Sh
and estimated on S̄h. To train each tree, we use the Gini criterion for splitting and
consider

√
d features in each split, where d is the number of the attributes in data.

Results

The results of random forest weighted majority vote on binary data sets are shown
in Figure 3.10 while the results on multiclass data sets are shown in Figure 3.11.
Similar to the discussions in Sec. 3.6.5.3 for the ensemble of heterogeneous classifiers,

6https://github.com/StephanLorenzen/MajorityVoteBounds
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Figure 3.9: Comparison of the bounds and the test losses of the weighted majority
vote on ensembles of heterogeneous classifiers with optimized posterior ρ∗ generated
by TND, CCTND, CCPBB, CCPBUB, and CCPBSkl. The data sets are multiclass
labeled. The test losses of the corresponding bounds are shown in black. We report
the mean and the standard deviation over 10 runs of the experiments.

TND serves as a baseline. In both figures, CCTND performs similar to the baseline.
The CCPBB, using the α-tandem loss, lags behind due to nested application of
concentration bounds. The two new bounds based the α-tandem loss, CCPBUB and
CCPBSkl, clearly improve the shortage of the CCPBB bound. The CCPBSkl bound
is comparable to the baseline, and the CCPBUB bound often provide tighter bounds
than the baseline.
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Figure 3.10: Comparison of the bounds and the test losses of the weighted majority
vote on random forest with optimized posterior ρ∗ generated by TND, CCTND,
CCPBB, CCPBUB, and CCPBSkl. The data sets are binary labeled. The test
losses of the corresponding bounds are shown in black. We report the mean and the
standard deviation over 10 runs of the experiments.

Figure 3.11: Comparison of the bounds and the test losses of the weighted majority
vote on random forest with optimized posterior ρ∗ generated by TND, CCTND,
CCPBB, CCPBUB, and CCPBSkl. The data sets are multiclass labeled. The test
losses of the corresponding bounds are shown in black. We report the mean and the
standard deviation over 10 runs of the experiments.
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3.6.6 PAC-Bayes-λ Inequality
Theorem 3.10 (PAC-Bayes-λ Inequality, Thiemann et al., 2017; Masegosa et al.,
2020). For any loss ` ∈ [0, 1], any probability distribution π on H that is independent
of S and any δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample
S, for all distributions ρ on H and all λ ∈ (0, 2) and γ > 0 simultaneously:

Eρ [L(h)] ≤
Eρ[L̂(h, S)]

1− λ
2

+
KL(ρ‖π) + ln(2

√
n/δ)

λ
(
1− λ

2

)
n

, (3.22)

Eρ [L(h)] ≥
(
1− γ

2

)
Eρ[L̂(h, S)]−

KL(ρ‖π) + ln(2
√
n/δ)

γn
. (3.23)

The upper bound is due to Thiemann et al. (2017) and the lower bound is due
to Masegosa et al. (2020), and both hold simultaneously. The PAC-Bayes-λ bound
is an optimization friendly relaxation of the PAC-Bayes-kl bound. Tolstikhin and
Seldin (2013) has shown that for a given ρ, equation 3.22 is convex in λ and has the
minimizer

λ∗ρ =
2√

2nEρ[L̂(h,S)]
KL(ρ||π)+ln 2

√
n
δ

+ 1 + 1

.

On the other hand, Masegosa et al. (2020) has shown that for a given ρ, the optimal
γ in equation 3.23 can be achieved by

γ∗ρ =

√
KL(ρ||π) + ln(2

√
n/δ)

nEρ[L̂(h, S)]
.

Furthermore, given λ or γ, the optimal ρ can be achieved by projected gradient
descent.
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Chapter 4

Summary and Discussion

In Chapter 2, we proposed an optimization-friendly form of the Chebyshev-Cantelli
inequality and applied it to derive two new forms of second-order oracle bounds for
the weighted majority vote. The new bounds bridge between the C-bounds (Germain
et al., 2015) and the tandem bound (Masegosa et al., 2020) and take the best of both:
the tightness of the C-bounds and the optimization and estimation convenience of
the tandem bound. It would be interesting to explore other potential uses for this
new version of the Chebyshev-Cantelli inequality.

In Chapter 3, we studied the concentration of measure inequalities for ternary random
variables. We proposed the split-kl inequality that addresses a long-standing open
question on how to exploit the structure of ternary random variables. Notably, for
ternary random variables, we found that the middle value is the best choice of the
parameter µ for the split-kl inequality. This choice results in the split-kl inequality
being tight for ternary random variables, as the kl inequality is tight for binary
random variables.

In principle, the split-kl inequality can also be applied to any bounded random
variables. However, the question of how to select an appropriate value of µ for such
cases remains unresolved. In our experiments with bounded random variables, we
found that choosing the central value of the range may yield satisfactory results,
although we do not yet have a fully satisfactory theoretical explanation for this choice.

In Chapter 3, we also included comparisons between the Unexpected Bernstein in-
equalities and the Empirical Bernstein inequality. The Empirical Bernstein inequality
is derived by combining a Bernstein inequality for the loss with an inequality for the
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variance. Due to the two-step approach, the inequality often lacks tightness. In con-
trast, the Unexpected Bernstein is a single-step approach that provides an empirical
bound for the loss using the empirical second moment. However, its non-centered
nature can lead to loose results when the second moment is significantly larger than
the variance, which happens when the expectation of the random variable deviates
significantly from 0. Therefore, an interesting open problem is to develop a centered
version of the Unexpected Bernstein inequality that would be based on the empiri-
cal variance and still have a one-step estimation. Additionally, the Bernstein-type
inequalities we presented all require a grid of the parameter γ and a union bound
over the grid, such that the high-probability argument follows. It is, therefore, an
interesting open question whether such a grid can be avoided.

This thesis presents the PAC-Bayes-Bennett inequality and the PAC-Bayes-Split-kl
inequality for randomized and ensemble classifiers. In particular, the PAC-Bayes-
Bennett inequality improves on the PAC-Bayes-Bernstein inequality proposed by Seldin
et al. (2012). Meanwhile, the PAC-Bayes-Split-kl inequality retains the tightness
achieved by the split-kl inequality when applied to ternary random variables. These
new inequalities, along with a new version of the Chebyshev-Cantelli inequality
discussed above, provide better generalization guarantees for the weighted majority
vote.
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