
PhD Dissertation

The Programming of Algebra
Mikkel Kragh Mathiesen

Advisor: Fritz Henglein
Co-advisor: Robin Kaarsgaard

2022-06-30

ii

Abstract

We study how abstract algebra can be used as a foundation for programming,
in particular for the purpose of query processing. The basic algebraic struc-
tures of rings, modules and algebras provide an expressive language for working
with generalised multisets. Queries are expressed as linear maps between mod-
ules. The theory is presented categorically by means of universal properties and
constitutes a promising replacement for classical relational algebra.

Many algebraic hallmarks turn out to be vital. Negative elements provide
a uniform method for deleting data and multiplication expresses join of tables.
Tensor products provide an efficient non-canonical representation of Cartesian
products. Natural isomorphisms inexorably lead to efficient generalised trie
representations of finite maps. Ultimately this begets highly efficient techniques
for evaluation and in particular demonstrates worst-case output optimality for
conjunctive queries.

Going further, we posit that linear algebra can be viewed as an excellent
functional logic programming language. From this perspective a potential av-
enue of improvement becomes visible: finite-dimensional spaces are convenient
to work with and—crucially—allow representing linear maps as elements of the
tensor product, whereas infinite-dimensional spaces are less convenient in this
regard but are necessary to model database schemata with infinite domains.
We present a solution in the form of symbolic sums that provide a language of
“compact-dimensional” linear algebra. The resulting language is called Algeo
and comes with a syntax, type system and axiomatic as well as denotational
semantics.

iii

iv

Resumé

Vi undersøger hvordan abstrakt algebra kan anvendes som et fundament for
programmering, især i databaseforespørgselsøjemed. Basale algebraiske struk-
turer som ringe, moduler og algebraer giver anledning til et udtryksfuldt sprog,
der kan håndtere generaliserede multimængder. Forespørgsler udtrykkes som
lineære afbildninger mellem moduler. Teorien præsenteres kategorisk ved hjælp
af universelle egenskaber og udgør en lovende erstatning for klassisk relationel
algebra.

Mange algebraiske kendetegn viser sig at være afgørende. Negative ele-
menter tilbyder en ensartet måde at slette data og multiplikation udtrykker
sammenfletning af tabeller. Tensorprodukter tilbyder en effektiv ikke-kanonisk
repræsentation af kartesiske produkter. Naturlige isomorfier fører uvægerligt til
effektive generaliserede trie-repræsentationer af endelige afbildninger. I sidste
ende afføder det særdeles effektive teknikker til evaluering og viser specielt at
afviklingen af konjunktive forespørgsler er worst-case output optimal.

Vi hævder ydermere at lineær algebra kan anskues som et glimrende funk-
tionslogikprogrammeringssprog. Med dette perspektiv bliver en forbedringsmu-
lighed synlig: endeligdimensionale rum er belejlige at arbejde med og — helt
afgørende — tillader at repræsentere lineære afbildninger som elementer af ten-
sorproduktet, hvorimod uendeligdimensionale rum er forholdsvis mindre be-
lejlige, men er uundværlige til at modellere databaseskemaer med uendelige
domæner. Vi præsenterer en løsning i form af symbolske summer som giver
anledning til et »kompaktdimensionelt« lineær algebra-sprog. Det resulterende
sprog hedder Algeo og er udstyret med syntaks, typesystem og aksiomatisk såvel
som denotationel semantik.

v

vi

Dedication

獅
王

vii

viii

Contents

1 Introduction 3
1.1 Whirlwind Tour . 4
1.2 Attributions . 7
1.3 Contributions . 8
1.4 Overview . 9

2 Preliminaries 11
2.1 Motivation . 11
2.2 Prerequisites . 12
2.3 Structures . 12
2.4 Category Theory . 15
2.5 Categories Under Consideration 16
2.6 Meet the Modules . 17
2.7 Inner Products and Adjoints . 24
2.8 Functors and Isomorphisms . 25
2.9 The Adjoint Perspective . 27

3 The Algeo Language 29
3.1 Motivation . 29
3.2 Algeo Tutorial . 30

3.2.1 Definitions . 31
3.2.2 Functions . 34
3.2.3 Products . 36
3.2.4 Dataflow operations . 36
3.2.5 Booleans . 37

3.3 Syntax and Semantics . 39
3.3.1 Type System . 41
3.3.2 Axiomatic Semantics . 42
3.3.3 Justification of the Semantics 43
3.3.4 Derived Equations and Evaluation 45
3.3.5 Relation to Linear Algebra 45

3.4 Denotational Semantics . 46
3.4.1 The Category of Terms 46
3.4.2 The Category of Spans . 47

ix

x CONTENTS

3.4.3 Interpreting Types . 49
3.4.4 Interpreting Morphisms 49
3.4.5 Coherence . 52

3.5 Applications . 52

4 Query Processing 57
4.1 Motivation . 57
4.2 Overview . 58
4.3 Linear Algebra as a Query Language 59

5 Algebraic Evaluation 65
5.1 Evaluation by Simplification . 65
5.2 Data Structures . 66

5.2.1 Free Structures . 66
5.2.2 Finite Maps . 67

5.3 Problem Statement . 69
5.3.1 Prior Art . 70

5.4 Tries . 70
5.5 Joins . 74
5.6 Degree and Cardinality . 75
5.7 Merging . 76
5.8 The Woes of Join . 77
5.9 Input Padding . 79
5.10 Worst-case Output Size . 82
5.11 Main Theorem . 83

6 Implementation 87
6.1 Spaces . 87
6.2 Vectors . 88
6.3 Run-time Optimisation . 92
6.4 Evaluation . 93
6.5 GADT’s Versus Type Families 93

7 Discussion 95
7.1 Related Work . 95

7.1.1 Algeo . 95
7.1.2 Query Processing . 97
7.1.3 Simplification . 98

7.2 Future Work . 99
7.2.1 Algeo . 99
7.2.2 Query Processing . 99
7.2.3 Simplification . 100
7.2.4 Bird’s Eye View . 101

7.3 Conclusion . 101

Notation

Categories
f : X → Y f is an arrow between X and Y
f : X ∼= Y f is an isomorphism between X and Y
Set Category of sets and functions
Ab Category of Abelian groups and group homomorphisms
ModK Category of K-modules and linear maps
F a G Adjunction
Sets
A+B Disjoint union of sets
A×B Cartesian product of sets
Modules
0 Zero module
U ⊕ V Biproduct
U ⊗ V Tensor product
FK [A] Free module
F∗
K [A] Compact free module

A⇒ U Finite map module
A⇒∗ U Compact map module
x+ y Addition
r · y Scalar multiplication
x · y Algebra multiplication
#x Weight
x � y Inner product
f† Adjoint
{a} Singleton generalised multiset
∗ Wildcard
Algeo
x Metavariable
foo Concrete variable
τ Type
a Atom
b Base value
d Duplicable value
e Expression

1

2 CONTENTS

n Numeric constant
Empty The empty type
Atom The type of atoms
Scalar The type of scalars
τ1 → τ2 Function type
τ1 ⊕ τ2 Sum type
τ1 ⊗ τ2 Product type
x : τ x has type τ
xy:=e x with e substituted for y
e1 e2 Function application
e1; e2 Biased conjunction
inl(e) Left injection into sum
inr(e) Right injection into sum
e1 ⊗ e2 Pair
e1 7→ e2 Singleton function
∅ Failure/zero
e1 ‖ e2 Choice/union/sum
e1 ⋊⋉ e2 Join/intersection/product
[x : τ]e Symbolic sum/variable introduction
x⇔ y Comparison/unification/inner product
x \\ y Difference/subtraction
∗τ Wildcard/sum of all base values of τ
e⊥ Complement
Query Processing
(A1 : a1, . . . , An : an) Tuple with value ai for attribute Ai as used in relational algebra
cp0 Isomorphism witnessing 0⇒ U ∼= 0
cp+ Isomorphism witnessing (A+B)⇒ U ∼= (A⇒ U)⊕ (B ⇒ U)
cp1 Isomorphism witnessing 1⇒ U ∼= U
cp× Isomorphism witnessing (A×B)⇒ U ∼= A⇒ B ⇒ U
Simplification
1P Indicator function, equal to 1 when P is true, otherwise 0
R† Shallow lookup function for the trie R
R‡ Deep lookup function for the trie R
R ⋊⋉ S Join of R and S, equal to R · S
w(R) R with an initial wildcard layer, i.e. ∗ 7→ R

f̂ Functorial action of (A⇒∗ −) on f
degR Degree of R
|R| Cardinality of R
∂R Collapse of R
〈R〉 Shallow padding of R
〈〈R〉〉 Deep padding of R
ωC1,...,Cn(r1, . . . , rn) Worst-case output size

Chapter 1

Introduction

The disciplines of algebra and programming are both mature and interactions
between them have been studied for decades in various shapes and forms. What
could we possibly hope to offer by combining them yet again? It turns out that
they are more closely related than one might think. The quippy version is that
linear algebra is a programming language, and a very expressive and efficient
one to boot.

Previous marriages between algebra and programming fall into two major
camps. The first camp studies the structure of programs and use equational
reasoning to prove properties and derive optimisations. This is exemplified by
the book “Algebra of Programming” [1] whose name the title of this dissertation
is a pun of. The second camp studies how to make linear algebra—specifically
matrix algebra—computations more convenient to program with. Typically this
research results in array languages, array libraries, database extensions with
vector types, etc.

Our project ultimately has little overlap with either of these approaches aside
from fighting for the same namespace. We focus on some of the most classic
of algebraic structures: rings and modules/vector spaces. The basic insight is
that modules (and extensions thereof) are not merely objects to be manipulated
by existing languages. Module theory—when viewed from the right angle—is
actually a capable functional logic language which is particularly well suited for
query processing.

This sets the stage, so who are the actors? We will meet the humble “+”,
which is commutative and has an inverse; it plays the rôle of union in our
generalisation of set theory. Later we encounter the indomitable “⊗”, which is
bilinear; it plays the rôle of Cartesian product, but with a twist. The sidekick
is the amorphous “·”, with its many bilinear faces; it plays the rôle of counting
and intersection.

We proceed to give a brief tour of the broad strokes of this dissertation.

3

4 CHAPTER 1. INTRODUCTION

1.1 Whirlwind Tour
Basics. A ring is a set that behaves roughly like the integers: there are oper-
ations “+” and “·” satisfying properties of associativity, distributivity, etc. A
module (or vector space) over a ring R is a set that behaves roughly like Rn:
elements can be added and multiplied by scalars from R. An algebra over R is
a module over R that allows multiplication of arbitrary elements.

Algebraic structures. Modules and algebras in particular will be our focus
guided by the insight that elements in a module can be viewed as generalised
multisets. Addition corresponds to union and multiplication from the algebra
structure serves as intersection. These two operations do not form a lattice as
would usually be expected by generalisations of set theory. Instead, any element
has an additive inverse which is fundamentally incompatible with idempotence.
Negative elements can be thought of as deletion, but due to commutativity of
addition it does not matter whether an element is removed before or after it is
added.

Synthetic modules. We take a synthetic approach and only concern our-
selves with modules that can be built using a handful of constructions. The
ring itself is a module. For any set A we can form the free module generated
by elements {a} for each a ∈ A; this is the space of “generalised multisets”.
Two modules can be combined using ⊕ or ⊗. The former is a biproduct and
corresponds to a disjoint union of sets. The latter is a tensor product and cor-
responds to a Cartesian product of sets. Ultimately, all these constructions
yield modules that are isomorphic to some free module. Nevertheless, keeping
in mind the intensional structure of modules turns out to be very beneficial and
we should be reluctant to actually apply this isomorphism.

Category theory. Generally, we take a (light) categorical approach and de-
scribe all constructions using universal properties. This has several advantages:
it clarifies how the object behaves and how it can be used, and it makes it possi-
ble to postpone the choice of a specific representation. In other words, universal
properties describe the interfaces of objects at a level of abstraction that allows
working with the object while making sure that we do not accidentally depend
on the particularities of arbitrary choices.

Pattern matching. When appealing to universal properties we develop a
suggestive notation of patterns and copatterns. For instance, linear maps out
of a free module can be written as f({a}) = . . . by pattern matching on the
generator {a}. When f is applied to a linear combination we appeal to the fact
that f is linear by construction.

Following this line of development we develop the notion of the programming
of algebra, the idea that common algebraic structures by themselves provide a

1.1. WHIRLWIND TOUR 5

programming language. Revealing this connection is a matter of acquiring a
suitable notation and perspective.

Programming. Treating syntax formally and giving it a precise semantics,
we veer into the territory of programming languages. This gives a formal justi-
fication for our notation, but it also naturally leads to ideas about what sort of
programs should exist, including programs that are not immediately apparent
from the purely algebraic perspective.

One idea is that programs can be run backwards. Many interesting linear
maps are isomorphisms and most of the useful isomorphisms are in fact unitary,
meaning that the inverse coincides with the adjoint. Adjoints can be thought
of as a “best effort” reverse execution. They are easier and more formulaic to
construct than inverses.

Symbolic sums. In standard modules adjoints do not always exist. For in-
stance, given the free module generated by an infinite set the linear map that
sends every generator to the scalar 1 has no adjoint. Such an adjoint would
have to produce a sum of infinitely many elements.

Extending the language to permit such adjoints we eventually arrive at the
idea of symbolic sums, terms of the form [x : M] . . . for any module M . These
terms obey all the usual equalities for sums, but cannot necessarily be simplified.
The resulting theory can be thought of as “compact-dimensional linear algebra”,
since it deals with modules of any dimension while still getting most of the
advantages in dealing with finite-dimensional modules, such as an isomorphism
between linear maps and tensor products.

Extensional definitions. Eventually, we arrive at a very flexible system for
making definitions. To define an object of type τ we take the (symbolic) sum
over all τ and impose constraints to filter the desired values. These constraints
may be “equations” by using the inner product, but this is merely a matter of
convention and practicality. Thus, every definition is extensional in the sense of
defining objects by their behaviour.

Query processing. The module structure provides the foundation for query
processing. All of traditional relational algebra can be recast using linear maps.
Many operations follow from the universal property of free modules: a linear
map out of the free module over some set A into another module M is uniquely
determined by choosing an element of M for each element of A. If M is also
a free module (over some set B) then we can lift any map of sets between A
and B to a linear map between the free modules. Using 0 we can also lift any
partial function, which suffices to define selection.

A key difference arises when considering projection, since the linear version
will preserve multiplicities. For instance, in relational algebra projection the
first component of {(a, b), (a, c)} gives just {a} whereas in linear algebra the
result becomes 2 · {a} to account for the two occurences of a.

6 CHAPTER 1. INTRODUCTION

We also extend the query language with wildcards. The wildcard ∗ is the
unit of the join operator. It is superficially similar to null values from traditional
databases, but the wildcard is compatible with any value wheras null is com-
patible with no value (not even itself). Having wildcards is convenient—often
moreso than nulls—and its rôle as a unit for the join operator avoids issues
regarding queries with unconstrained variables.

Conjunctive queries. A well-known class of queries studied in database the-
ory is conjunctive queries. Such a query consists of a conjunction of primitive
relations (i.e. tables from the database schema) and involves a number of vari-
ables. In practice this kind of query arises when joining tables.

Many different algorithms have been developed to evaluate such queries with
varying efficiency. The problem is hard in general, and seems to be so funda-
mentally as SAT-like problems can be encoded. In order to evaluate the relative
merits of algorithms complexity measures have been proposed to assess the hard-
ness of a query based on its structure. The relationship between variables and
relations in which they occur gives rise to a hypergraph and a measure called
the fractional edge cover can be used to give sharp bounds on the possible size
of outputs of the corresponding query. Algorithms whose runtime is bounded
by this worst-case output size are known as worst-case output optimal.

When the hypergraph has a cycle the query is called cyclic, and these are
recognised as particularly hard instances. For instance, given three binary re-
lations Traditional approaches based on constructing a query plan to decide in
which order to eliminate the relations are provably suboptimal for cyclic in-
stances. Fairly recent developments have resulted in algorithms that also deal
well with cycles.

Algebraic evaluation. Given a query expression, how do we compute the
result? This is achieved by simpliying the expression until it has a form that
can be directly observed as a sum of primitives (e.g. terms of the form {a}
for the free module). Strategies for simplification of expressions correspond to
strategies for evaluating conjunctive queries.

Starting from universal properties and the natural isomorphisms that follow
from those, we arrive naturally at an efficient strategy. Certain forms of expres-
sions can be recognised as generalised tries, but in our theory this is nothing
more than a direct application of the most “obvious” tools at any given point.
This approach is largely type-directed, which is yet another reason why flatten-
ing every module to a free one would be a bad idea. Effectively, simplification
proceeds by eliminating one variable at a time—rather than one relation at a
time like traditional query plans—which is similar to how the DPLL algorithm
for SAT solving works.

Optimality. The upshot is that algebraic simplification turns out to be worst-
case output optimal, which can be seen by an argument that considers inputs
padded with extra shadow values. These extra values only increases the input

1.2. ATTRIBUTIONS 7

size by a constant factor, but allows each piece of the output to be ascribed
to a piece of the input. This argument works directly with the definition of
worst-case output size and does not depend on any graph theory, nor does it
require computing the actual bounds. The result proven is also strictly more
general due to the possible presence of wildcards in the input.

1.2 Attributions
This dissertation is based on and includes material from the following works:

• “Infinite-dimensional Linear Algebra for Efficient Query Processing” [2]
(MT). Master’s thesis.

• “Module Theory and Query Processing” [3] (MTQP) together with Fritz
Henglein. Rôle: lead author.

• “Polylogic” (PL). Rôle: sole author.

• “The Programming of Algebra” [4] (PoA) together with Fritz Henglein
and Robin Kaarsgaard. Rôle: lead author.

• “Combinatory Adjoints and Differentiation” [5] (CAD) together with
Martin Elsman, Fritz Henglein, Robin Kaarsgaard and Robert Schenk.
Rôle: collaborator.

• “Algeo: An Algebraic Approach to Reversibility” [6] (AAAR) together
with Fritz Henglein and Robin Kaarsgaard. Rôle: lead author.

• “Worst-case Optimal Algebraic Joins” (WOAJ) together with Fritz Hen-
glein. Unpublished. Rôle: lead author.

The dependencies are as follows for each chapter.

• Chapter 2 is mostly based on the first part of PoA. The presentation of
algebraic structures in the beginning is new.

• Chapter 3 is an adaptation of AAAR. The motivation in the beginning
as well as the denotational semantics are original to this dissertation.

• Chapter 4 is an adaptation of PoA. The motivation in the beginning is
entirely new.

• Chapter 5 is an adaptation of WOAJ with parts from PoA and some
additions original to this dissertation.

• Chapter 6 is an adaptation of MT. Changes mostly consist of updating
notation and removing dependencies on the rest of MT.

• Chapter 7 incorporates parts of the related work and discussion sections
of PoA, AAAR and WOAJ.

8 CHAPTER 1. INTRODUCTION

1.3 Contributions
We now list the contributions made in this work. Each contribution is marked
with its origin as either coming from one of the publications above or from this
dissertation—marked (D)—in which case it has not been reviewed yet.

• Linear algebra as a query language (MTQP, PoA).

– An algebraic framework based on universal constructions suitable for
interpreting database operations (MTQP, PoA).

– A “Rosetta Stone” showing how to translate relational algebra into
this framework (PoA).

– Extension from semirings to rings (MTQP, PoA).
– Symbolic tensor products for efficient representation of Cartesian

products (MTQP, PoA).
– Algebra multiplication as a join operator (PoA).
– Wildcard elements that function as a unit for the join operator and

allow more flexible database modelling such as cofinite sets (PoA).
– Efficient evaluation of queries based on careful simplification of sym-

bolic terms (PoA).
– A working implementation in Haskell that outperforms existing databases

on certain queries (MT).

• A novel worst-case output optimal algorithm for conjunctive queries (WOAJ).

– An interpretation of join as a combination of embedding and inter-
section (PoA, WOAJ).

– A proof technique for showing worst-case output optimality based on
input padding (WOAJ).

– An extension of said algorithm and its optimality proof to deal with
wildcards (WOAJ).

• The Algeo language (AAAR).

– An algebraic view of functional logic programming (AAAR).
– Symbolic sums for expressing “compact-dimensional” linear algebra

(AAAR).
– A very flexible system for giving definitions, subsuming most forms

of pattern matching and more (AAAR).
– An axiomatic semantics (AAAR).
– A denotational semantics (D).

We do not include any results from CAD. However, after perusing this
dissertation the reader should be well equipped to read the paper itself.

1.4. OVERVIEW 9

1.4 Overview
Chapter 2 provides the necessary background knowledge. This mostly consists
of a presentation of linear algebra through the lens of category theory. The
approach is different from almost all other introductions to the subject, so even
a well-versed reader should not skip this section lightly.

Chapter 3 introduces the Algeo language, which provides a formal foundation
for the notation developed in Chapter 2. We illustrate the language and give
syntax and semantics.

Chapter 4 demonstrates how linear algebra can serve as a query language
and how it compares to relational algebra.

Chapter 5 discusses the data structures and algorithms involved in our linear
algebra computations. We show how to simplify terms and argue that this
simplification procedure satisfies the technical criterion of worst-case output
optimality for conjunctive queries.

Chapter 6 presents an approach for implementing an algebraic framework
suitable for query processing in Haskell.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Motivation
The main tool for our purposes is linear algebra. Linear algebra has many faces,
however, and we will focus on one of them: the theory of modules and linear
maps between them viewed through the lens of category theory. In particular,
we are not concerned with the “classical” conception of linear algebra as a
synonym for matrix algebra; alternatively as the theory of Rn or Cn.

The categorical approach insists that the objects of study (e.g. modules)
are abstract and described only by their behaviour and relationship with each
other. Objects can be combined to form new objects, but the exact nature of
the construction is left unspecified as much as possible. For instance, we will
be able to form the module M ⊕N for any modules M and N . All we need to
know about this new module is that there exist injections from and projections
onto M and N satisfying certain equations. Compare this with the classical
approach: given natural numbers m and n we can consider Rm and Rn as well
as Rm+n. It is possible to define injections and projections by means of index
calculations, but there are many ways to do it and none of them are obviously
superior or canonical. Yet to proceed we must arbitrarily choose one of them.
Care then needs to be taken not to depend on the specifics of the chosen index
manipulation scheme. In practice these details are sometimes dismissed and the
objects are treated more abstractly with an informal understanding of what is
allowed and what is not.

Category theory provides a framework for dismissing details while remaining
on a solid mathematical foundation. Each category can be thought of as a
mathematical world which determines what we are allowed to do and observe.
The very rules of the game prohibit prevent us from depending on details like
index manipulation (unless we have explicitly made it part of the structure
under consideration).

At the same time, we are interested in computational aspects of our theory.
A categorical approach is naturally implementation-agnostic, which gives us

11

12 CHAPTER 2. PRELIMINARIES

complete freedom to choose a strategy. It turns out, however, that a straight-
forward symbolic representation of the abstract structure is surprisingly effi-
cient. In particular, the derived representation for the tensor product M ⊗ N
would be nigh impossible to invent by just considering how Rm and Rn can
be mapped into Rmn. We shall also see how a worst-case optimal algorithm
for conjunctive queries arises naturally from the abstract structure. Indeed,
the categorical avoidance of “premature implementation” often leads to more
efficient algorithms and data structures.

2.2 Prerequisites
The reader should be familiar with the idea of algebraic structures such as
Abelian groups and rings. Basic category theory is also assumed; alternatively,
a good foundation in algebra should be sufficient as well.

Knowledge of linear algebra is not required, as we will introduce the neces-
sary concepts. In fact, too much familiarity with classical linear algebra might
even be unhelpful! In that case one should be wary of trying to reduce every-
thing to questions about matrices.

Regarding databases, a passing familiarity should be enough for the most
part. The technical discussion of worst-case output optimality might require
following references first.

2.3 Structures
We now define the various algebraic structures we will need.

Abelian group. An Abelian group A comprises

• A set |A|.

• An element 0A : |A|.

• A binary operator (+) : |A| → |A| → |A|.

• A unary operator (−) : |A| → |A|.

subject to the following identities:

• 0A + x = x (identity).

• x+ y = y + x (commutativity).

• (x+ y) + z = x+ (y + z) (associativity).

• x+ (−x) = 0A (inverse cancellation).

Abelian groups include Z, Q, R and C with the usual addition operations.
Another notable example is Zm, integers module m.

2.3. STRUCTURES 13

Ring. A (commutative) ring R is an abelian group that additionally comprises
• An element 1R : |R|.

• A binary operator (·) : |R| → |R| → |R|.
subject to the following identities:

• 1R · x = x (identity).

• x · y = y · x (commutativity).

• (x · y) · z = x · (y · z) (associativity).

• 0R · x = 0R (cancellation).

• (x+ y) · z = (x · z) + (y · z) (distributivity).
All of the examples of Abelian groups given above are in fact also rings with

their usual multiplication operations.

Module. Fix a ring R. An R-module M is an abelian group that additionally
comprises

• A binary operator (·) : |R| → |M | → |M |.
subject to the following identities:

• 1 · x = x (identity).

• (r · s) · x = r · (s · x) (associativity).

• 0M · x = 0M (cancellation).

• (r + s) · x = (r · x) + (s · x) (distributivity).
Classical examples of modules include Rn for any ring R with componentwise

addition. See Section 2.6 for an overview of the landscape of modules.

Algebra. Fix a ring R. A (commutative) R-algebra M is a module that
additionally comprises

• A binary operator (·) : |M | → |M | → |M |.
subject to the following identities:

• x · y = y · x (commutativity).

• (x · y) · z = x · (y · z) (associativity).

• 0 · x = 0 (cancellation).

• (x+ y) · z = (x · z) + (y · z) (distributivity).
Algebras arise whenever we have a subring R of a ring S in which case S is

an R-algebra. Many of the modules that we construct will also have an algebra
structure.

14 CHAPTER 2. PRELIMINARIES

Unital algebra. Fix a ring R. A (commutative) unital R-algebra M is an
algebra that additionally comprises

• An element 1M : |M |.

subject to the following identities:

• 1M · x = x (identity).

• r · 1M = 1M (scalar compatibility).

Weighted module. Fix a ring R. A (commutative) weighted R-module M
is a module that additionally comprises

• An operator (#) : M → R.

subject to the following identities:

• #0M = 0R (cancellation).

• #(x+ y) = #x+ #y (additive distributivity).

• #(r · x) = r ·#x (multiplicative distributivity).

We will also speak of weighted R-algebras for modules that have both mul-
tiplication and weight operators.

General comments.

• When R is a field (i.e. multiplicative inverses exist for nonzero elements)
the term vector space is often used in place of module. We shall use
module and vector space interchangeably without regard for the nature of
R. Similarly, we use linear algebra in the broad sense of studying linear
maps between structures and not just the subset concerned with classical
vector spaces.

• The definitions above are not the most economical, but they have the
virtue of making every operation and identity clear. More efficiently, we
could define e.g. an algebra as a monoid object in the category of modules.

• We have been explicit about distinguishing the object X from its carrier,
the set |X|. Generally, we will use X to mean either X or |X| when the
intent should be clear.

• Only commutative operations are considered, so we shall simply use ring
to describe what would normally be called a commutative ring. The same
goes for commutativity of algebras.

• Similarly, what we call modules are sometimes called two-sided modules,
since scalars can also be multiplied on the right by defining x · r = r · x.
Commutativity of the ring ensures that this works exactly the same as
multiplication on the left.

2.4. CATEGORY THEORY 15

• The (·) operator is overloaded, being used for multiplication in both rings,
modules and algebras. Furthermore, we will employ the usual convention
that juxtaposition xy means x · y. This overloading has two justifications.
Firstly, the three operations have different types so disambiguating is al-
ways possible. Secondly, there are sufficient identities to ensure that the
operations are essentially the same on their common domain.

• Similarly, the subscripts for 0 and 1 will generally be omitted.

• An Abelian group is actually a special case of a module, namely a Z-
module. Similarly, a ring is just a unital Z-algebra. Rings must be defined
before modules and algebras, though, since the definitions of modules and
algebras are parameterised by a ring.

2.4 Category Theory
We now recall some of the basic definitions of category theory.

Category A category C comprises a collection of objects and for each pair of
objects a collection of arrows. We write X ∈ C when X is an object in C and
f : X → Y when f is an arrow between objects X and Y . For each object X
there should be an identity arrow idX : X → X and any two arrows f : Y → Z
and g : X → Y can be composed into f ◦ g : X → Z. We require that ◦ is
associative and that idX is an identity for ◦. An arrow f : X → Y such that
g ◦ f = idX and f ◦ g = idY for some g : Y → X is called an isomorphism.

All of the structures we have defined above form categories. As an example
take the category Ab of Abelian groups. For any two abelian groups G and
H, the arrows between them consist of group homomorphisms, i.e. functions
f : G → H between the underlying sets such that f(x + y) = f(x) + f(y) for
all x, y : G. In principle we also demand that f(0) = 0 and f(−x) = −f(x)
(so that f respects all the structure of Abelian groups) but these properties are
consequences of the previous one, so we do not need to stipulate them directly.

Since arrows in Ab respect the group structure, category theoretic state-
ments in Ab will necessarily be of a purely group theoretic nature and not
depend on any particular representational details. For instance, the set {a, b}
can be made into an (Abelian) group in two ways depending on whether a+b = a
or a+ b = b, although they are the same group up to isomorphism. In classical
group theory we take great care not to make any statements that could possibly
distinguish isomorphic groups. In the category Ab it is quite simply impossible
to make any such distinction. Hence, we may think of Ab as “Abelian group
theory”.

Functor The notion of a category is a bit too involved to be considered an
algebraic structure in the usual sense (i.e. a set equipped with operations obey-
ing axioms), but it nevertheless bears similar consideration. In particular, we

16 CHAPTER 2. PRELIMINARIES

want to work with mappings that respect the structure of categories. Such a
mapping F : C → D is known as a functor. It maps objects to objects and
arrows to arrows such that F (a) : F (X) → F (Y) for every arrow a : X → Y .
Respecting the structure entails F (idX) = idF (X) and F (a ◦ b) = F (a) ◦ F (b).

For instance, let F : Set → Ab which maps a set X to the Abelian group
whose elements are sum of elements of X subject to all axioms of an Abelian
group. Given f : X → Y the function F (f) : F (X) → F (Y) maps each
component of a sum using f .

Another example is | · | : Ab → Set which maps each Abelian group to its
underlying set, and each homomorphisms to its underlying function.

Adjunctions The two functors F and |·| form what is known as an adjunction,
written F a | · |. In general we require that there is a bijection between F (X)→
G and X → |G| which is natural (see below) in X and G. For the concrete
example this means that defining a homomorphism from the Abelian group
generated by X into some group G is equivalent to defining an ordinary map
from X into the elements of G. This expresses the idea that F freely generates
a group, since the generators can be mapped independently of each other. The
other direction, |·|, is said to be forgetful since D will usually have more structure
than C and | · | simply gets rid of the additional structure (e.g. group operations
and axioms).

Note that adjoint functors are not inverses. Indeed, in our example |F (X)|
is the set consisting of sums of elements of X which is always a larger set when
X is finite. Similarly, F (|G|) is in general a different group than just G.

Natural Transformations Given functors F,G : C→ D, a natural transfor-
mation α : F → G is a family of arrows αX : F (X) → G(X) for each X : C.
Naturality stipulates that G(f)◦αX = αY ◦F (f) for any f : X → Y . Normally
this property is satisfied when α is defined generically for some abstract object
X.

For instance, for a given set Y let αX : X × Y → X be the projection onto
the first component. This transformation is natural.

2.5 Categories Under Consideration
The two most important categories in our investigation are Set and ModK (for
some K). Objects in Set are sets and arrows are ordinary maps. Objects in
ModK are K-modules and arrows are homomorphisms, i.e. maps between the
underlying sets that respect all the module operations. It is in fact sufficient
to check that f(x+ y) = f(x) + f(y) and f(k · x) = k · f(x). Note that this is
similar to the situation for Abelian groups and indeed Ab can equivalently be
defined simply as ModZ.

The following discussion appeals to categorical concepts that we will not
formally introduce. There are fundamental differences between (bi-)cartesian
closed (roughly, set-like) categories and (pre-)additive (roughly, module-like)

2.6. MEET THE MODULES 17

categories. Intuitively, the former models classical computation and the latter
models computation with choice and failure such as nondeterminism, probabilis-
tic programming or query processing. The two notions are incompatible in the
sense that any distributive additive category collapses to a single object (since
X ∼= X + 0 ∼= X × 0 ∼= 0 for any X).

In a distributive category products and coproducts can be thought of as
abstractions of the usual cross product and disjoint union operations on sets.
In an additive category finite products and coproducts coincide and are known
as biproducts. A product can be thought of as a pairing where the consumer
chooses which component to work with; conversely a coproduct is a pairing
where the producer chooses the component. A biproduct is then a pairing
where the producer and the consumer have equal say in choosing a component
(if they disagree the computation simply fails). This behaviour of biproducts
is why arrows in additive categories often have pseudo-inverses, since they are
fundamentally more like relations than functions.

The conflation of products and coproducts does leave additive categories
without a traditional “proper” product type. However, there is often a notion
of tensor product (an enriched monoid structure on objects) which fills this gap
and interacts with the biproduct structure the same way a product interacts with
the coproduct in a distributive category. Tensor products are much weaker and
do not provide e.g. first and second projections.

Another important difference concerns how data is copied and deleted. In
a distributive category copying is accomplished trivially since pairs are repre-
sented as products which by their very nature support duplication. Similarly
for deletion. In an additive category where pairs are represented by some tensor
product there is no general (natural) way to copy or delete, but particular ob-
jects may support it. Often there are many ways to define a copying operation,
none of which are canonical. This is also the reason why additive categories
appear in categorical treatments of quantum computation.

2.6 Meet the Modules
With the definitions above in hand it is possible to judge for a given set equipped
with operations whether it is a module. This is the analytic approach. By
contrast, we take a synthetic approach and present a number of objects that are
modules by construction. It is by no means a complete set of constructions, but
it covers everything that we will need.

Each module is presented with a universal property, describing its rôle in
the category of modules. The basic principle is that objects in a category can
be understood purely by how they relate—via morphisms, in this case linear
maps—to other objects. One perspective is that universal properties define
interfaces to allow abstracting away irrelevant details.

Trivial modules. The simplest module is the zero module 0 consisting of just
a single 0 element. All operations are trivial and determined by the axioms. It

18 CHAPTER 2. PRELIMINARIES

satisfies the following universal property: for all modules U there is a unique
linear map 0 : 0→ U , and a unique linear map 0 : U → 0.

The first interesting example of a module is the ring K itself with operations
inherited from the ring structure. This is called the scalar module. It also has
a weighted algebra structure with multiplication inherited from the ring and
weight given by the identity map. The scalars satisfy the universal property
that for any module U and element u : U there exists a unique linear map
f : K → U such that f(1) = u.

Intuitively the property states that any linear map from K is completely
determined by what it does to 1. We are therefore justified in defining linear
maps by pattern matching on 1, for example defining some f : K → K by
f(1) = 42. By linearity f(r) = f(r · 1) = r · f(1) = r · 42 for any r, so we have
exactly the information we need to determine the value of f at any point.

Free modules. The free module over a set A, denoted FK [A], is the module
generated by elements of A. By generated we mean that for every element
a : A there is an element {a} : FK [A] such that the set {{a}}a∈A of all such
elements form an orthonormal basis for FK [A]. Furthermore, FK [A] contains 0
and is closed under addition and scalar multiplication. For instance, there are
elements like 3 · {a} + 5 · {b}. Two elements of FK [A] are equal if and only if
they are forced to be equal by the module axioms and properties of K. Hence,
3 · {a}+5 · {b} = 5 · {b}+3 · {a} by commutativity, but {a} 6= 0 (whenever 1 6= 0
in K) since there is no way to show {a} = 0 from the axioms alone (a formal
argument for this is surprisingly tricky, though). In particular {·} is injective
so {a} = {b} implies a = b.

An element of FK [A] is best thought of as a generalised finite multiset. Any
such element can be written uniquely as a basis expansion

∑
a:A(ra · {a}) where

the number of nonzero ra is finite. Depending on the nature of K there is a
different interpretation of what “generalised finite multiset” means.

• When K is F2 elements FK [A] are finite sets. A set like {a, b, c} is written
as {a}+ {b}+ {c}.

• When K is Z, elements of FK [A] are finite polysets. A polyset like
{a3, b−2, c5} is written as 3{a} − 2{b}+ 5{c}.

• When K is R elements of FK [A] are generalised finite fuzzy sets, whose
membership function is not limited to [0, 1]. A generalised fuzzy set like
{a/0.3, b/0.2, c/0.5} is written as 0.3{a}+ 0.2{b}+ 0.5{c}.

The free module FK [A] satisfies the following universal property: for any module
V and function f : A → V there is a unique linear map f̂ : FK [A] → V such
that f̂ ◦ {·} = f . In essence, to define a linear map out of FK [A] it suffices
to identify the target module and define a map out of A, and this map can be
chosen freely. We can think of this as definition by pattern matching, and write

2.6. MEET THE MODULES 19

linear maps like

g : FK [Str]→ FK [Str]
g({s}) = {reverse(s)}

In this case g = f̂ where f(s) = {reverse(s)}. Note that due to linearity we
also get the equations

g(0) = 0 g(x+ y) = g(x) + g(y) g(r · x) = r · g(x)

but we do not need to handle these cases as they are forced by the condition of
linearity. Thus, we get to treat FK [A] as an inductive type and pretend that it
only contains elements of A, even though it does contain many more elements
than that.

Finally, we are going to equip FK [A] with a bilinear operator and a weight
function to make it into a weighted algebra. There is more than one possible
choice, but only one makes sense for our purposes:

{a} · {a} = {a}
{a} · {b} = 0 (for a 6= b)

#{a} = 1

Note that we are defining multiplication by pattern matching in each argument,
implicitly appealing to the universal property of FK [A] twice. This operation
can be thought of as a variant of the Kronecker delta function: If the arguments
a, b are equal, we return that unique value as a singleton; if they are unequal,
we “fail” by returning 0. When applied to sets it computes the set intersection;
for multisets and polysets, however, the multiplicities of common elements are
multiplied. For instance, for

(3{a}+2{b}+5{c}) ·(7{b}+4{c}+2{d}) = (2 ·7){b}+(5 ·4){c} = 14{b}+20{c}

The missing component in FK [A] being a unital weighted algebra is the unit, an
element 1 such that 1 ·x = x = x ·1. If A is finite we can take 1 =

∑
a:A{a}, but

for infinite A this sum is not well-defined. Thus, we now proceed to show how
FK [A] can be extended to account for this deficiency, which in turn paves the
way to efficient representation of certain infinite sets and—eventually—efficient
algebraic join computations.

Compact free. We have seen that the free module over a set A does an
excellent job of representing finite subsets of A. However, it lacks the ability
to represent complements and in particular there is no general way to represent
the subset containing every inhabitant of A. Algebraically, the multiplication
on FK [A] does not have a unit element for infinite A.

To rectify these deficiencies we introduce the compact free module, F∗
K [A],

constructed by taking the free module FK [A] and adjoining a distinct element

20 CHAPTER 2. PRELIMINARIES

1. We think of 1 as symbolising the potentially infinite sum
∑

a:A{a}. However,
even when A is finite, 1 is by definition distinct from

∑
a:A{a}.

The choice of never identifying 1 with
∑

a:A{a} has several advantages. We
do not have to know whether A is finite or infinite to decide if 1 is linearly
independent from the other generators. It allows a compact symbolic repre-
sentation of this sum when A is finite but large. And finally it gives us the
following universal property: for any module V together with a map f : A→ V
and an element u : V there is a unique linear map f̂ : F∗

K [A] → V such that
f̂ ◦ {·} = f and f̂ (1) = u.

In terms of pattern matching this amounts to having cases for {a} and
1. With this addition F∗

K [A] has a unital weighted algebra structure, where
multiplication of generators works just like for FK [A] and 1 is the multiplicative
unit. Explicitly:

{a} · {a} = {a} 1 · y = y #{a} = 1

{a} · {b} = 0 (for a 6= b) x · 1 = x #1 = 1

This enables us to represent not just finite sets, but also cofinite sets: the
subsets of A that contain all but a finite number of elements. For example, the
set A \ {a, b} is written as 1− ({a}+ {b}). When we introduce tensor products
later we will see how even more interesting subsets can be represented compactly
in this manner.

Biproduct. The biproduct of modules U and V is a module U⊕V consisting of
pairs of elements from U and V with operations defined pointwise. For instance
given (u1, v1), (u2, v2) : U ⊕ V we define

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2)

The biproduct satisfies the universal property of binary products: there are
linear maps p1 : U ⊕ V → U and p2 : U ⊕ V → V such that for any module W
with linear maps p′1 : W → U and p′2 : W → V there is a unique linear map
(p′1, p

′
2) : W → U ⊕ V such that p1 ◦ (p′1, p′2) = p′1 and p2 ◦ (p′1, p′2) = p′2. The

p’s are projections and (p′1, p
′
2) is the pair constructor. Operationally:

p1(u, v) = u

p2(u, v) = v

(p′1, p
′
2)(w) = (p′1(w), p

′
2(w))

This universal property gives a way to define linear maps into the biproduct
by giving the result of projecting each component. In other words, definition by
copattern matching. For instance

f : V → V ⊕ V

p1(f(v)) = v

p2(f(v)) = 3v

2.6. MEET THE MODULES 21

The biproduct also satisfies the universal property of binary coproducts,
obtained by simply reversing the direction of all arrows: there are linear maps
i1 : U → U⊕V and i2 : V → U⊕V such that for any module W with linear maps
i′1 : U → W and i′2 : V → W there is a unique linear map [i′1, i

′
2] : U ⊕ V → W

such that [i′1, i
′
2] ◦ i1 = i′1 and [i′1, i

′
2] ◦ i2 = i′2.

The i’s are injections and [i′1, i
′
2] is case analysis. Operationally:

i1(u) = (u, 0)

i2(v) = (0, v)

[i′1, i
′
2](u, v) = i′1(u) + i′2(v)

This universal property gives a way to define linear maps out of the biproduct
by explaining what happens to either injection. In other words, definition by
pattern matching. For instance

f : V ⊕ V → V

f(i1(v)) = 2v

f(i2(v)) = v

From a programming point of view biproducts are an unfamiliar construc-
tion: a data type that supports both pattern matching and copattern matching.
They can be treated as either a sum or a product type depending on which is
most convenient.

Finally, we describe the canonical algebra structure on the biproduct. Just
like for free modules, the motivation for the definition is intersection of multisets.
Suppose U and V are algebras. Then so is U ⊕ V . The definition of 1U⊕V uses
copattern matching while · and # use pattern matching.

p1(1U⊕V) = 1U

p2(1U⊕V) = 1V

i1(u) · i1(u′) = i1(u · u′)

i1(u) · i2(v′) = 0

i2(v) · i1(u′) = 0

i2(v) · i2(v′) = i2(v · v′)
#i1(u) = #u

#i2(v) = #v

Finite map. Suppose we are given a set A and a module U . The finite
map module A ⇒ U consists of maps A → U with finite support, i.e. maps
which produce a nonzero value at finitely many elements of A. It is the module
generated by elements of the form a 7→ u where a : A and u : U , subject to the
requirement that a 7→ · is a linear map for any a. Any finite map can be written
as

∑
a:A(a 7→ ua) where ua = 0 for all but finitely many a.

The finite map module satisfies the following universal property: for any
module V together with a family of maps fa : U → V there exists a unique

22 CHAPTER 2. PRELIMINARIES

linear map case(f) : (A ⇒ U) → V such that case(f) ◦ (a 7→ ·) = fa for all
a : A. This allows pattern matching similar to the free module. For example:

f : (A⇒ K)→ FK [A]

f(a 7→ 1) = {a}

Recall that the use of 1 on the left-hand side is pattern matching on scalars.
Intuitively, we think of A⇒ U as elements of U indexed by A. For instance,

suppose we have a multiset of strings and we want to index it by string lengths.
The indexed space would be N ⇒ FK [Str] with the indexing being done as
follows.

indexbylength : FK [Str]→ (N⇒ FK [Str])
indexbylength({s}) = length(s) 7→ {s}

We can also go in the other direction and forget the index.

sum : (A⇒ U)→ U

sum(a 7→ u) = u

Like the free module the finite map module is a weighted algebra, but lacks a
unit when the index set is infinite. Multiplication and weight are defined by:

(a 7→ u) · (a 7→ v) = a 7→ (u · v)
(a 7→ u) · (b 7→ v) = 0 (for a 6= b)

#(a 7→ u) = #u

Compact map. Finite maps, like free modules, do not possess a unit element
when the index set is infinite. More generally, they do not possess constant map-
pings that have the same (nonzero) value everywhere. The solution is similar:
adjoin distinct elements to account for this deficiency.

Thus, the compact map module A ⇒∗ U is obtained by adding elements
of the form ∗ 7→ u for any u : U . The ∗ represents a wildcard which matches
anything. Intuitively ∗ 7→ u symbolises

∑
a:A(a 7→ u) but is by definition always

distinct, just like for the compact free module.
The compact map module satisfies the following universal property: for

any module V together with a family of maps fa : U → V as well as a map
f∗ : U → V there exists a unique linear map case(f) : (A⇒∗ U)→ V such that
case(f) ◦ (a 7→ ·) = fa for all a : A and case(f) ◦ (∗ 7→ ·) = f∗.

The unital weighted algebra structure on compact maps is given as follows.

(a 7→ u) · (a 7→ v) = a 7→ (u · v) 1A⇒∗U = ∗ 7→ 1U

(a 7→ u) · (b 7→ v) = 0 (for a 6= b)
(a 7→ u) · (∗ 7→ v) = a 7→ (u · v) #(a 7→ u) = #u

(∗ 7→ u) · (a 7→ v) = a 7→ (u · v) #(∗ 7→ u) = #u

(∗ 7→ u) · (∗ 7→ v) = ∗ 7→ (u · v)

2.6. MEET THE MODULES 23

Lookup in a compact map works like for finite maps, except ∗ is also a valid
key. To see how this works in practice, suppose we have an element:

x = (∗ 7→ 2) + (a 7→ 3) + (b 7→ −2)

Consider the following lookups:

x(∗) = 2 x(a) = 2 + 3 = 5 x(b) = 2− 2 = 0 x(c) = 2

It is evident that the ∗ 7→ 2 component of x serves as a baseline and a component
like a 7→ 3 determines how much the value at a deviates from that baseline. In
particular, the value at b deviates by exactly the negative of the baseline value,
the result being that b is contained 0 times in x when viewed as a polyset.
This is in contrast to the more common construct of having finite maps with a
default value for keys not explicitly listed. In particular, compact map addition
is commutative: it does not matter in which order the maps are listed.

Tensor product. The tensor product of modules U and V is a module U ⊗V
generated by elements of the form u ⊗ v with u : U and v : V , subject to the
requirement that ⊗ is bilinear, i.e. linear in each argument separately. More
explicitly, linearity in the first argument requires

0⊗ v = 0 (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v (r · u)⊗ v = r · (u⊗ v)

Linearity in the second argument is analogous. In general, any element of the
tensor product can be written as a sum of⊗-pairs, i.e.

∑
i(ui⊗vi). Compare this

with the biproduct, which is also generated by pairs of elements. An element∑
i(ui, vi) can always be reduced to (

∑
i ui,

∑
i vi), since the biproduct pair

constructor is linear in both arguments simultaneously. The tensor product is
linear in each argument separately and elements can only be simplified in some
circumstances, such as

u1 ⊗ v1 + u1 ⊗ v2 + u2 ⊗ v1 + u2 ⊗ v2 = (u1 + u2)⊗ (v1 + v2)

This kind of simplification can often reduce the size of a term from quadratic
to linear, but recognising such opportunities is not easy. Consequently, when a
term is in this kind of simplified, compact form we should not expand it unless
absolutely necessary!

The tensor product satisfies the following universal property: for any module
W and bilinear map f : U×V →W there exists a unique linear map g : U⊗V →
W such that g ◦ ⊗ = f .

The consequence is that any bilinear map can be written as a linear map from
the tensor product. It also justifies defining linear maps by pattern matching
on ⊗, for example:

f : U ⊗ V → V ⊗ U

f(u⊗ v) = v ⊗ u

24 CHAPTER 2. PRELIMINARIES

This is only valid if the definition is linear in each argument separately. In
particular we cannot simply define a projection π1 : U⊗V → U as π1(u⊗v) = u,
as that would not be linear in the second argument. In this respect the tensor
product is different from an ordinary product type. If V is equipped with a
weighted algebra structure, however, we can define:

π1 : U ⊗ V → U

π1(u⊗ v) = #v · u

The weight serves to dispose of data, which is not possible for an arbitrary mod-
ule in general. Finally, we equip the tensor product with an algebra structure.
Suppose U and V are algebras. All operations are defined pointwise:

(u1 ⊗ v1) · (u2 ⊗ v2) = (u1 · u2)⊗ (v1 · v2)
1U⊗V = 1U ⊗ 1V #(u⊗ v) = #u ·#v

Note in particular how computing the weight of a tensor product simply reduces
to computing the weight of each factor. This saves us from having to expand
u⊗ v at all. When u and v are themselves large sums this saves a considerable
amount of work.

2.7 Inner Products and Adjoints
Given a weighted algebra M we can define an inner product by

(�) : M →M → K

u � v = #(u · v)

Intuitively, the inner product is a linear extension of the characteristic function
for equality. It measures the degree to which two elements are equal. Indeed, if
M = FK [A] the definition specialises to:

{a} � {b} = 1 when a = b

{a} � {b} = 0 when a 6= b

Often the inner product is considered to be part of the structure—such a
vector space is called an inner product space—and not a derived operation. For
our purposes we need the more powerful weighted algebra structure anyway and
have little use for inner products in isolation.

In fact, the weighted algebra structure allows defining inner products of any
arity. If we consider the weight map itself as a unary inner product and the
map defined above as a binary inner product then the ternary version is defined
as (u, v, w) maps to #(u · v · w) and so on.

With inner products in hand we can give a formal definition of adjoints. Let
M and N be weighted algebras and f : M → N a linear map. An adjoint of f
is a linear map f† : N →M such that

f(x) � y = x � f†(y)

2.8. FUNCTORS AND ISOMORPHISMS 25

for all x : M and y : N .
Recalling our intuition for inner products as measuring equality, the defini-

tion of adjoint says that f maps x to y to the same degree that f† maps y to
x. In the case of free modules we can let x = {a} and y = {b}; the constraint
then guarantees that f({a}) = r · {b} precisely when f†({b}) = r · {a}. When
representing a linear map between finite-dimensional free modules as a matrix
the factor r is found at position (a, b) in the matrix. The matrix of the adjoint
is found by transposing the matrix.

Given that adjoints look suspiciously similar to inverses, what is the dif-
ference? Firstly, adjoints can exist even when inverses do not. For instance,
consider a map f : K⊕K → K given by f(inl(x)) = x and f(inr(x)) = x. It has
no inverse, but has an adjoint f†(x) = inl(x) + inr(x). Secondly, multiplicities
are dealt with differently. Consider a map f : K → K given by f(x) = 2x.
The inverse is given by f−1(x) = 1

2x while the adjoint is simply f itself. The
operation of taking adjoints is linear in the map, while taking inverses has no
such property.

When a linear map has an adjoint which is also an inverse it is called unitary.

2.8 Functors and Isomorphisms
All of the constructions we have seen are functors, structure-preserving maps
between categories. Recall that a functor acts not just on objects (sets, modules,
etc.), but also on maps between objects. For instance FK [A] is functorial in A,
so given any map between sets f : A→ B we have FK [f] : FK [A]→ FK [B].

Let f be a map between sets and α, β be linear maps. The functors act as
follows:

FK [f]({a}) = {f(a)}
F∗
K [f]({a}) = {f(a)}
F∗
K [f](1) = 1

(α⊗ β)(u⊗ v) = α(u)⊗ β(v)

(f ⇒∗ α)(∗ 7→ u) = ∗ 7→ α(u)

(f ⇒∗ α)(a 7→ u) = f(a) 7→ α(u)

(f ⇒ α)(a 7→ u) = f(a) 7→ α(u)

Generally, these actions can be derived mechanically and there is only one rea-
sonable choice. The simplicity is deceptive, though, and it is easy to overlook
how much one gets for free with a categorical approach. Perhaps the clearest
example of this is ⊗. It is usually called the Kronecker product, defined as a
complicated block matrix expression and relegated to advanced linear algebra
courses. The functorial action, by contrast, could not be simpler.

The module constructions we have presented are related in various ways.
More precisely, there are a number of natural isomorphisms. An isomorphism
φ : U ∼= V is simply a linear map φ : U → V together with an inverse linear

26 CHAPTER 2. PRELIMINARIES

FK [0] ∼= 0 FK [1] ∼= K

0 ⇒ U ∼= 0 1 ⇒ U ∼= U

A ⇒ 0 ∼= 0 A ⇒ K ∼= FK [A]

FK [A+B] ∼= FK [A]⊕ FK [B] FK [A×B] ∼= FK [A]⊗ FK [B]

(A+B) ⇒ U ∼= (A ⇒ U)⊕ (B ⇒ U) (A×B) ⇒ U ∼= A ⇒ B ⇒ U

A ⇒ (U ⊕ V) ∼= (A ⇒ U)⊕ (A ⇒ V) A ⇒ (U ⊗ V) ∼= (A ⇒ U)⊗ V

A ⇒ U ∼= FK [A]⊗ U A ⇒∗ U ∼= F∗
K [A]⊗ U

F∗
K [A] ∼= FK [A]⊕K A ⇒∗ U ∼= (A ⇒ U)⊕A

Table 2.1: A selection of natural isomorphisms

map φ−1 : V → U . Naturality can be stated precisely using category theory,
but for our purposes it is sufficient to think of “natural” as “polymorphic”.

When defining an isomorphism φ we write both directions simultaneously
using the syntax p ⇔ q to mean φ(p) = q and p = φ−1(q). A selection of
isomorphisms can be seen in Table 2.1. We draw particular attention to the re-
lationship between free modules and tensor products given by the isomorphism:

FK [A×B] ∼= FK [A]⊗ FK [B]

{(a, b)} ⇔ {a} ⊗ {b}

The tensor product of free modules can itself be written as a free module.
However, the pattern matching notation belies the true cost of this conversion.
The typical element of FK [A] ⊗ FK [B] is a sum of terms like (

∑
i ri{ai}) ⊗

(
∑

j sj{bj}) which converts to
∑

i

∑
j risj{(ai, bj)}, a quadratic increase in size.

Converting back again yields
∑

i

∑
j risj({ai} ⊗ {bj}). This is extensionally

equal to the original term, but much larger. Hence, passing through the free
module is not free! We will generally prefer to stay on the right side of this
isomorphism, only converting when necessary. Fortunately, the isomorphisms
shown thus far demonstrate that any polynomial type can be expressed as a
module using 0, K, ⊕ and ⊗.

Free Modules Everywhere?

At this point we have seen that any module constructed using any combination of
0, K, ⊕, ⊗, FK [·], F∗

K [·] and⇒ is isomorphic to some free module. Indeed, if K
is a field—in which case modules are vector spaces—the classical mathematician
would remark that by the Axiom of Choice every vector space is isomorphic to
a free one. Why do we not simply consider only free modules then?

Firstly, these isomorphisms only concern the module structure. The algebra
structure differs in many cases. For instance, we saw that F∗

K [A] ∼= FK [A]⊕K
as modules, but certainly not as algebras (if the right-hand side even has an
algebra structure, which is only the case when A is finite). Secondly, even if two
modules are extensionally equal, i.e. isomorphic, they need not be intensionally
equal. The clearest example of this is FK [A × B] ∼= FK [A] ⊗ FK [B] where

2.9. THE ADJOINT PERSPECTIVE 27

the right-hand side can express certain large terms much more compactly and
converting to the left-hand side generally yields asymptotically larger terms.

This distinction is of course invisible from a purely categorical perspective,
but we do not have the luxury of such purity. Our goal, ultimately, is computa-
tion and category theory is neutral in this regard (it fits well with a constructive
treatment, but does not have a concept of computation unless explicitly mod-
elled). Vague appeals to indistinguishability of isomorphic objects is therefore
a pitfall best avoided.

2.9 The Adjoint Perspective
For the very categorically inclined the development above can be cast almost
purely in terms of adjunctions. This yields an arguably cleaner and certainly
more general theory, although one has to beware of venturing too deeply into
the depths of “abstract nonsense”.

Limits as adjunctions. For categories C and J let ∆J : C→ CJ be the diag-
onal functor ∆J(X)(Y) = X. Objects in the functor category CJ are thought
of as diagrams in C of shape J. The left adjoint of ∆J, if it exists, assigns to
each diagram its colimit. Analogously the right adjoint produces the limit of
each diagram. In particular if J = 2, the category with just two objects, the
left adjoint is + (the binary coproduct) and the right adjoint is × (the binary
product).

Distributive categories. A category that has binary products and binary
coproducts such that products distribute over coproducts (i.e. X × (Y + Z) ∼=
(X × Y) + (X + Z)) is distributive.

Additive categories. On the other hand it might be the case that the left
and right adjoints of ∆2 coincide; then (given a few equations relating product
projections and coproduct injections) the category has biproducts, written X⊕Y .
Biproducts are sufficient to define zero arrows as well as addition of arrows. A
category where all finite biproducts exist and where the set of arrows between
any two objects has the structure of an Abelian group is called additive.

Monoidal categories. A category C can be equipped with an object I and a
functor ⊗ : C×C→ C as well as isomorphisms witnessing left and right identity
of I and associativity of ⊗. In this case C is a monoidal category. A functor
between monoidal categories is itself monoidal if it preserves I and ⊗ up to
isomorphism.

The general setting. Now let C be a distributive category with a monoidal
structure given by 1 and × and let D be an additive category with monoidal
structure I and ⊗. Furthermore, let F : C → D be a monoidal functor which

28 CHAPTER 2. PRELIMINARIES

is left adjoint to U : D→ C. This adjunction defines the general setting of our
theory.

In particular we get that

• F (0) ∼= 0 (the empty set is mapped to the empty biproduct)

• F (1) ∼= I (singleton sets are mapped to the monoidal unit)

• F (
∐

a:A Ba) ∼=
∐

a:A F (Ba) (left adjoints preserve colimits and hence co-
products)

• F (A×B) ∼= F (A)⊗F (B) (monoidal functors preserve monoidal structure)

• U(M ⊕ N) ∼= U(M) × U(N) (right adjoints preserve limits and hence
products)

Thus F , as a generalisation of FK [−], ties together the whole theory and for
a given choice of F there is little to no wiggle room for the rest of the structure.

Instances. Interesting choices for C, D and F include:

• C = Set and D = ModK with F (X) = FK [X], our “standard model”.

• C = Set and D = Rel (sets and relations) with F (X) = X, the set
theory model. All limits and colimits coincide and every morphism has
an adjoint.

• C = Set and D = SpanModK
(a morphism X → Y is a span X ← Z →

Y for some Z) with F (X) = FK [X], combines the multiplicities of the
standard model with the symmetry of the relational model.

• C = Top (topological spaces) and D = TopVecK (topological vector
spaces) with F (X) being the free topological vector space generated by
X, similar to the standard model but with a topology underneath it all.

Chapter 3

The Algeo Language

3.1 Motivation
In Section 2 we encountered a host of modules. Each module is born with a
universal property specifying how to construct linear maps into or out of it.
Appealing explicitly to the universal property is cumbersome, so we developed
a notation of pattern and copattern matching. Thus, we can write linear maps
such as

f : M ⊗N → N ⊗M

f(x⊗ y) = y ⊗ x

whose formal definition includes an appeal to the universal property of tensor
products with an auxiliary bilinear map g(x, y) = y ⊗ x. The power of this
approach becomes even more apparent when we use nested patterns like

π1 : M ⊗ FK [A]→M

π1(x⊗ {a}) = x

whose formal definition includes multiple appeals to universal properties.
When systematising the notation in this way the contours of a programming

language emerges. At this point we can think about how we can make the
notation more clear and convenient. For instance, we could write multiplication
of biproducts as simply

i1(x) · i1(y) = i1(x · y)
i2(x) · i2(y) = i2(x · y)

where omitted cases are implicitly understood to be zero. In general, any single
pattern is enough to define a linear map where all other data required by the
relevant universal property is set to zero. Functions with multiple patterns are
simply the sum of the functions induced by each pattern.

29

30 CHAPTER 3. THE ALGEO LANGUAGE

This also permits multiplication of free modules to be defined more elegantly
as simply

{a} · {a} = {a}
omitting the zero case with the awkward side condition of inequality. Note that
mentioning a twice on the left-hand side is acceptable, since it ranges over some
set A whose elements can be compared for equality.

We can in fact do even better. Multiplication allows us to interpret patterns
with multiple occurences of variables that range over any algebra. For example
for any algebras M and N we can write

m : M ⊗N ⊗M ⊗N →M ⊗N

m(x⊗ y ⊗ x⊗ y) = x⊗ y

which is equivalent to m(x⊗ y ⊗ x′ ⊗ y′) = (x · x′)⊗ (y · y′).
In particular, we get a crisp definition of inner products for any weighted

algebra:
x � x = #x

Inner products in fact play a vital rôle in our development. When defining
isomorphisms in Section 2.8 we noted that most, if not all, of them only need
to be written in the forward direction at which point the reverse direction is
“obvious”. This is not the case for all isomorphisms. After all, finding the
inverse of a matrix is not in general a trivial operation.

The saving grace is that we are primarily concerned with a special class of
isomorphisms, the unitary transformations. Recall that a unitary transforma-
tion has both an inverse and an adjoint, and the two coincide. The observation
that inverses seems to be easy to find in practice can now be elucidated: ad-
joints are easy to find and many interesting isomorphisms are in fact unitary
transformations.

These considerations suggest that notationally we should be focussing on
adjoints. They are easy to derive syntactically, cheap to compute and useful in
many cases as partial or pseudo inverses. At this point the main ideas behind
Algeo emerges:

• Linear maps should be defined by equations using ⇔ rather than =.

• The ⇔ operator is just an alias for the inner product.

• Functional patterns are simply adjoints.

• Introduction of variables is orthogonal to defining functions.

3.2 Algeo Tutorial
We now give an introduction to the Algeo language as well as its primary para-
digm, functional logic programming. At a glance Algeo resembles a typical
functional language—and indeed a subset of the language can serve as a per-
fectly good pure functional language—but the semantics are actually closer to
that of a logic language.

3.2. ALGEO TUTORIAL 31

3.2.1 Definitions
An Algeo program consists of definitions. Each definition has a type declaration
and any number of assertions. For example, we can give the following definition:

favcolour : Atom
favcolour⇔ green

This introduces a binding favcolour of type Atom and a single assertion (of type
Scalar) stating that favcolour is pointwise equal with the atom green.

Given such a definition we can now evaluate expressions containing favcolour.
Evaluation works by substituting [x : Atom]x ⇔ green;x for favcolour where
x is some fresh name. Let us break down this expression into its parts. The
brackets [x : Atom] introduce a variable x of type Atom whose scope extends
all the way to the right. The remainder consists of two parts combined with a
semicolon, the biased conjunction operator. To the left we have a copy of the
assertion from the definition and to the right is the variable x.

Semantics of definitions What does it then mean? The short version is
that favcolour is by definition the sum over all atoms subject to the constraint
imposed by the assertion in its definition. This is exactly what the substituted
term expresses. The long version is as follows. When introducing a variable
via [x : Atom] this “morally” amounts to making an infinite choice between
(equivalently, an infinite sum over) all possible atoms, i.e. for any expression e
we have the “equality”

[x : Atom]e
...
= ex:=a ‖ ex:=b ‖ · · · ‖ ex:=green ‖ · · ·

where ‖ means binary choice and ex:=e′ means the expression e with e′ substi-
tuted for x. We defensively use ...

= (“morally equal”) rather than = since the
right-hand side is technically not a well-formed expression. A formal version
will be introduced later.

Specialising the equation to our particular case we get

favcolour ...
= (a⇔ green; a) ‖ (b⇔ green; b) ‖ · · · ‖ (green⇔ green; green) ‖ · · ·

Pointwise equality for base values, which include atom constants, reduces to 1
(the scalar value 1) for equal terms and 0 (the scalar value 0) otherwise. Hence,
we get

favcolour ...
= (0; a) ‖ (0; b) ‖ · · · ‖ (1; green) ‖ · · ·

where all the elided parts also have zeroes. By the semantics of biased conjunc-
tions this is equal to

favcolour ...
= ∅ ‖ ∅ ‖ · · · ‖ green ‖ · · ·

where ∅ is a polymorphic nullary choice (in this case of type Atom). Nullary
choice is the identity of binary choice and finally we get

favcolour = green

which holds morally and formally.

32 CHAPTER 3. THE ALGEO LANGUAGE

Multiple assertions This is perhaps not too surprising, but take care not to
be misled by the trivial nature of this example! Suppose instead that we are not
quite sure of our favourite colour. Uncertainty can be represented by having
multiple assertions in a definition.

favcolour′ : Atom
favcolour′ ⇔ green
favcolour′ ⇔ yellow

These two assertions together are by definition the same as having a single
assertion using binary choice:

(favcolour′ ⇔ green) ‖ (favcolour′ ⇔ yellow)

The value of favcolour′ is then [x : Atom] (x ⇔ green ‖ x ⇔ yellow);x Using
the same rewriting approach as before we indeed get

favcolour′ = green ‖ yellow

Hence, our new favourite colour is a choice between green and yellow. There is
a simpler way to arrive at this conclusion using a few high-level rewrite rules.
Firstly, ⇔ distributes over ‖ so in general

(e1 ⇔ e2) ‖ (e1 ⇔ e′2) = e1 ⇔ (e2 ‖ e′2)

Secondly, for any variable x of type τ and term e (with no free occurences of x)
we have

([x : τ]x⇔ e;x) = e

This is similar to eliminating let-expressions in a functional language. Thus,
we can reason:

[x : Atom] (x⇔ green ‖ x⇔ yellow);x = green ‖ yellow

In general, if we have a definition like

d : τ

d⇔ e1

...
d⇔ en

we can conlude d = e1 ‖ · · · ‖ en.

The power of indirection The consequences of the definitions made so far
should hardly be surprising, even if the method of interpreting them is a bit

3.2. ALGEO TUTORIAL 33

unusual. Let us now proceed with a potentially confusing definition to make a
point.

mystery : Atom
(mystery ‖ green)⇔ (mystery ‖ yellow)

Note in particular that the subject (name being defined, in this case mystery)
can occur:

• any number of times in the assertion;

• on the right-hand side of ⇔;

• as an operand of ‖.
The subject is essentially just a free variable in the assertion expression with no
constraints imposed on its use. Due to the way definitions are interpreted this
causes no trouble, but it does lead to surprises at first.

The simplest way to unravel the above definition is by applying distributivity
of ⇔ on both sides to get
mystery⇔ mystery ‖mystery⇔ yellow ‖ green⇔ mystery ‖ green⇔ yellow

As a definition its meaning is then given by
[x : Atom] (x⇔ x ‖ x⇔ yellow ‖ green⇔ x ‖ green⇔ yellow);x

Both ; and [x : Atom] distribute over ‖.
([x : Atom]x⇔ x;x) ‖ ([x : Atom]x⇔ yellow;x) ‖
([x : Atom]green⇔ x;x) ‖ ([x : Atom]green⇔ yellow;x)

The second and third alternative can be simplified as seen earlier.
([x : Atom]x⇔ x;x) ‖ yellow ‖ green ‖ ([x : Atom]green⇔ yellow;x)

In the first alternative we can exploit the identity b⇔ b = 1 for any base value
b (variables are considered base values), and in the fourth alternative we have
green⇔ yellow = 0. Simplifying the biased conjunctions we get:

([x : Atom]x) ‖ yellow ‖ green ‖ ([x : Atom]∅)
Finally, the first alternative can be written using the more concise wildcard ∗ =
[x : τ]x (when τ can be inferred from the context), and the fourth alternative
reduces to ∅. Thus, we arrive at the following:

mystery = ∗ ‖ yellow ‖ green
The intuition is that mystery is a choice between atoms, where yellow and
green occur twice each and every other atom occurs once. This is different from
∗ alone, which is a choice between every atom occuring just once. Multiplicities
matter!

Looking back at the assertion that defines mystery this outcome is not what
one would expect from trying to “solve the equation” (which is in any case a
dubious notion since ⇔ is not a relation). Nevertheless, the semantics of ⇔ as
a generalisation of equality that respects choice is quite natural.

34 CHAPTER 3. THE ALGEO LANGUAGE

3.2.2 Functions
So far we have studied definitions of atoms with varying degrees of complexity.
Algeo also provides a function type. For instance, the identity function can be
written as:

id : τ → τ

id x = x

The variable x is free in the assertion. By convention, all top-level free variables
are assumed to be introduced by top-level binders (in any order). The explicit
version would be

[x : τ] id x = x
When id is referenced in other parts of a program, each use will thus have its own
copy of the free variables and be independent of any other use. This is important
since function application works differently than in a typical functional language.
In general, an application e1 e2 of type τ reduces to [x : τ]e1 ⇔ (e2 7→ x);x.
The 7→ operator is the canonical way of representing a function that maps one
base value to some other base value and everything else to ∅. For instance
given f = green 7→ yellow of type Atom → Atom, f is a function such that
f green = yellow and f a = ∅ for every atom a different from green. The
operator respects choice so for example (red‖green) 7→ (yellow‖blue) expands
to

red 7→ yellow ‖ red 7→ blue ‖ green 7→ yellow ‖ green 7→ blue
Function application also respects choice so applying this to an argument will
result in a choice between applying each of the alternatives.

We can now rewrite the identity function. Recall that by our method for
expanding definitions id is equal to

[f : τ → τ] ([x : τ] f x⇔ x); f

Using the rule for function application we get

[f : τ → τ] ([x : τ] ([y : τ] f⇔ (x 7→ y); y)⇔ x); f

Pointwise equality respects conjunction and variable introduction (assuming no
variables become accidentally free or bound) so we can simplify.

[f : τ → τ] ([x : τ] [y : τ] f⇔ (x 7→ y); y⇔ x); f

When two distinct variables are involved in a pointwise equality we can make
progress by unifying them and resolving the equality as true.

[f : τ → τ] [x : τ] f⇔ (x 7→ x); f

Similarly, when a variable is being compared for equality with some base value
(b1 7→ b2 is a base value when b1 and b2 are) we can resolve it by substituting
that base value for the variable. This gives the reduced form:

id = [x : τ]x 7→ x

3.2. ALGEO TUTORIAL 35

Using our previous abuse of notation, if τ = Atom we have

id ...
= red 7→ red ‖ green 7→ green ‖ yellow 7→ yellow ‖ blue 7→ blue ‖ . . .

Hence, a function is represented as a relation between inputs and outputs. This
is not merely a philosophical observation, but has practical consequences as we
shall see now.

Adjoints Every function in Algeo has a pseudo-inverse known as an adjoint.
We define it as follows:

† : (τ → τ ′)→ (τ ′ → τ)

f† (f x)⇔ x

The superscript notation f† is syntactic sugar for † f. This assertion can be
rewritten into the following form:

(x 7→ y)† ⇔ y 7→ x

Thus, the adjoint can also be thought of as a pointwise inverse: each base value
mapping is inverted, but choice is respected. For example consider the following
function:

f : Atom→ Atom
f red⇔ blue
f green⇔ blue

We have f = red 7→ blue‖green 7→ blue so f† = blue 7→ red‖blue 7→ green =
blue 7→ (red‖green). Clearly, f† is not an inverse of f in the sense of composing
to the identity, but it can nevertheless be considered a reverse execution of f
in a more general sense. Indeed, any function written in a classical reversible
language can be written in Algeo in which case the adjoint will coincide with
the classical inverse. The two concepts diverge only when choice is involved.

Entanglement The definition of adjoints mentions f twice. In general, when
a variable is mentioned multiple times we consider the uses to be entangled. The
reason is that variables range over base values so any choices must be factored
out before substituting a value for the variable.

Consider the difference between [x : τ]x 7→ x and ([x : τ]x) 7→ ([x : τ]x).
The former is the identity function while the latter is a function that maps every
possible input to a choice between every possible output.

Note also that each use of a defined term is independent. For instance
consider a function that swaps red and green:

swap : Atom→ Atom
swap red⇔ green
swap green⇔ red

36 CHAPTER 3. THE ALGEO LANGUAGE

There is a difference between swap (swap red) and [f] f ⇔ swap; f (f red). The
former reduces to red while the latter reduces to ∅. This can be seen by simply
substituting the definition of swap to get

[f] (f⇔ (red 7→ green ‖ green 7→ red)); f (f red)

Distribute the choice:

([f] f⇔ (red 7→ green); f (f red)) ‖ ([f] f⇔ (green 7→ red); f (f red))

Replace f by its only possible base value:

((red 7→ green) ((red 7→ green) red)) ‖ ((green 7→ red) ((green 7→ red) red))

The effect of being forced to make choices globally is now clear; both branches
reduce to ∅.

3.2.3 Products
Algeo also supports a product type τ1⊗τ2 with elements of the form e1⊗e2. The
astute reader will notice that this sounds suspiciously similar to the function
type τ1 → τ2 which has elements of the form e1 7→ e2. Indeed, the two types are
trivially equivalent with e1⊗ e2 corresponding to e1 7→ e2, but differ in practice
as follows:

• Functions support function application syntax (i.e. e1 e2), products do
not.

• Functions represent code, whereas products represent data; their equiva-
lence is another way of saying that in Algeo code is data is code.

• A function type τ1 → τ2 signifies the intention that τ1 is input and τ2
is output, whereas the corresponding product type does no such thing.
In a hypothetical Quantum Algeo with support for scalars from arbitrary
C∗-algebras (e.g. C) this distinction becomes formal as we would need to
track dualities explicitly.

3.2.4 Dataflow operations
Weight When a variable occurs by itself it is completely unentangled. Define
the weight of a term as follows.

: τ → Scalar
x

Intuitively this asserts that # applied to any base value is 1. We could equiva-
lently have written the assertion as # x⇔ 1.

3.2. ALGEO TUTORIAL 37

Wildcard The adjoint of # maps 1 to a sum of all terms, i.e. to the wildcard
∗. Indeed we could equivalently define the wildcard in terms of this adjoint:

∗τ : τ

∗τ ⇔ #† 1

Join We now introduce an important operator, the join:

⋊⋉ : τ → τ → τ

x ⋊⋉ x⇔ x

Given two base values, if they are equal it returns that unique value, otherwise
it fails. For instance

(red ‖ green ‖ blue) ⋊⋉ (green ‖ blue ‖ black) = green ‖ blue

Compared to ⇔, which computes how much two values are alike, ⋊⋉ computes
where they are alike.

Duplication Conversely, the function that duplicates base values is defined
as follows:

dup : τ → τ ⊗ τ

dup x⇔ x⊗ x

It is a matter of perspective if dup is the same as or the adjoint of ⋊⋉, due to
symmetry. The functionality is in any case the same, namely constraining three
base values to be equal.

Linearity A variable is used linearly if it is used exactly twice. Intuitively
one use is input (typically left of⇔) while the other is output (typically right of
⇔), but the flexibility of definitions means that there is no formal distinction.
With help from the operations of #, ∗, ⋊⋉ and dup it is in fact possible to rewrite
any program such that all variables are used linearly. In this way it possible to
make the nonlinear effects explicit.

3.2.5 Booleans
We now give some concrete examples using booleans to reinforce previous con-
cepts and to introduce sum types.

Recall that we have a type of scalars, Scalar. Elements have the form n
where n is a number, though only 1 is a base value. Algeo also has sum types,
τ1⊕ τ2, whose base values are inl(b) (with b being a base value of τ1) and inr(b)
(with b being a base value of τ2).

Take Bool to be an alias for Scalar⊕ Scalar, and define:

true : Bool false : Bool
true⇔ inl(1) false⇔ inr(1)

38 CHAPTER 3. THE ALGEO LANGUAGE

Negation Negation of booleans can be written using two clauses.

not : Bool→ Bool
not true⇔ false
not false⇔ true

The adjoint of not is then given by:

not† : Bool→ Bool
not† (not x)⇔ x

Note that this definition implicitly quantifies over x : Bool and recall that such
a quantification represents a nondeterministic choice of a base value. In Bool
the base values are true and false so the definition is equal to

not† (not true)⇔ true ‖ not† (not false)⇔ false

By the definition of not this reduces to

not† false⇔ true ‖ not† true⇔ false

which is equivalent to having two clauses:

not† false⇔ true not† true⇔ false

We can thus establish that not† = not, as expected.

Alternative negation As an example of ⇔ being merely a conventional—
but by no means mandatory—approach to definitions, not could equivalently
have been defined as:

istrue, isfalse : Bool→ Scalar not : Bool→ Bool
istrue true isfalse (not true)
isfalse false istrue (not false)

Binary operations Next, we define conjunction and disjunction:

and, or : Bool→ Bool→ Bool
and true x⇔ x
and false ∗ ⇔ false
not (or x y)⇔ and (not x) (not y)

Multiplicities A nondeterministic choice between copies of the same value
like false ‖ false can also be written 2; false. We say that the multiplicity of false
in this result is 2. In general, multiplicities can also be negative so, e.g., −1; false
represents −1 occurences of false. This can be used to cancel out positive

3.3. SYNTAX AND SEMANTICS 39

τ ::= Atom | Empty | Scalar | τ1 → τ2 | τ1 ⊕ τ2 | τ1 ⊗ τ2

b ::= x | a | b1 b2 | b1; b2 | inl(b) | inr(b) | b1 ⊗ b2 | b1 7→ b2

d ::= x | a | d1 d2 | d1; d2 | inl(d) | inr(d) | d1 ⊗ d2 | d1 7→ d2 | ∅ | d1 ⋊⋉ d2

e ::= x | a | e1 e2 | e1; e2 | inl(e) | inr(e) | e1 ⊗ e2 | e1 7→ e2 | ∅ | e1 ⋊⋉ e2

n | e1 ‖ e2 | [x : τ]e

Figure 3.1: Syntax of types and terms.

multiplicities. For instance, we have false ‖ (−1; false) = ∅ (an empty result).
Thus, negative multiplicities allow another kind of reversal via cancellation. To
see this in action, consider the following alternative definition of conjunction:

and ∗ ∗ ⇔ false Conjunction generally returns false
and true true⇔ (−1; false) Not when both arguments are true, though
and true true⇔ true In that case the result should be in fact be true

Generally, functions defined in Algeo are linear in the sense that they respect
nondeterminism and multiplicities, corresponding to addition and scalar multi-
plication, respectively. Even before we know the definition of some function f
we can say that f (true‖ false) = f true‖ f false. Now suppose that the definition
is

f x⇔ and x (not x).

It is clear that f true = f false = false and therefore f (true ‖ false) = 2; false.
Even though f uses its argument twice and the argument is a nondeterministic
choice between true and false the two uses of x are entangled and have to make
the same nondeterministic choices.

3.3 Syntax and Semantics
The syntax of types and terms are given in Figure 3.1. Alternatives (‖) have
the lowest precedence. Aggregrations ([x : τ] . . .) extend all the way to right.
We employ the following conventions: τ is a type, e is an expression, d is a
duplicable expression (see below for further details), b is a base value, a is an
atom, n is a number and x, y and z are variables. Any b is also a d, and any d
is also an e.

Intuitively base values represent deterministic computations that yield a
value exactly once. Duplicable expressions are deterministic computations that
either produce a base value or fail. Expressions in general represent nondeter-
ministic computations that might produce any number of results. Variables are
thought of as ranging over base values, although we will sometimes carefully
substitute nonbase values.

40 CHAPTER 3. THE ALGEO LANGUAGE

We now describe the constructs of the language. An axiomatic semantics is
given in Section 3.3.2. All operations are linear in the sense that they respect
failure (∅), alternatives (‖) and conjunction (;). For instance, ⋊⋉ is linear in each
component so in particular ∅ ⋊⋉ e = ∅, (e1 ‖ e2) ⋊⋉ e3 = (e1 ⋊⋉ e3) ‖ (e2 ⋊⋉ e3) and
(e1; e2) ⋊⋉ e3 = e1; (e2 ⋊⋉ e3). Hence, understanding these operators reduces to
understanding their actions on base values.

• ∅ is failure. It aborts the computation.

• e1; e2 is biased conjunction. The first component is evaluated to a base
value, which is discarded. The result of the biased conjunction is then the
second component.

• e1 ⋊⋉ e2 is join. It computes the intersection of the two arguments. In
particular, the intersection of two base values is their unique value when
equal and failure otherwise.

• e1 ⊗ e2 is a pair.

• e1 7→ e2 is a mapping. It is a function that maps every base value in e1 to
every base value in e2.

• inl(e) and inr(e) are left and right injections for the ⊕ type.

• e1 ‖ e2 is alternative. It represents a nondeterministic choice between e1
and e2.

• [x : τ]e is aggregation. It represents a nondeterministic choice of a base
value b : τ which is substituted for x in e.

• n is a number. It represents a computation that succeeds n times. Note
that negative values of n are possible. In general, depending on the choice
of ring, n can also be rational or even complex.

We will also need the following syntactic sugar:

e1 ⇔ e2 = e1 ⋊⋉ e2; 1 Pointwise unification of e1 and e2

e1 \\ e2 = e1 ‖ −1; e2 Collect the results of e1 but subtract the results from e2

∗τ = [x : τ]x Wildcard, acts as the unit for ⋊⋉

e⊥ = ∗ \\ e Everything except e

Beware: some constructs, e.g. ⇔, use unfamiliar notation. This is done
deliberately to show that these constructs represent new and unfamiliar con-
cepts. A good rule of thumb is that the familiar-looking syntax like inl(e)
means roughly what one would expect, whereas the unfamiliar syntax like ⇔
has no simple well-known analogue.

In most languages the notion of function embodies both the introduction
of variables and the mapping of those variables to some result. In Algeo, by
contrast, these are separate concerns. Variable introduction is handled by [x : τ]

3.3. SYNTAX AND SEMANTICS 41

whereas mappings are constructed by expressions of the form e1 7→ e2. This
separation of concerns is the vital ingredient that makes Algeo so powerful.

Finally, we need to explain how top-level definitions are encoded as expres-
sions. Suppose we define x : τ by the clauses e1, . . . , en, each of them typeable
as x : τ ` ei : Scalar. Intuitively, x refers to (a single component of) the object
we are defining.

Given such a top-level definition and a program e that can refer to x the
desugared version is e with [x : τ] (e1 ‖ · · · ‖ en) substituted for x which we write
as:

ex:=[x:τ] (e1‖···‖en)

This construction works by summing over all basis elements of τ subject to the
conditions imposed by e1 ‖· · ·‖en. The sum represents the totality of the object
we are defining. Each use of x in the program is replaced with this totality so
each copy is independent. Note that ⇔ is not mentioned and has no special
status in this regard; it is merely an operator which happens to be useful for
imposing suitable constraints when giving definitions.

Figure 3.2 shows some basic and fundamental functions. While identity
and composition are similar to their definition in any functional language, the
definition of adjoint (−†) seems very strange from a functional perspective and
further seems to imply that all functions are injective—which isn’t so! The trick
to understanding this definition is that f quantifies over base values of the form
b1 7→ b2 (and not entire functions), while id masquerades over the sum of all
base values of the form b 7→ b. In this way, we could just as well define (·†) as
(x 7→ y)† ◦ (x 7→ y)⇔ (x 7→ x) or even the more familiar (x 7→ y)† ⇔ (y 7→ x).

A function f is unitary if f† ◦ f = id and f ◦ f† = id, i.e. if f† is a two-sided
inverse of f. That this is not the case for every function reveals why ⇔ should
not be mistaken for equality! The unitaries include many interesting examples,
including all classically reversible functions as well as all quantum circuits.

3.3.1 Type System

The type system is seen in Figure 3.3 and consists of a single judgement Γ `
e : τ stating that in type environment Γ the expression e has type τ . These
rules should not be surprising, at least for a classical programming language.
However, Algeo functions represent linear maps, so why does the type system not
track variable use? The reason is that duplication and deletion are relatively
harmless operations. Duplicating a value by using a variable multiple times
creates entangled copies. They still refer to the same bound variables so any
nondeterministic choice is made globally for all copies. Unused variables will
still be bound in an aggregration and ultimately the multiplicity of the result
will be scaled by the dimension of the type. Thus, such variables are not simply
forgotten.

42 CHAPTER 3. THE ALGEO LANGUAGE

id : τ → τ
id x⇔ x

(◦) : (τ1 → τ2)→ (τ2 → τ3)→ (τ1 → τ3)
(f ◦ g) x⇔ f (g x)

(−†) : (τ1 → τ2)→ τ2 → τ1
f† ◦ f⇔ id

fst : τ1 ⊗ τ2 → τ1
fst (x⊗ y)⇔ x

snd : τ1 ⊗ τ2 → τ2
snd (x⊗ y)⇔ y

case : (τ1 → τ)→ (τ2 → τ)→ τ1 ⊕ τ2 → τ
case f g inl(x)⇔ f x
case f g inr(y)⇔ g y

threewayjoin : τ1 ⊗ τ2 → τ1 ⊗ τ3 → τ2 ⊗ τ3 → τ1 ⊗ τ2 ⊗ τ3
threewayjoin (x⊗ y) (x′ ⊗ z) (y′ ⊗ z′)⇔ (x ⋊⋉ x′)⊗ (y ⋊⋉ y′)⊗ (z ⋊⋉ z′)

coinflip : Atom
0.5; coinflip⇔ heads
0.5; coinflip⇔ tails

hadamard : K ⊕K → K ⊕K
hadamard inl(1)⇔ inl(1/

√
2)

hadamard inl(1)⇔ inr(1/
√
2)

hadamard inr(1)⇔ inl(1/
√
2)

hadamard inr(1)⇔ inr(−1/
√
2)

Figure 3.2: Some basic functions in Algeo (identity, composition and adjoints,
projections) and slightly more advanced functions showcasing database, proba-
bistic and quantum programming.

3.3.2 Axiomatic Semantics

We now present the semantics of Algeo as a set of equations between expressions,
see Figure 3.4. Equations hold only when well-typed and well-scoped. For
instance, ∅ = 0 implicitly assumes that the ∅ in question is typed as Scalar. The
semantics is parametric over the choice of numbers, provided that the numbers
form a ring of characteristic 0 (i.e. are the integers or an extension of them) and
that for any type τ there is a number dim(τ) such that:

dim(τ1 ⊕ τ2) = dim(τ1) + dim(τ2) dim(Empty) = 0

dim(τ1 ⊗ τ2) = dim(τ1) · dim(τ2) dim(Scalar) = 1

dim(τ1 → τ2) = dim(τ1) · dim(τ2)

3.3. SYNTAX AND SEMANTICS 43

Γ ` e : τ

Γ ` n : Scalar Γ ` a : Atom Γ, x : τ,Γ′ ` x : τ Γ ` ∅ : τ
Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ‖ e2 : τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ⋊⋉ e2 : τ

Γ ` e : τ1
Γ ` inl(e) : τ1 ⊕ τ2

Γ ` e : τ2
Γ ` inr(e) : τ1 ⊕ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` e1 ⊗ e2 : τ1 ⊗ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` e1 7→ e2 : τ1 → τ2

Γ ` e1 : τ ′ Γ ` e2 : τ

Γ ` e1; e2 : τ

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ, x : τ ′ ` e : τ

Γ ` [x : τ ′]e : τ

Figure 3.3: The type system of Algeo.

As the “standard model” we propose Z[ω], i.e. polynomials over the integers in
one variable ω. We define dim(Atom) = ω together with the equations above.

Operations are defined to be either linear or bilinear. For an operation o
this entails:

o(∅) = ∅ o([x : τ]e) = [x : τ]o(e)

o(e1; e2) = e1; o(e2) o(e1 ‖ e2) = o(e1) ‖ o(e2)

A binary operator (−�−) is bilinear if both (e1 �−) and (−� e2) are linear.

3.3.3 Justification of the Semantics
All axioms are based on intuition from finite-dimensional types, i.e. types whose
set of base values is finite. The idea is to extend this to infinite-dimensional
types, but with a flavour of “compactness” keeping the properties of finite-
dimensionality. While it is possible to aggregate over infinite types, any given
expression will only mention a finite number of distinct base values. We avoid
contradiction arising from this approach by not insisting that every aggregation
be reducible. This reveals a possible connection between Algeo and nonstandard
analysis.

Most axioms should be uncontroversial, but some deserve elaboration. Per-
haps the most unusual one is [x : τ]e = ex:=d \\ ex:=∅ ‖ [y : τ]ex:=y\\y⋊⋉d.
Usually we will exploit the equality y \\ y ⋊⋉ d = y ⋊⋉ d⊥ to get the rule
[x : τ]e = ex:=d \\ ex:=∅ ‖ [y : τ]ex:=y⋊⋉d⊥ . Firstly, note that d is only used
in the substitutions, so some amount of prescience is required to choose a suit-
able d. The intuition is that we are splitting into cases depending on whether
x is equal to d or not. To see how this works in the finite-dimensional case
suppose τ = Scalar⊕ · · · ⊕ Scalar (n copies). Then τ has n distinct base values
which we shall refer to as b1, . . . , bn. The following reasoning shows how the
statement can be shown directly from the other axioms in the finite case. A d

44 CHAPTER 3. THE ALGEO LANGUAGE

Biased conjunction
1; e = e
x; e = e
inl(e1); e2 = e1; e2
inr(e1); e2 = e1; e2
e1 ⊗ e2; e3 = e1; e2; e3
e1 7→ e2; e3 = e1; e2; e3

Function application
(e1 7→ e2) e

′ = e1 ⋊⋉ e′; e2

Numbers
∅ = 0
m ‖ n = m+ n
m;n = m · n
[x : τ]1 = dim(τ)

Aggregation
[x : Empty]e = ∅
[x : Scalar]e = ex:=1

[x : τ1 ⊕ τ2]e = ([y : τ1]e
x:=inl(y)) ‖

([y : τ2]e
x:=inr(y))

[x : τ1 ⊗ τ2]e =
[x1 : τ1] [x2 : τ2]e

x:=x1⊗x2

[x : τ1 → τ2]e =
[x1 : τ1] [x2 : τ2]e

x:=x1 7→x2

[x : τ]x ⋊⋉ e;x = e
[x : τ]e = ex:=d\\ex:=∅‖ [y : τ]ex:=y\\y⋊⋉d

Extraction

Join
d ⋊⋉ d = d
inl(e) ⋊⋉ inl(e′) = inl(e ⋊⋉ e′)
inr(e) ⋊⋉ inr(e′) = inl(e ⋊⋉ e′)
inl(e) ⋊⋉ inr(e′) = ∅
inr(e) ⋊⋉ inl(e′) = ∅
(e1 ⊗ e2) ⋊⋉ (e′1 ⊗ e′2) =

(e1 ⋊⋉ e′1)⊗ (e2 ⋊⋉ e′2)
(e1 7→ e2) ⋊⋉ (e′1 7→ e′2) =

(e1 ⋊⋉ e′1) 7→ (e2 ⋊⋉ e′2)

〈e1〉 ⋊⋉ 〈e2〉 = (�(e1 \\ e2))⊥; 〈e1〉

Linearity
([x : τ]−), (!−),
inl(−) and inr(−) are linear
(−;−), (−−), (− ⋊⋉ −),
(−⊗−) and (− 7→ −) are bilinear

Figure 3.4: Axiomatic semantics of Algeo.

of type τ will either be some bi or ∅. Without loss of generality let d = b1 (if
d = ∅ the statement is trivial). We then have:

[x : τ]e = ex:=b1 ‖ ex:=b2 ‖ . . . ‖ ex:=bn

= ex:=b1 \\ ex:=∅ ‖ ex:=∅ ‖ ex:=b2 ‖ . . . ‖ ex:=bn

= ex:=b1 \\ ex:=∅ ‖ ex:=b1⋊⋉b1
⊥
‖ ex:=b2⋊⋉b1

⊥
‖ . . . ‖ ex:=bn⋊⋉b1

⊥

= ex:=b1 \\ ex:=∅ ‖ [y : τ]ex:=y⋊⋉b1
⊥

3.3. SYNTAX AND SEMANTICS 45

0 ∅
x+ y x ‖ y
n · x n;x
1 ∗
x · y x ⋊⋉ y
〈x | y〉 x⇔ y

Table 3.1: Linear algebra versus Algeo

3.3.4 Derived Equations and Evaluation
The semantic equations in Figure 3.4 are not reduction rules, although most of
them embody some kind of reduction when read from left to right. They can
be used for evaluation as well as deriving new equations.

As an example of a derived equation consider [x : τ]x ⋊⋉ b; e = ex:=b. This
property states that if a variable is unconditionally subject to a join constraint
with a base value, we may dispense with the variable and simply substitute that
value. The main idea is to case-split on whether or not x equals b. The last line
exploits that all base values are left identities for (;).

[x : τ]x ⋊⋉ b; e = (x ⋊⋉ b; e)
x:=b \\ (x ⋊⋉ b; e)

x:=∅ ‖ [y : τ] (x ⋊⋉ b; e)
x:=y⋊⋉b⊥

= b ⋊⋉ b; ex:=b \\ ∅ ⋊⋉ b; ex:=b ‖ [y : τ]y ⋊⋉ b⊥ ⋊⋉ b; ex:=b

= b; ex:=b \\ ∅ ‖ [y : τ]∅ = b; ex:=b = ex:=b

A generalisation of this lemma suggests that we can emulate the usual oper-
ational interpretation of logic programming where variables are instantiated
based on unification constraints.

Indeed, the version of Algeo presented here (as opposed to the full version [6])
can likely be given an operational semantics similar to the Warren Abstract
Machine [7] for Prolog. Purity and lack of recursion avoids many of the problems
encountered for Prolog. Multiplicities need to tracked, which is unlikely to be
an issue. More seriously, decisions need to made about how canonical the result
should be. For instance, should a term equivalent to ∅ always reduce to ∅ or
should it be allowed to produce something like e‖−1; e? Should nonzero results
always be listed in some globally consistent order? We will leave these questions
to future work.

3.3.5 Relation to Linear Algebra
Many operations in Algeo are closely related to linear algebra, in particular
K-algebras where K is the ring of elements of type Scalar. The correspondence
can be seen in Table 3.1. Recall the common definition of the adjoint of f as the
unique function f† satisfying 〈f(x) | y〉 = 〈x | f†(y)〉 for all x and y. Translating
this to Algeo we might write it as [x] [y] (f x⇔ y)⇔ (x⇔ f† y), which turns out

46 CHAPTER 3. THE ALGEO LANGUAGE

to be a perfectly good definition that is equivalent to our previous one. This
gives a new perspective on what the inner product means in linear algebra.

3.4 Denotational Semantics

We have already given an axiomatic semantics describing how terms can be
rewritten. However, how can we be sure that the system is “reasonable”? For
instance, it might conceivably be the case that every term is provably equal to
0 due to some creative application of the rewrite rules. A superficially similar
class of languages known as algebraic λ-calculi [8, 9] often run into this kind of
problem.

One approach often taken for functional languages is to prove progress and
preservation of an operational semantics. Not all of our rewrite rules can be
interpreted operationally, though, and the question of progress is in any case
more complicated when logic programming is involved.

Instead we provide a denotational semantics, consisting of a suitably chosen
semantic category and a functor from the syntactic category of terms into that
category. This settles the question of whether the rewrite system collapses. If
two terms are provably equal then their interpretations will be equal as well;
since the (image of the functor in the) semantic category is not trivial neither
is the syntactic category.

3.4.1 The Category of Terms

We now give the details of how terms and type derivations give rise to a syntactic
category. In the category Term objects are type contexts and morphisms are
(tuples of) type derivations. More explicitly, for environments Γ = τ1, . . . , τm
and ∆ = τ ′1, . . . , τ

′
n a morphism φ : HomTerm(Γ,∆) is a tuple (Ti)1≤i≤n of type

derivations where Ti derives Γ ` ei : τ
′
i . The terms ei are part of the data of the

morphism, but can always be inferred from the structure of the derivation.
Intuitively speaking, a morphism φ : HomTerm(Γ,∆) contains the same in-

formation as a derivation of Γ ` e : τ ′1 ⊕ · · · ⊕ τ ′n. In particular, when ∆ is a
singleton environment, i.e. ∆ = τ ′ for some τ ′, a morphism φ : HomTerm(Γ, τ

′)
can be identified with a derivation of Γ ` e : τ ′.

This is not quite enough to represent the language faithfully as a category.
We consider terms like 0 + 0 and 0 to be equal so we should also consider
the corresponding morphisms to be equal. The set of morphisms is therefore
constructed by taking the set of type derivations and quotienting by equality of
terms.

3.4. DENOTATIONAL SEMANTICS 47

3.4.2 The Category of Spans
In order to construct the semantic category we will need to work with spans. A
span of objects X and Y is a diagram of the form:

A

X Y

f g

Making a span thus consists of choosing an apex, A, and two legs, f and g.
Given another span

B

Y Z

h k

how should be composition be defined? We can certainly stitch the two diagrams
together:

A B

X Y Z

f g h k

The resulting diagram is clearly not a span, but it is not too far from it either.
Supposing we can find a span of A and B the following diagram is possible.

C

A B

X Y Z

f g h k

p q

The outer edges form a big span with C at the apex and f ◦ p and k ◦ q as the
legs.

To define composition of spans in general we need to know that such a span
always exists. For coherency reasons we should also require that the diagram
commutes. Hence, we are looking for the pullback of g and h.

Together with the identity span

X

X X

id id

this constitutes the structure of a category SpanC for any category C with
pullbacks. Note that the objects of SpanC are simply the objects of C, and any

48 CHAPTER 3. THE ALGEO LANGUAGE

morphism f : M → N in C can be lifted into SpanC as follows:

M

M N

id f

Also note that the category of spans has a canonical dagger structure, a way to
turn any morphism f : M → N into a morphism f† : N →M . This is achieved
by simply swapping the two legs of the span.

There is an issue regarding equality of morphisms, though. Consider the
composition of three spans, associated to the left:

E

D

A B C

X Y Z W

And to the right:

E′

D′

A B C

X Y Z W

The resulting spans are not strictly equal, albeit they are equivalent via an
associator. For this reason spans are often considered to form a 2-category,
where this higher structure of coherence morphisms is made explicit. We con-
sider it as an ordinary category by taking quotients and considering morphisms
only up to equivalence.

For our purposes the base category is always WAlgK , the category of
weighted K-algebras and linear maps. Pullbacks always exist here and are
quite easy to define. Given g : A → Y and h : B → Y as in the composition
diagram above we take C = {x : A ⊕ B | g(inl(x)) = h(inr(x))} where p and q
are the usual projections from the biproduct restricted to C.

Note that the monoidal structure on WAlgK given by K and ⊗ extends
cleanly to SpanWAlgK

. The coherence morphisms are lifted like any other mor-
phism as shown above.

3.4. DENOTATIONAL SEMANTICS 49

3.4.3 Interpreting Types
We can now begin constructing our functor J−K to give a denotational semantics.
The first step is to map objects to objects. Recall that objects in Term are
contexts and objects in SpanModK

are K-modules.
For a general context Γ = τ1, . . . , τn we let JΓK = Jτ1K ⊗ · · · ⊗ JτnK so it

suffices to define the action on individual types:J−K : Term→ SpanModKJAtomK = FK [N]JEmptyK = 0JScalarK = KJτ1 → τ2K = Jτ1K⊗ Jτ2KJτ1 ⊕ τ2K = Jτ1K⊕ Jτ2KJτ1 ⊗ τ2K = Jτ1K⊗ Jτ2K
Some of these equations require elaboration.

Atoms need to be interpreted into some countable set, which is arbitrarily
chosen to be N.

Functions are mapped to tensor products, because functions are supposed to
be just sums of singleton mappings. The introduction of spans is exactly about
supporting this choice.

3.4.4 Interpreting Morphisms
With the action of J−K on objects established, we can study its effects on mor-
phisms which is typed as follows:J−K : HomTerm(Γ,∆)→ HomSpanModK

(JΓK, J∆K)
For a general context ∆ = τ ′1, . . . , τ

′
n a morphism has the shape (T1, . . . , Tn)

where each Ti is a derivation of Γ ` ei : τ
′
i . We let J(T1, . . . , Tn)K = JT1K⊗ · · · ⊗JTnK so it remains to consider the singleton case when ∆ = τ ′ and the input is

a single type derivation T of Γ ` e : τ ′.
The definition proceeds by case analysis on T .

Variable
T =

Γ, x : τ,Γ′ ` x : τ

The relevant value is picked and the rest of the environment is disposed of
using the weight operator.

JΓK⊗ JτK⊗ JΓ′K
JΓK⊗ JτK⊗ JΓ′K JτKid λ(σ⊗v⊗σ′).#σ·#σ′·v

50 CHAPTER 3. THE ALGEO LANGUAGE

Atom
T =

Γ ` a : Atom
A constant atom expression simply disposes of the environment and returns

that atom (recall that atoms are considered to be natural numbers in our inter-
pretation). JΓK

JΓK FK [N]

id λσ.#σ·{a}

Application

T =

T1

Γ ` e1 : τ ′ → τ
T2

Γ ` e2 : τ ′

Γ ` e1 e2 : τ

By induction we have:

M1

JΓK Jτ ′K⊗ JτKf1 g1

M2

JΓK Jτ ′Kf2 g2

The spans from T1 and T2 are combined using a tensor product. In the
left leg the environment is duplicated by using multiplication backwards. The
specifics of application happens in the right leg where the parameter and the
argument are matched using the inner product to compute the multiplicitiy for
the result.

M1 ⊗M2

JΓK⊗ JΓK Jτ ′K⊗ JτK⊗ Jτ ′K
JΓK JτK

f1⊗f2 g1⊗g2

(·) λ(y⊗x⊗y′).(y�y′)·x

Sequencing

T =

T1

Γ ` e1 : τ ′
T2

Γ ` e2 : τ

Γ ` e1; e2 : τ

By induction we have:

M1

JΓK Jτ ′Kf1 g1

M2

JΓK JτKf2 g2

3.4. DENOTATIONAL SEMANTICS 51

This construction is similar to the previous case. The result of evaluating
the first expression is disposed of using the weight operator.

M1 ⊗M2

JΓK⊗ JΓK Jτ ′K⊗ JτK
JΓK JτK

f1⊗f2 g1⊗g2

(·) λ(x⊗y).#x·y

Join

T =

T1

Γ ` e1 : τ
T2

Γ ` e2 : τ

Γ ` e1 ⋊⋉ e2 : τ

By induction we have:

M1

JΓK JτKf1 g1

M2

JΓK JτKf2 g2

Join uses the same approach to duplicating environments. The join operation
itself is implemented using the multiplication from the algebra structure, which
results in an elegant symmetric span.

M1 ⊗M2

JΓK⊗ JΓK JτK⊗ JτK
JΓK JτK

f1⊗f2

(·)

g1⊗g2

(·)

Alternative

T =

T1

Γ ` e1 : τ
T2

Γ ` e2 : τ

Γ ` e1 ‖ e2 : τ

By induction we have:

M1

JΓK JτKf1 g1

M2

JΓK JτKf2 g2

The result is the sum of the two spans, which is constructed with a biproduct
at the apex. Each leg consists of a case analysis to select the appropriate

52 CHAPTER 3. THE ALGEO LANGUAGE

morphism.
M1 ⊕M2

JΓK JτK[f1,f2] [g1,g2]

Aggregation

T =

T1

Γ, x : τ ′ ` e : τ

Γ ` [x : τ ′]e : τ

By induction we have:

M

JΓK⊗ Jτ ′K JτK
f g

The introduction of the extra variable is dealt with in the left leg by disposing
of it.

M

JΓK⊗ Jτ ′K
JΓK JτK

f

g

λ(σ⊗x).#x·σ

3.4.5 Coherence
Finally, we need to argue that J−K is well-defined. The issue is that when
mapping out of a quotient set such as HomTerm(Γ,∆) it is necessary to also
demonstrate that equalities are preserved. A proof of this is future work.

Note that this property would sometimes be referred to as soundness of
the axiomatic semantics. In our categorical setting this is simply part of what
it means for J−K to be a well-defined functor. Conversely, there is also the
question of completeness: can every equality between module elements also be
derived using the axiomatic semantics? For the full Algeo language [6] this is
certainly not the case, but for the restricted version presented here it is not
immediately apparent why it would be impossible; future work is needed to
decide this question.

3.5 Applications
Pattern matching. The flexibility of Algeo definitions allows us to define
functions in many ways. This clearly includes definition by cases using ordinary

3.5. APPLICATIONS 53

pattern matching, but further exploration reveals that many extensions of pat-
tern matching can be encoded as well. Note that in Algeo a pattern is nothing
more than an expression written on the left-hand side of ⇔. Simple examples
include ∗ functioning as a wildcard, and definitions in general functioning as
pattern synonyms. We list a number of common pattern matching features
below along with their representation in Algeo.

• Functional patterns. These can be found in the functional logic language
Curry as well as reversible functional languages like Theseus. Suppose f
is defined by f (g x) ⇔ e. When f is applied to some e′, effectively g will
be run in reverse on e′ and x bound to each result.

• View patterns. There is a Haskell extension providing patterns of the
form (f ⇒ p), which matches a value v if p matches f v. This syntax is
definable as a function in Algeo:

(⇒) : (τ → τ ′)→ τ ′ → τ

f⇒ p⇔ (f v⇔ p; v)

This is effectively a functional pattern where the function is run in reverse.

• Guard patterns. Some functional languages allow pattern guards like
f p | c where the interpretation is that p is matched and then the boolean
condition c is checked. Algeo, like any other logic language, can of course
include conditions (i.e. expressions of type Scalar) in the body of a func-
tion. However, the flexibility of definitions means that we can write f (c; p)
to signify that we consider the condition c to be part of the pattern.

• Alias patterns. Many functional languages support patterns like x as p
where x is bound to the value matched by the entire pattern p. In Algeo
the ⋊⋉ operator furnishes a much more general version of this. A pattern
like e1 ⋊⋉ e2 matches e1 and e2 simultaneously. When e1 is a variable this
encodes an alias pattern.

• Alternative patterns. Some languages allow patterns like (p1 | p2) where
p1 and p2 are nullary constructors. This is interpreted as equivalent to
writing two clauses, one with p1 and one with p2. In Algeo any two
patterns can be combined using ‖. By linearity f (e1 ‖ e2) ⇔ e means
exactly the same as f e1 ⇔ e ‖ f e2 ⇔ e.

• Negative patterns. Generally pattern matching is positive in the sense that
patterns describe the shape of the data that we want to match. Matching
everything except for some given pattern is typically done with a final de-
fault case; this works in functional languages where patterns are ordered
and pattern matching works by finding the first match only. Algeo can
describe negative patterns directly. Recall that e⊥ = ∗ \\ e for any expres-
sion e. As a pattern this can be interpreted as “everything except e”. For

54 CHAPTER 3. THE ALGEO LANGUAGE

example, deciding equality between two values can be defined as follows:

eq? : τ → τ → Scalar⊕ Scalar
eq? x x⇔ inl(1)
eq? x x⊥ ⇔ inr(1)

Linear algebra Given that Algeo is built on linear algebra, it will likely come
as no surprise that expressing problems from linear algebra is often straightfor-
ward. An example of this is matrix multiplication. Given an m × n matrix A
with entries aij , and a n× p matrix B with entries bij , the entries in the n× p
matrix C = AB are given by cij =

∑n
k=1 aikbkj , i.e., summing over all possible

ways of going first via A and then via B. In Algeo, a matrix from τ1 to τ2 is a
value of type τ1 ⊗ τ2 (i.e., a weighted sum of pairs of base values of τ1 and τ2),
and their multiplication is expressed as

(·) : τ1 ⊗ τ2 → τ2 ⊗ τ3 → τ1 ⊗ τ3

(x⊗ y) · (y ⊗ z)⇔ x⊗ z

where the implicit aggregation over y corresponds to the summation over k
in the definition of cij from before. Another example is the trace (or sum of
diagonal elements) of a square n × n matrix, tr(A) =

∑
n=1 ann, which can be

slightly cryptically defined without a right hand side:

tr : (τ ⊗ τ)→ Scalar
tr (x⊗ x)

Again, note how the implicit aggregation over x corresponds to summation in
the definition from linear algebra.

Polysets and polylogic. Polysets [4] are a generalisation of multisets which
also permit elements to occur a negative number of times. This is useful for
representing, e.g., (possibly unsynchronised) database states, with elements with
positive multiplicity representing (pending) data insertions, and elements with
negative multiplicity representing (pending) data deletions.

Polysets can be represented in Algeo via polylogic, an account of proposi-
tional logic relying on multiplicities of evidence and counterexamples (similar to
decisions as in [10]). Concretely, a truth value in polylogic consists of an amount
of evidence (injected to the left) and an amount of counterexamples (injected
to the right). For example, ⊥ has no evidence and a single counterexample, and
dually for >, as in

⊥,> : Scalar⊕ Scalar
⊥ = ∅ ⊕ ∗
> = ∗ ⊕ ∅

3.5. APPLICATIONS 55

As in [10], negation swaps evidence for counterexamples and vice versa, while
the evidence of a conjunction is the join of the evidence of its conjuncts, with
everything else counterexamples (disjunction dually):

¬(e⊕ e′) = e′ ⊕ e

(e1 ⊕ e′1) ∧ (e2 ⊕ e′2) = (e1 ⋊⋉ e2)⊕ (e1 ⋊⋉ e′2 ‖ e′1 ⋊⋉ e2 ‖ e′1 ⋊⋉ e′2)

(e1 ⊕ e′1) ∨ (e2 ⊕ e′2) = (e1 ⋊⋉ e2 ‖ e1 ⋊⋉ e′2 ‖ e′1 ⋊⋉ e2)⊕ (e′1 ⋊⋉ e′2)

A polyset over τ is represented by the type τ ⊕ τ , with all the above definitions
generalising directly. That is, a value of this type is an aggregation of evidence
(with multiplicity) either for or against each base value of τ . In this way, we can
interpret a finite set {d1, . . . , dk} by the expression (d1⊕d1

⊥)∨· · ·∨ (dk⊕dk
⊥).

Note that in this calculus ∨ and ∧ form a lattice-esque structure as opposed to
‖ and ⋊⋉, which form a ring structure.

56 CHAPTER 3. THE ALGEO LANGUAGE

Chapter 4

Query Processing

4.1 Motivation
Working with data usually involves making queries. A query can be thought of
as a particular view of a database. For instance, given of database of geographic
data we might want to get the complete list of countries together with number
of cities for each country. Typically, the countries and the cities will be stored
in different tables and the query has to suitably join them together.

The traditional tools for this job are relational algebra and SQL. On the the-
oretical side relational algebra provides a theory of sets of tuples with operations
like selection, projection and join. On the practical side SQL is a language for
working with real database systems inspired by, but deviating from, relational
algebra.

Linear algebra provides an alternative to relational algebra as a query lan-
guage foundation. The most important difference is that using linear algebra
gives rise to the idea of generalised multisets. In an ordinary set elements occur
either 0 or 1 times. In a multiset elements may occur any number of times,
i.e. element multiplicities come from N. In a generalised multiset over a ring
R mulplicities can be any value from R. One consequence is that multiplicities
can now be negative, which can be used to model deletion.

A broader, but no less important, consequence is that this places us firmly
in the domain of algebra1 with all the associated tools and techniques from over
a century of mathematical research. The relevant structures—rings, modules,
algebras—are well known objects of study. It turns out that all of the basic
relational algebra operations have natural algebraic analogues.

1Algebra in a broad sense is arguably over two millennia old, but we are referring to modern
abstract algebra whose development began in the 19th century.

57

58 CHAPTER 4. QUERY PROCESSING

4.2 Overview
Query languages, like any other programming language, should be

• efficient, in that they should produce query results as efficiently as possible
in terms of time, space and energy consumed;

• expressive, in that they should admit expressing solutions to many prob-
lems; and

• reasonable, in that they should provide reasoning principles about a query’s
semantics to support compositional checking of functional and security
properties, correctness of transformations and optimisations, query syn-
thesis and more.

These aspects are sometimes presented as irreconcilable, suggesting, for exam-
ple, that expressivity and reasonableness necessarily come at the cost of effi-
ciency; or they may be studied in isolation of each other (expressiveness and
correctness “modulo” efficiency, or efficient query engine implementation with
specialised functionality “modulo” concerns what this does to the validity of
reasoning principles in the core language). We propose that efficiency, expres-
siveness and reasoning can mutually support each other via structure (algebraic
and categorical).

Intuitively, our approach consists of identifying purely algebraic operations
that can be implemented by symbolic simplification that exploits their algebraic
properties for run-time efficiency, and factoring expensive exception and equal-
ity checking into separate operations that are invoked explicitly (e.g. checking
whether a set is empty before deleting from it or whether two elements are
equal or not) only when this is required, rather than melding the two operations
together into a single operation. To give meaning to the result of an exception-
less deletion operation we introduce a data model that encompasses and goes
beyond sets and multisets: polysets, whose elements carry any integral multi-
plicity, not only 1 (sets) or positive integers (multisets). Indeed, multiplicities
can be replaced by arbitrary rings and even algebras.

We recognise finite polysets as the elements of the free module generated by
a (usually infinite) set X over Z. More generally, we show that modules over
a commutative ring permit a variety of constructions that capture the core op-
erations in query processing, including aggregation. They are all characterised
by universal properties, which not only justify singling them out as natural
primitive operations, but also provide algebraic rewrite rules for run-time ef-
ficiency. Overall, our approach of building terms through free structures and
then interpreting them using their universal properties is not unlike that taken
by algebraic effects (see, e.g., [11]).

Our approach is based on using free modules to represent generalised re-
lations, biproducts for records, copowers for finite maps, tensor products for
relational Cartesian products, and compact maps for infinite collections with
wildcards. All of these constructions use arbitrary sets and modules to form

4.3. LINEAR ALGEBRA AS A QUERY LANGUAGE 59

new modules. We show that operations such as selection, projection, union,
and intersection (and more) are not only very natural to express and reason
about, but also lead us to highly efficient implementations of operations such
as relational Cartesian products and, most significantly, arbitrary natural and
outer joins. In the case of joins, the asymptotic efficiency attained is not even
achievable using conventional relational query optimisation technology.

Although universal properties characterise these constructions uniquely ex-
tensionally, some data structure representations are better than others. A par-
ticular strength of our approach is how it uses prolific symbolic operator repre-
sentations at run time to avoid unnecessary costly normalisation to a standard
data structure, unless a particular context makes it absolutely necessary. For
example, representing a tensor product symbolically gives a quadratic space
compression and speed-up compared to normalising it to a list of atomic pairs;
representing scalar multiplication symbolically eliminates iterated adding; rep-
resenting additions symbolically facilitates operating on the summands inde-
pendently, without first turning the tree of additions into a list of leaves. More
generally, this also applies to scalar multiplication so that the implementation of
a linear map boils down to folding, the composition of mapping the leaf elements
to the target module and interpreting symbolic scalar multiplication and addi-
tion in the target module (which may also use symbolic scalar multiplication
and addition).

Efficient evaluation hinges on the algebraic operations and their properties in
a crucial way. Unnormalised representations using symbolic constructors let our
evaluator invoke specialised evaluation rules depending on the particular way
data are used; for example, computing the weight # of a polyset (corresponding
to the cardinality of a multiset) contains the clauses #(s1 ⊗ s2) = #s1 · #s2
and #(t1 + t2) = #t1 + #t2. In particular, the tensor product ⊗ need not first
be multiplied out to a quadratically bigger set of pairs of elements from s1 and
s2. Since the output of a join consists of a data dependent number of tensor
products, this is not straightforwardly achievable by static preprocessing of a
query.

Selective simplification is explicitly indicated and forced by efficient imple-
mentations of explicit natural isomorphisms to modules that correspond to data
structures for efficient associative access. This is where tensor products, copow-
ers/finite maps and in particular compact maps, an algebraic generalisation of
maps with a nonzero default value, come into play.

Note that this “very lazy” evaluation strategy differs from ordinary lazy
evaluation. The former avoids normalisation entirely when opportunity arises
while the latter simply postpones normalisation.

4.3 Linear Algebra as a Query Language
We propose the theory of modules and the linear maps between them as an
appealing generalised framework for expressing queries. So far we have seen
that linear algebra can express a more general class of sets than the usual kinds

60 CHAPTER 4. QUERY PROCESSING

of sets and multisets employed in query languages; in particular, it is possi-
ble to have sets with negative multiplicities, cofinite sets and more. We now
present a “Rosetta Stone” showing how the operations of relational algebra have
corresponding linear maps on modules.

Selection In relational algebra selection restricts a set of tuples to the subset
satisfying a given predicate. Suppose P ⊆ A. We define σP : FK [A] → FK [A]
by

σP ({a}) = {a} (when a ∈ P) σP ({a}) = 0 (when a /∈ P)

The effect is that a generator {a} is preserved when a ∈ P and eliminated
otherwise.

Projection In relational algebra projection selects a subset of attributes, throw-
ing away those not in the designated subset. Note that due to set semantics this
may cause values to collapse, making the resulting set smaller. For example pro-
jecting the A component of {(A : foo, B : 1), (A : foo, B : 2), (A : bar, B : 3)}
yields {(A : foo), (A : bar)}. For a tensor product FK [A]⊗FK [B] we define the
two projections as follows.

π1 : FK [A]⊗ FK [B]→ FK [A] π1(x⊗ y) = #y · x
π2 : FK [A]⊗ FK [B]→ FK [B] π2(x⊗ y) = #x · y

More complicated projections can be constructed using these two projections,
the identity map, and the functorial action of ⊗. Note that, unlike relational
algebra, all such projections preserve multiplicities.

Renaming. In relational algebra renaming changes the names of attributes.
This makes sure everything is only done “up to choice of names”, but it is also
sometimes necessary in order to apply a natural join.

We do not use named attributes, but a similar concern arises with regards
to the order and parenthesisation of attributes. To this end we have two natural
isomorphisms, the associator and the commutator:

α : U ⊗ (V ⊗W) ∼= (U ⊗ V)⊗W β : U ⊗ V ∼= V ⊗ U

Combining these isomorphisms with the functorial action of ⊗, we can rearrange
arbitrarily as needed.

Union and intersection. Union in relational algebra is just the usual union
of sets. We define union as simply +. In general this form of union keeps track
of multiplicities so for instance ({a}+ {b}) + ({b}+ {c}) = {a}+ 2{b}+ {c}.

In relational algebra intersection is typically not mentioned explicitly, but
it arises as a special case of join when the two relations have the same set
of attributes. In our approach intersection is the primitive upon which join

4.3. LINEAR ALGEBRA AS A QUERY LANGUAGE 61

is built. It is simply the product operation from the algebra structure. If
x, y : FK [A] then xy : FK [A] is their intersection. Recall that the algebra
product is a bilinear operator so multiplicities are multiplied. For instance
(2{a}+ 3{b})(5{b}+ 7{c}) = (3 · 5){b} = 15{b}.

Cartesian product. Cartesian product in relational algebra is also the usual
notion from set theory, and is traditionally viewed as an expensive operation
that is best avoided if possible. Our version of the Cartesian product is the
tensor product. We view it not as an operation, but as a symbolic term. In
particular, we are perfectly comfortable writing down terms like

t = ({a1}+ · · ·+ {am})⊗ ({b1}+ · · ·+ {bn})
without insisting that this be expanded to a canonical form as soon as possi-
ble. Such an expansion generally incurs a quadratic blow-up in expression size.
Depending on what happens to t later we might never have to expand it. For
instance, π2(t) can be computed as
π2(t) = #({a1}+ · · ·+ {am}) · ({b1}+ · · ·+ {bn}) = m · ({b1}+ · · ·+ {bn})

The amount of work done was linear in the size of the symbolic term, and
sublinear in the size of the hypothetically expanded form. Also note that even
this result is not yet in canonical form—there is no need to distribute the scalar
multiplication prematurely.

Static analysis will typically recognise opportunities like a projection imme-
diately applied to a Cartesian product and do appropriate optimisation. By
contrast, our approach does it at run time. It does not rely on a sufficiently
clever analysis, it guarantees that products are not expanded until necessary
and it even allows terms to be stored more efficiently in data structures be-
tween operations.

Natural join In relational algebra the natural join of two relations is con-
structed by taking their Cartesian product and keeping only the tuples where
both sides agree about the values of shared attributes.

For example, consider the relations
x = {(A : a,B : 1), y = {(B : 2, C : p)

(A : b,B : 2), (B : 3, C : q),

(A : c,B : 3) (B : 4, C : r)}
where the notation (A : a,B : 1) denotes a tuple with a value of a for attribute
A and 1 for attribute B. Their join is

x ⋊⋉ y = {(A : b,B : 2, C : p), (A : c,B : 3, C : q)}
In our system these two relations would be represented as the vectors x and y
given by

x : FK [Str]⊗ FK [Z] x = {a} ⊗ {1}+ {b} ⊗ {2}+ {c} ⊗ {3}
y : FK [Z]⊗ FK [Str] y = {2} ⊗ {p}+ {3} ⊗ {q}+ {4} ⊗ {r} .

62 CHAPTER 4. QUERY PROCESSING

To compute their join we first have to inject them into a common module. This
is done by going from FK [·] to F∗

K [·] and adding 1’s as necessary.

x′ : F∗
K [Str]⊗ F∗

K [Z]⊗ F∗
K [Str] x′ = {a} ⊗ {1} ⊗ 1 + {b} ⊗ {2} ⊗ 1 + {c} ⊗ {3} ⊗ 1

y′ : F∗
K [Str]⊗ F∗

K [Z]⊗ F∗
K [Str] y′ = 1⊗ {2} ⊗ {p}+ 1⊗ {3} ⊗ {q}+ 1⊗ {4} ⊗ {r}

The join of two elements of the same module is simply their intersection, which
is given by multiplication.

x′·y′ = ({a}⊗{1}⊗1+{b}⊗{2}⊗1+{c}⊗{3}⊗1)·(1⊗{2}⊗{p}+1⊗{3}⊗{q}+1⊗{4}⊗{r})

A naive approach to simplification is to apply distributivity bluntly and then
simplify using identities for tensor products.

({a} ⊗ {1} ⊗ 1) · (1 ⊗ {2} ⊗ {p}) + ({a} ⊗ {1} ⊗ 1) · (1 ⊗ {3} ⊗ {q}) + ({a} ⊗ {1} ⊗ 1) · (1 ⊗ {4} ⊗ {r})
+ ({b} ⊗ {2} ⊗ 1) · (1 ⊗ {2} ⊗ {p}) + ({b} ⊗ {2} ⊗ 1) · (1 ⊗ {3} ⊗ {q}) + ({b} ⊗ {2} ⊗ 1) · (1 ⊗ {4} ⊗ {r})
+ ({c} ⊗ {3} ⊗ 1) · (1 ⊗ {2} ⊗ {p}) + ({c} ⊗ {3} ⊗ 1) · (1 ⊗ {3} ⊗ {q}) + ({c} ⊗ {3} ⊗ 1) · (1 ⊗ {4} ⊗ {r})

Next we exploit that · works component-wise on tensor products.

({a} · 1) ⊗ ({1} · {2}) ⊗ (1 · {p}) + ({a} · 1) ⊗ ({1} · {3}) ⊗ (1 · {q}) + ({a} · 1) ⊗ ({1} · {4}) ⊗ (1 · {r})
+ ({b} · 1) ⊗ ({2} · {2}) ⊗ (1 · {p}) + ({b} · 1) ⊗ ({2} · {3}) ⊗ (1 · {q}) + ({b} · 1) ⊗ ({2} · {4}) ⊗ (1 · {r})
+ ({c} · 1) ⊗ ({3} · {2}) ⊗ (1 · {p}) + ({c} · 1) ⊗ ({3} · {3}) ⊗ (1 · {q}) + ({c} · 1) ⊗ ({3} · {4}) ⊗ (1 · {r})

The multiplications now all involve only generators and 1, so they can all be
simplified.

{a} ⊗ 0⊗ {p}+ {a} ⊗ 0⊗ {q}+ {a} ⊗ 0⊗ {r}
+ {b} ⊗ {2} ⊗ {p}+ {b} ⊗ 0⊗ {q}+ {b} ⊗ 0⊗ {r}
+ {c} ⊗ 0⊗ {p}+ {c} ⊗ {3} ⊗ {q}+ {c} ⊗ 0⊗ {r}

All tensor products with a 0 component can be eliminated due to linearity. In
the end we get the simplified form:

{b} ⊗ {2} ⊗ {p}+ {c} ⊗ {3} ⊗ {q}

This method of simplification is wasteful as we are expanding everything using
distributivity only to have most components turn out to be 0. We shall later
see that there is a much more efficient approach to simplifying expressions that
in particular can solve basic joins like this one in linear time.

Outer join In relational algebra the outer join is similar to the natural join.
The difference is that tuples from either input which would not occur anywhere
in the output are included anyway. The missing attributes are populated with
a null value.

Consider the previous example of a natural join. The result of the outer join
would be as follows.

{(A : a,B : 1, C : null), (A : b, B : 2, C : p), (A : c,B : 3, C : q), (A : null, B : 4, C : r)}

4.3. LINEAR ALGEBRA AS A QUERY LANGUAGE 63

There are also left outer join and right outer join operations, which only include
extra tuples from the left and right input respectively.

In our system we use wildcards to achieve a similar effect. Note that though
the wildcard bears superficial similarity to null, it is in fact the exact opposite:
null is a special value that agrees with no value (including itself), the wildcard
is a special value that agrees with every value. It could be argued that the main
reason null is used to fill missing values in relational algebra is that it is the
only somewhat applicable tool in the relational toolbox.

Recall that to compute the natural join of x and y we first embed them by
adding wildcards to get x′ and y′. The left outer join is then given by x′ ·(y′+1),
the right outer join by (x′ + 1) · y′, and the outer join by (x′ + 1) · (y′ + 1). By
distributivity this is the same as x′ · y′ + x′, x′ · y′ + y′ and x′ · y′ + x′ + y′ + 1
respectively. One way to think about an expression like x′ · (y′ + 1) is that the
added 1 ensures that every component of x′ matches with something.

For the outer join one might want to use (x′ + 1) · (y′ + 1) − 1 instead to
avoid the last factor of 1. However, our proposed definition generalises more
neatly to n-ary outer joins, which can be written simply as (x1 + 1) · (xn + 1).

Aggregation In (extensions of) relational algebra aggregation computes val-
ues like sum or maximum over an attribute. For instance, given the relation
{(A : p,B : 2), (A : p,B : 3), (A : q,B : 4)} aggregating B by sum would yield
{(A : p,B : 5), (A : q,B : 4)}, while aggregating B by maximum would yield
{(A : p,B : 3), (A : q,B : 4)}.

We take a different view of aggregation, as something that happens implicitly
due to module semantics. This was evident when discussing projection, where
the discarded attributes are automatically counted with multiplicities. The
specifics of aggregation depends on the nature of the ring K.

Take the example above and represent it as follows: 2{p} + 3{p} + 4{q} =
(2+3){p}+4{q}. If K is Z with ordinary arithmetic this reduces to 5{p}+4{q}.
Note how a tuple such as (A : p,B : 2) was represented as 2{p} and not as
{p} ⊗ {2}. We moved the attribute into the ring.

Not all aggregations can be expressed directly as a ring structure, though.
For instance, integers extended with infinity and equipped with minimum and
maximum operations only form a semiring since negation is impossible. Our
approach can easily work with semirings as well, but as we shall see shortly
negation plays an important role and should not be given up so easily.

Instead, we express the aggregation using nested free modules to group data.
Each grouping is an element of FF2 [A], i.e. an ordinary finite set. The example
above would be represented as follows: {p} ⊗ {{2}+ {3}}+ {q} ⊗ {{4}}. Non-
linear aggregations like minimum are modelled as functions (not linear maps)
min : FF2

[Z] → Z∞ with min({a1} + · · · + {an}) = min{a1, . . . , an}. Here Z∞
is Z with ∞ adjoined so that min{} is well-defined. Aggregating by minimum
on the second attribute we get:

(idFK [Str]⊗FK [min])({p}⊗ {{2}+ {3}}+ {q}⊗ {{4}}) = {p}⊗ {2}+ {q}⊗ {4}

64 CHAPTER 4. QUERY PROCESSING

In general, nested free modules allow any non-linear function to be included in
an otherwise linear query. Besides aggregations, this includes operations like
turning negative multiplicities into zeroes.

These considerations demonstrate that linear maps are exactly the maps
that can be easily adapted to a distributed setting. The non-linear maps, on
the other hand, depend on having the entire dataset at hand and subjected
to at least some degree of simplification, which implies that synchronisation is
necessary.

Domain computations. Relational algebra proper does not provide a way
to transform data, but in practical realisations this is usually possible. For
instance, given the relation {(A 7→ foo), (A 7→ bar)} we might transform it
using a function upper that maps strings to uppercase, getting the result {(A 7→
FOO), (A 7→ BAR)}. In our system this is achieved by the functorial action of
FK [·]. In particular given upper : Str → Str we have FK [upper] : FK [Str] →
FK [Str]. We can therefore apply it to an element as follows: FK [upper]({foo}+
{bar}) = {upper(foo)}+ {upper(bar)} = {FOO}+ {BAR}.

Insert and delete. For persistent relations there is the question of how to
do updates. Relational algebra is based on set theory, so updates can be done
using set union and difference.

In our system all updates are done by addition. Deleting an element amounts
to adding its negative. For example, say the database contains {a}+{b} and we
want to add c and delete b. This update is computed as ({a}+{b})+({c}−{b}) =
{a}+ {c}.

Note that there is no conceptual distinction between databases and database
updates, since deletions are simply represented as negative elements. Further-
more, since + is commutative the order of updates does not matter. For in-
stance, suppose the database only contains {a} and we run the update above:
{a} + ({c} − {b}) = {a} − {b} + {c}. This leaves a database with a negative
occurrence of b. If we then insert b afterwards we end up with {a}+ {c} again.
In a sense this is the easiest possible conflict resolution strategy: just accept
the data from every update and add it all together! Of course, there are times
when we might want to ensure that the database does not contain negative
multiplicities by, say, setting them all to 0 using an explicit operation. In that
case—and that case only—we separate updates into before and after that given
point.

Chapter 5

Algebraic Evaluation

5.1 Evaluation by Simplification
We now turn to the question of evaluation. More precisely, the question of
simplifying module terms. What kind of simplified form do we have in mind; is
simplification even necessary? That depends on the context of use, but generally
a simplified form involves some of the following:

• No zeroes in additions or multiplications, and no multiplications except
r · {a} where r : K.

• No repeated generators, e.g. {a}+ {b}+ {a} should be 2{a}+ {b}.

• No sums of biproducts, e.g. (u1, v1)+ (u2, v2) should be (u1+u2, v1+ v2).

• No tensor products where either factor is a sum.

The kind of observation we wish to make dictates which requirements are nec-
essary. For example, the most elementary observation we can make is to ask if
a term is equal to 0. In query terms this corresponds to the question of satisfia-
bility. We certainly need to avoid repeated generators as otherwise they might
happen to cancel out, e.g. {a}− 2{a}+ {a} is a non-trivial representation of 0.
On the other hand, if the term is a tensor product we do not need to expand it,
since u⊗ v is 0 precisely when either factor is 0.

In order to keep the discussion manageable we will focus on the observation
of listing the output, analogous to retrieving a list of rows in the result like
in traditional query evaluation. This observation demands that we satisfy all
of the constraints listed above. Keep in mind that this only concerns the final
representation meant for user inspection. When feeding the output of one query
as input to the next one there is no reason to obey all of these constraints.

In discussing term simplification it is important to distinguish between inten-
sional and extensional equality. Two terms are intensionally equal when they
are written the same way (modulo renaming). They are extensionally equal

65

66 CHAPTER 5. ALGEBRAIC EVALUATION

when they can be shown to be equal using the presented algebraic identities.
For example, 0 + 0 + 0 + 0 and 0 are extensionally equal which can be argued
using the identity x + 0 = x repeatedly. However, they are not intensionally
equal and indeed we would consider the latter a more compact version of the
former.

5.2 Data Structures
So far we have been following an abstract approach, preferring to leave out
detailed descriptions of structures in favour of universal properties. This has
the advantage of separating specifications from algorithms and data structures,
but postpones the question of whether suitable algorithms and data structures
even exist. We will proceed to argue that not only is the answer yes, but that
in fact very efficient methods naturally arise.

5.2.1 Free Structures
In a categorical framework the existence of data structures is often simple;
abstract universal constructions generally provide us with at least one example,
namely the free structure. Free structures simply generate all the necessary
operations and impose only the equalities required by axioms.

For example, take the tensor product M⊗N of R-modules M and N . It can
be characterised quite succinctly: (⊗) : M ×N →M ⊗N is a bilinear operator.
That is really all one needs to know about the tensor product. A free structure
for the tensor product is then a term algebra consisting of:

• 0 : M ⊗N

• (+) : M ⊗N ×M ⊗N →M ⊗N

• (·) : R×M ⊗N →M ⊗N

• (⊗) : M ×N →M ⊗N

The first three constructors provide the general module structure. The last
constructor is simply a copy of the required operator for a tensor product.

To obtain the actual set of elements in M ⊗N we need to impose equalities,
namely that M ⊗ N is a module (+ is commutative, etc.) and that (⊗) is
bilinear (distributive, etc.). The constructed object is thus by definition a tensor
product.

Another perspective on free constructions is that they are simply syntax
trees. This highlight another advantage: syntax can be manipulated and if
every transformation is justified by an algebraic identity then the resulting term
is semantically equivalent. For the tensor product it means that terms like

a1 ⊗ b1 + . . .+ a1 ⊗ bn + a2 ⊗ b1 + . . .+ a2 ⊗ bn + . . .+ am ⊗ b1 + . . .+ am ⊗ bn

5.2. DATA STRUCTURES 67

with a total of O(mn) components can be rewritten to

(a1 + . . . am)⊗ (b1 + . . .+ bn)

with a total of O(m+n) components, a quadratic improvement in space complex-
ity. In practice these kind of simplifications are hard to discover dynamically.
The most useful consequence goes in the other direction, namely that if we have
a term written in the latter form we should not expand it to the former unless
absolutely necessary.

At the same time the free structure retains all the necessary information
to interpret it into any other representation: simply walk the syntax tree and
evaluate each constructor according to the target representation. For instance,
in finite-dimensional linear algebra it is possible to take the flat representation
Rm ⊗ Rn = Rmn, where the (⊗) operator is defined by suitable index juggling.
Interpretation then consists of simply performing this index juggling at every
occurence of (⊗), then combining the results according to the uses of 0, (+), (·).

The flat representation has the advantage that it can be stored as a simple
array, which is useful for e.g. parallel computing. The disadvantage is that terms
are always in what corresponds to the expanded form above using O(mn) space.
As noted above going back to the compact form from the expanded form is hard.
The rôle of the free structure then emerges: to retain as much information as
possible while still being able to be interpreted into other representations later
when advantageous.

5.2.2 Finite Maps
Before dealing with simplification of arbitrary terms we also need to consider
finite maps. They have a great deal of structure to exploit and also play a vital
rôle in making simplification efficient.

Suppose we have some term x : A ⇒ U and assume that we already have
a method for simplifying terms from U . To simplify x we proceed depending
on the nature of A. Recall that we have the following isomorphisms1 at our
disposal:

cp0 : 0⇒ U ∼= 0 cp+ : (A+B)⇒ U ∼= (A⇒ U)⊕ (B ⇒ U)

cp1 : 1⇒ U ∼= U cp× : (A×B)⇒ U ∼= A⇒ B ⇒ U

The idea is that we wrap the term in the appropriate isomorphism. To start,
suppose A = 1 so x : 1 ⇒ U . We can then write x as cp−1

1 (cp1(x)). The term
cp1(x) is then simplified to get some term y : U and the simplified form of x
becomes cp−1

1 (y).
Now suppose A = A1+A2 so x : (A1+A2)⇒ U . We write x as cp−1

+ (cp+(x)).
The term cp+(x) reduces to some term (y1, y2) : (A1 ⇒ U) ⊕ (A2 ⇒ U) (a
biproduct can always be reduced to a pair by simple component-wise addition).
At this point y1 and y2 are finite maps with index sets A1 and A2 respectively,

1Note the similarity with the usual rules for exponents, albeit with multiple types in play.

68 CHAPTER 5. ALGEBRAIC EVALUATION

so we apply the procedure recursively to get simplified forms z1 and z2. The
simplified form of x then becomes cp−1

+ (z1, z2).
Finally, suppose A = A1×A2 so x : (A1×A2)⇒ U . In this case cp×(x) has

type A1 ⇒ A2 ⇒ U . Recursively we have a procedure to simplify terms from
A2 ⇒ U ; and given this we also get a procedure to simplify cp×(x) to get some
term y. The simplified form of x becomes cp−1

× (y).
What about inductive sets? Suppose A is defined as the smallest solution to

F (X) ∼= X for some functor F : Set→ Set. A is then obtained as the colimit
of the diagram

∅ → F (∅)→ F (F (∅))→ F (F (F (∅)))→ · · ·

where each map is the iterated functorial action of F on the unique map out of
the empty set. It can be shown that ⇒ as a functor Set→ (ModK →ModK)
(from sets to endofunctors over modules) is left adjoint to G : (ModK →
ModK) → Set given by G(E) = |E(K)|. Since left adjoints preserve colimits
in general, ⇒ preserves colimits in its first argument and we obtain A ⇒ U as
a colimit of the diagram

(∅ ⇒ U)→ (F (∅)⇒ U)→ (F (F (∅))⇒ U)→ (F (F (F (∅)))⇒ U)→ · · ·

This does not directly define A ⇒ U as an inductive set, but it does establish
that its elements are finite since any map into A ⇒ U must be a map into
Fn(∅)⇒ U for some n.

What about sets that are not algebraic data types, i.e. sets defined using
a combination of sums, products and induction? Function spaces such as A =
A1 → A2 are not amenable to simplification in general and we exclude them
from consideration. Finally, there are primitives like n-bit integers. These can
be handled using specific methods. In the case of finite precision integers an
efficient solution is to represent finite maps as Patricia tries. For strings a good
choice would be a radix trie.

For primitive types we will simply write the simplified form as y =
∑

i(ai 7→
ui) with the understanding that each a : A occurs at most once, and computing
y(a) can be done using work linear in the size of a (which for finite precision
integers would be constant). To see all this in action consider the term

x : (Str× (Str + N))⇒ K

x = ((a, inl(p)) 7→ 1) + ((b, inr(4)) 7→ 1) + ((a, inr(3)) 7→ 1) + ((a, inl(p)) 7→ 1)

The simplification proceeds as follows:

x = ((a, inl(p)) 7→ 1) + ((b, inr(4)) 7→ 1) + ((a, inr(3)) 7→ 1) + ((a, inl(p)) 7→ 1)

apply cp×

= cp−1
× ((a 7→ inl(p) 7→ 1) + (b 7→ inr(4) 7→ 1) + (a 7→ inr(3) 7→ 1) + (a 7→ inl(p) 7→ 1))

simplify outer finite map using method for strings
= cp−1

× ((a 7→ (inl(p) 7→ 1) + (inr(3) 7→ 1) + (inl(p) 7→ 1)) + (b 7→ inr(4) 7→ 1))

5.3. PROBLEM STATEMENT 69

apply cp+

= cp−1
× ((a 7→ cp−1

+ ((p 7→ 1, 0) + (0, 3 7→ 1) + (p 7→ 1, 0))) + (b 7→ cp−1
+ (0, 4 7→ 1)))

simplify biproduct by adding pairwise
= cp−1

× ((a 7→ cp−1
+ ((p 7→ 1) + (p 7→ 1), 3 7→ 1)) + (b 7→ cp−1

+ (0, 4 7→ 1)))

simplify inner finite map using methods for strings and integers
= cp−1

× ((a 7→ cp−1
+ (p 7→ 2, 3 7→ 1)) + (b 7→ cp−1

+ (0, 4 7→ 1)))

Using this method the simplified form of a finite map can be found in linear
time. Compact maps can be dealt with just as easily by exploiting that A ⇒∗

U ∼= (A⇒ U)⊕ U . These isomorphisms are the basis of generic tries [12, 13].

5.3 Problem Statement
When studying database queries it is necessary to make some assumptions about
the context. Examples of possible assumptions include:

• The database has had the opportunity to organise data beforehand (con-
structing indices, etc.).

• Only a small part of the data needs to be examined to answer the query.

• Only a small part of the output will be needed.

Our investigation primarily concerns bulk data processing, transformations
from the entire input database to an entire output. In particular, queries are
generally expected to take time at least linear in the sum of the input and the
output. Since index structures (represented as tries) can be built in linear time
this means that asymptotically it does not matter how the database is organised
beforehand. A flat list of records suffices, as we simply construct appropriate
indices when needed. We argue that this scope is reasonable, since our main
contribution is efficient execution of the hardest queries whose complexity is
generally much worse than linear anyway.

The problem of efficient execution of relational database queries has been
extensively studied. Joins, in particular, pose a challenge. Informally, a k-ary
join ⋊⋉k

i=1 Ri of relations R1, . . . , Rn is a relation R definable by

R = {(x1, . . . , xn) | (x11, . . . , x1n1
) ∈ R1 ∧ . . . ∧ (xk1, . . . , xknk

) ∈ Rk}

where the xi1, . . . , xini
are pairwise distinct variables and

{x1, . . . , xn} =
k⋃

i=1

{xi1, . . . , xini
}

In the rest of this chapter we show that the algebraic version of such queries
can be executed efficiently (for a certain technical definition of efficient, which
generalises the previous notion of worst-case output optimality).

70 CHAPTER 5. ALGEBRAIC EVALUATION

5.3.1 Prior Art
Traditional methods rely on decomposing k-ary joins into binary joins. They
carefully create a good query plan based on algebraic properties, size estimates
and auxiliary data structures (indexes) to minimize the sizes of intermediate
results, and execute the query plan using streams of records as data structures
for inputs, intermediate results and outputs [14].

While it is possible to evaluate acyclic joins in time linear in the size of
the query, the input and the output [15, 16] and there are methods that deal
with “almost” acyclic joins [17], this is infeasible for cyclic queries since deciding
whether the output is empty is NP-hard [18].

To quantify exactly the complexity of a specific join query, the notion of
worst-case optimal complexity was developed [19, 20], focussing on the data
complexity of the problem [21]. A join algorithm is worst-case optimal if it
executes in time linear in N and O, where O is the maximal size of an output
of the join query applied to input relations whose sizes sum to N . The size of
the query itself is not taken into account.

Bounds for O in terms of N have been found using advanced graph and
information theory [22, 23]. In particular, O can be bounded as a function of N
by the fractional edge cover number, which is the solution of a linear program
derived from the form of the join query. Furthermore, that bound is sharp. For
example, the set of triangles {(x, y, z) | (x, y) ∈ R ∧ (y, z) ∈ R ∧ (z, x) ∈ R} is
at most of size O(N

3
2) where N = |R|, which is quite unobvious. Every query

plan based on binary joins produces an intermediate relation of size Θ(N2),
for example {(x, y, z) | (x, y) ∈ R ∧ (y, z) ∈ R}, and will then, according to
the fraction cover bound, inherently filter out all but O(N

3
2) tuples in the final

join. Thus computing triangles using binary joins and representing intermediate
relations by listing their elements is not worst-case optimal: It expends Θ(N

1
2)

time for each output triangle.
Recently, worst-case optimal join algorithms have been discovered, which

either calculate estimated intermediate output sizes [24, 25] or employ tries on
on ordered data [26]. These algorithms have been shown to be strictly beyond
the scope of classical query plan optimization since no join query plan [22] or
even join-project query plan [19, 20] can achieve worst-case optimal execution
time for cyclic query graphs.

5.4 Tries
Recall that A ⇒∗ U is like A ⇒ U except with additional wildcard entries of
the form ∗ 7→ x, which should be thought of as constant maps. This is reflected
in the algebra structure on A ⇒∗ U , which treats wildcards as agreeing with
any possible value. In particular, recall that (a 7→ x) · (a 7→ y) = (a 7→ x) · (∗ 7→
y) = (∗ 7→ x) · (a 7→ y) = a 7→ x · y and (∗ 7→ x) · (∗ 7→ y) = ∗ 7→ x · y.

An element of a weighted module of the form A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K is
called a trie over A1, . . . , Ak. This is our main data structure. It can comfortably

5.4. TRIES 71

represent both inputs and outputs of queries. A trie can be built in linear time
from a list of tuples, and lookup is linear in the size of the key [12].

An element of a weighted module of the form A1 → · · · → Ak → K is called
a characteristic function over A1, . . . , Ak. Intuitively, a characteristic function is
a “curried” function that takes its inputs a1 ∈ A1, . . . , ak ∈ Ak one at a time and
eventually returns an element of K. We can interpret tries into characteristic
functions via deep lookup:

(·)‡ : (A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K)→ (A1 → · · · → Ak → K)

R‡(a1) . . . (ak) = R � (a1 7→ · · · 7→ ak 7→ 1)

Thus looking up an element in R is nothing more than comparing R with the
corresponding singleton trie.

Characteristic functions can represent arbitrary relations. We shall also
need a shallow lookup operation that only interprets the topmost copower into
a power.

(·)† : (A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K)→ (A1 → A∗
2 ⇒∗ · · · ⇒∗ A∗

k ⇒∗ K)

(∗ 7→ x)†(a) = x

(a 7→ x)†(b) = 1a=b · x

Deep lookup relates to shallow lookup as follows.

R‡(x) = R†(x) ‡

Note that since lookup is linear a lookup with a produces the sum of the a-entry
and the ∗-entry, e.g.:

((a 7→ x) + (b 7→ y) + (∗ 7→ z))‡(a) = x+ z

Here z is the baseline value and x is the deviation of the a-entry from that
baseline, while y is ignored since a 6= b.

Example 1. Consider the following table associating paradigms with program-
ming languages.

Paradigm Language
Functional Haskell
Functional ML
Functional Agda
Imperative C++
Imperative Pascal
OOP Java
OOP C++

72 CHAPTER 5. ALGEBRAIC EVALUATION

If Str is the type of strings, then this table corresponds to a relation R ⊆
Str× Str. We will, however, represent it as a trie (abbreviating each entry with
its first letter):

PL = (F 7→ (A 7→ 1) + (H 7→ 1) + (M 7→ 1))

+ (I 7→ (C 7→ 1) + (P 7→ 1))

+ (O 7→ (C 7→ 1) + (J 7→ 1))

Observe that PL‡(x, y) = 1 iff (x, y) ∈ R. As a tree structure we draw PL as
shown in Figure 5.1.

F I O

1

A

1

H

1

M

1

C

1

P

1

C

1

J

Figure 5.1: PL depicted as a tree

Example 2. Consider the following table associating programmers with lan-
guages that they use.

Name Language
Xander Pascal
Xander Java
Yen *
Zack C++
Zack ML

Note the use of the wildcard, meaning that Yen uses all conceivable languages.
The corresponding trie as a tree structure is seen in Figure 5.2, using dotted
lines for wildcards.

Example 3. Consider the following table associating programmers with paradigms
that they tout as superior.

Name Paradigm
Xander Functional
Yen Functional
Yen Imperative
Zack Anything but OOP

5.4. TRIES 73

X Y Z

1

J

1

P

1 1

C

1

M

Figure 5.2: NL depicted as a tree

What do we mean by “anything but OOP”? We can express Zack’s preferences
as {O}, the set consisting of all paradigms other than OOP. As a trie this is
written using subtraction in K = Z to cancel out OOP:

NP = (X 7→ (F 7→ 1))

+ (Y 7→ (F 7→ 1) + (I 7→ 1))

+ (Z 7→ (∗ 7→ 1) + (O 7→ −1))

See Figure 5.3 for the corresponding tree.

X Y Z

1

F

1

F

1

I

1 -1

O

Figure 5.3: NP depicted as a tree

In this fashion, tries can represent any relation built from finite relations
combined using finite unions, complements and Cartesian products.

74 CHAPTER 5. ALGEBRAIC EVALUATION

5.5 Joins
Classically, the intersection A∩B of two sets, A and B, is characterized by the
logical equivalence

x ∈ A ∩B ⇔ x ∈ A ∧ x ∈ B

Analogously, the algebraic join of two tries is a bilinear operator
⋊⋉: (A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K)×(A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K) → (A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K)

such that
(x ⋊⋉ y)‡ = x‡ · y‡

for all x, y : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K.
We take x ⋊⋉ y = x · y, the algebra product. Other choices may be possible

for some K, but this definition works in general.
Note that algebraic joins are an extension of traditional relational joins. Say

that a trie R : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K is standard if each level of the trie
structure of R either contains only ∗-mappings or no ∗-mappings. In other
words R represents a relation over a subset of the attributes A1, . . . , Ak and
contains only finitely many tuples when restricted to this subset.

A join consisting only of standard tries is itself called standard and corre-
sponds to the traditional notion of relational join. The output of a standard
join is always a standard trie. Hence, algebraic joins contain traditional ones as
a special case.
Example 4. Let PL, NL and NP be the previously defined relations. We want
to compute their join to produce triples (n, p, l) satisfying PL(p, l), NL(n, l) and
NP(n, p). In order to line up the attributes correctly we need to insert wildcard
layers.

For any trie R let w(R) = (∗ 7→ R). This is sufficient for adding wildcard
layers at the first attribute. To insert a layer we use the fact that the copower
construction is a functor, i.e. for any linear map f : U → V there is a linear
map

f̂ : (A⇒∗ U)→ (A⇒∗ V)

f̂(a 7→ x) = a 7→ f(x)

We can now define
NP′ = ˆ̂w(NP) NL′ = ŵ(NL) PL′ = w(PL)

See Figure 5.4.
The join is then

NP′ ·NL′ · PL′ = (Y 7→ F 7→ (A 7→ 1) + (H 7→ 1) + (M 7→ 1))

+ (Y 7→ I 7→ (C 7→ 1) + (P 7→ 1))

+ (Z 7→ F 7→M 7→ 1)

See Figure 5.5 for the corresponding tree.
Note that even though two of the inputs were not standard, the result still

turned out to be standard. This is not the case in general.

5.6. DEGREE AND CARDINALITY 75

F I O

1

A

1

H

1

M

1

C

1

P

1

C

1

J

X Y Z

1

J

1

P

1 1

C

1

M

X Y Z

F

1

F I

1 1

O

1 -1

Figure 5.4: NP′, NL′ and PL′ depicted as trees

5.6 Degree and Cardinality
In order to describe the join algorithm and its analysis we shall need a few
auxiliary definitions. The degree of a trie, written degR, is defined as the
number of nonzero non-∗ mappings. Note that degree is not a linear function
since it treats all nonzero mappings the same.

The cardinality of a trie is defined as the number of leaves. More precisely
for a trie R : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K define the cardinality |R| as follows. If
R = 0 then |R| = 0. Otherwise, if k = 0 then |R| = 1; if k > 0 then

|R| = |R(∗)|+
∑
a∈A1

|R(a)|

Cardinality is only a linear function for the subset of tries where every leaf 1.

Example 5. Consider the previous example trie NL as seen in Figure 5.2. We
have

deg NL = 3 |NL| = 5

deg NL(X) = 2 |NL(X)| = 2

deg NL(Y) = 0 |NL(Y)| = 1

deg NL(Z) = 2 |NL(Z)| = 2

76 CHAPTER 5. ALGEBRAIC EVALUATION

Y Z

F I

1

A

1

H

1

M

1

C

1

P

F

1

M

Figure 5.5: NP′ ⋊⋉ NL′ ⋊⋉ PL′ depicted as a tree

5.7 Merging
Assume we are given tries R1, . . . , Rn : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K. We can
compute ⋊⋉i Ri by the following trie merging algorithm.

1. If k = 0 return R1 · . . . ·Rn using multiplication from K.

2. If Ri = 0 for any i return 0 (the empty trie).

3. Sort the tries so degR1 ≤ · · · ≤ degRn.

4. For 1 ≤ i ≤ n:

(a) For each a 6= ∗ in Ri, generate the mapping

a 7→ (R1(∗) · · ·Ri−1(∗)Ri(a)R
†
i+1(a) · · ·R

†
n(a))

(b) If Ri(∗) = 0, break.

5. If Rj(∗) 6= 0 for all j, generate the mapping ∗ 7→ (R1(∗) · · ·Rn(∗)).

The totality of the mappings generated by the loop can be described suc-
cinctly as∑

1≤i≤n

∑
1≤p≤deg Ri

ap 7→ (⋊⋉1≤j<i Rj(∗)) ·Ri(ap) · (⋊⋉i<j≤n R†
j(ap))

In particular, if R1 has no wildcard edges this becomes simply∑
1≤p≤deg R1

ap 7→ R1(ap) · (⋊⋉1<j≤n R†
j(ap))

5.8. THE WOES OF JOIN 77

This amounts to enumerating the edges of R1 and looking up the corresponding
keys in the other tries. Since R1 has the fewest values to enumerate and since
lookup only depends on the key (and is therefore independent of the size of the
trie) this minimises work. More generally, sorting the tries ensures that the trie
with the smallest degree is chosen at each step of the outer loop.

Theorem 6. Running the trie merging algorithm on R1, . . . , Rn : A1 ⇒∗ · · · ⇒∗

Ak ⇒∗ K computes the join R1 ⋊⋉ · · · ⋊⋉ Rn.

Proof. By induction on k. For k = 0 the result is trivial, so assume k > 0.
The early return in step 2 is justified by the fact that join is a multilinear
function, so any 0 among the inputs leads to a 0 in the output. Sorting in step 3
uses commutativity of the underlying ring, but is otherwise only a matter of
efficiency; the rest of this argument does not depend on the tries being in any
particular order.

Any trie R can be written as the sum R′ + R∗ where R∗ = (∗ 7→ R(∗))
contains only the ∗ edge and R′, being the remainder, contains exactly the
non-∗ edges. The join can be rewritten as follows.2

R1 · · ·Rn = (R′
1 +R∗

1)R2 · · ·Rn

= R′
1R2 · · ·Rn +R∗

1R2 · · ·Rn

= R′
1R2 · · ·Rn +R∗

1(R
′
2 +R∗

2)R3 · · ·Rn

= R′
1R2 · · ·Rn +R∗

1(R
′
2R3 · · ·Rn +R∗

2R3 · · ·Rn)

= R′
1R2 · · ·Rn +R∗

1R
′
2R3 · · ·Rn +R∗

1R
∗
2R3 · · ·Rn

...

=

 ∑
1≤i≤n

R∗
1 · · ·R∗

i−1R
′
iRi+1 · · ·Rn

+R∗
1 · · ·R∗

n

The loop in step 4 computes the summation and step 5 computes the last
term. We exploit the fact joins of the form R′

iRi+1 · · ·Rn can be computed
by enumerating keys of R′

i and filtering by the rest. The break when Ri(∗) = 0
is justified by the fact that all subsequent iterations will compute a join that
involves Ri(∗) and so will give an empty result. By induction the recursive calls
also compute the join correctly, finishing the proof.

5.8 The Woes of Join
Computing joins in general is computationally hard. In the abstract this fact can
be appreciated by encoding e.g. 3-SAT as a query; each propositional variable
becomes a boolean attribute and each clause becomes a relation with seven
entries representing the truth table of the clause. Thus, deciding if a query has
any output is at least NP-hard.

2Recall that we can write R ⋊⋉ S simply by juxtaposition, RS.

78 CHAPTER 5. ALGEBRAIC EVALUATION

Concretely, the challenge faced by join algorithms is that intermediate results
can become huge even if the final output is small. Avoiding this problem entirely
would probably entail solving P=NP affirmatively which—for the purposes of
this discussion—we will assume to be impossible. For an example of a large
intermediate result consider:

R =
∑

1≤i,j≤n
i+j odd

(ai 7→ bj 7→ ∗ 7→ 1)

S =
∑

1≤i,k≤n
i+k odd

(ai 7→ ∗ 7→ ck 7→ 1)

T =
∑

1≤j,k≤n
j+k odd

(∗ 7→ bj 7→ ck 7→ 1)

The join RST consists of elements ai 7→ bj 7→ ck 7→ x where i, j and k have
pairwise different parities, i.e. it is empty. Nevertheless after merging the
first two attributes the intermediate result is a sum of elements which—up to
symmetry—all look similar to

a0 7→ b1 7→ (
∑

1≤k≤n
k odd

ck 7→ 1) · (
∑

1≤k≤n
k even

ck 7→ 1)

Only after resolving this innermost join does it become apparent that the output
is empty. There are Θ(n2) such elements taking Θ(n) apiece for a total time
of Θ(n3). If we let N = Θ(n2) be the input size the merge algorithm runs in
Θ(N

3
2), which is superlinear in both input and output sizes.

An alternative approach—corresponding to traditional query methods—would
be to compute U = RS first and then compute UT afterwards. The large in-
termediate result is then U which is a sum of Θ(n) elements similar to

a0 7→
∑

1≤j,k≤n
j odd
k odd

bj 7→ ck 7→ 1

Each element has size Θ(n2) so a total of Θ(n3) is again unavoidable.
However, there is a sense in which the merge algorithm almost runs in linear

time in the size of the output: if the input had been slightly different, e.g.
replacing “odd” with “even” in the definition of T , then the output would be
on the order of Θ(n3), justifying the Θ(n3) time spent to compute it. Such an
adjustment of the input does not change its size nor its general shape (T is still
a standard trie representing a relation over the second and third attributes).

This observation suggests that if a join algorithm is linear in the size of
the largest possible output for any input of a similar shape and size, that al-
gorithm should be considered efficient. It is then said to be worst-case output
optimal [20]. Our merge algorithm satisfies this criterion, whereas traditional

5.9. INPUT PADDING 79

query methods like join-project do not [22] (indeed, worst-case output optimal
algorithms are a recent invention in the traditional paradigm based on relational
algebra [19, 27, 26], only predating our—simpler, more general—algorithm by
a few years).

5.9 Input Padding
In order to reason about worst-case output size we introduce the notion of
padding. Any trie R can be padded into 〈〈R〉〉 by adding elements with canonically
chosen attribute values such that the padded version is only larger by a constant
factor. By carefully choosing the right padding function we get the property
that for any other trie S of a similar shape the intersection 〈〈R〉〉 · 〈〈S〉〉 will be
large even if R · S is small. Arguing that the merge algorithm runs in linear
time (in the output size) on padded inputs, we will be able to conclude that is
indeed worst-case output optimal.

Assume we have some finite collection of tries R1, . . . , Rn : A1 ⇒∗ · · · ⇒∗

Ak ⇒∗ K under consideration. Let # : N→ Ai be a family of injections whose
image is disjoint3 from the support of all Ri. This will serve as our source for
canonical attribute values.

Collapse For any trie R we define its collapse ∂R by replacing all non-∗ edges
by #1 and setting all leaves to 1. More formally, define the map ∂ : K → K by:

∂0 = 0

∂x = 1 for x 6= 0

Extend it to tries:

∂((
∑
i

(ai 7→ Ri)) + (∗ 7→ R)) = (#1 7→
⋃
i

∂Ri) + (∗ 7→ ∂R)

where union of collapsed tries is defined as

((#1 7→ R)+(∗ 7→ R′))∪((#1 7→ S)+(∗ 7→ S′)) = (#1 7→ (R∪S))+(∗ 7→ (R′∪S′))

in the general case and x∪ y = max(x, y) in the trivial case. The definition of ∂
assumes that all identical attribute values have already been coalesced, i.e. the
ai are all distinct (without this condition we would have 0 = ∂((a 7→ 1) + (a 7→
−1)) = #1 7→ (∂1 ∪ ∂(−1)) = #1 7→ 1, a contradiction).

Essentially this conflates all attribute values, so e.g. R =
∑

i(ai 7→ ∗ 7→
bi 7→ ci 7→ ∗ 7→ xi) collapses to ∂R = #1 7→ ∗ 7→ #1 7→ #1 7→ ∗ 7→ 1. Here all
the ai, bi and ci have been replaced with #1 for each of those attributes. The
collapse of R represents the fact that R can be seen as a ternary relation over
the first, third and fourth attributes.

3Disjointness is not essential, but it is harmless and makes the argument a little smoother.

80 CHAPTER 5. ALGEBRAIC EVALUATION

Suppose we have some other trie, e.g. S = ∗ 7→ ∗ 7→ ∗ 7→ ∗ 7→ ∗ 7→ 7 which
collapses to ∂S = ∗ 7→ ∗ 7→ ∗ 7→ ∗ 7→ ∗ 7→ 1. Then ∂(R + S) = (#1 7→ ∗ 7→
#1 7→ #1 7→ ∗ 7→ 1) + (∗ 7→ ∗ 7→ ∗ 7→ ∗ 7→ ∗ 7→ 1), representing the fact
that R+ S is both a ternary relation over the first, third and fourth attributes
as well as a nullary relation over no attributes. This is a nonstandard trie and
therefore not directly expressible using relational algebra.

Note that for (nonzero) standard tries we have |∂R| = 1. In fact, this
condition is a succinct way of expressing standardness, and intuitively |∂R|
measures the degree to which R fails to be standard.

Padding Define the shallow padding 〈·〉 of a trie as

〈R〉 = R for k = 0

〈(∗ 7→ R) +
∑

1≤i≤p

(ai 7→ Si)〉 = (∗ 7→ ∂R) +
∑

1≤i≤p

(#i 7→ ∂Si)

Shallow padding works by replacing all concrete top-level edges of the trie
with canonical elements supplied by #. Wildcard edges are left as is. Everything
below the top level is collapsed.

Define the deep padding of R as

〈〈R〉〉 =
∑

0≤m≤k
S=R(a1,...,am)

(a1 7→ · · · 7→ am 7→ 〈S〉)

Deep padding works by doing a shallow padding of all subtries. Note that
since S = R(a1, . . . , am) occurs in the union for every path (a1, . . . , am) we have
R ⊆ 〈〈R〉〉, meaning that R(a1, . . . , am) = 0 whenever 〈〈R〉〉(a1, . . . am) = 0. This
argument exploits that the edges generated by # are disjoint and therefore do
not accidentally cancel out with an existing edge.

Let R be as in the example above. In order to understand its deep padding
we need to specify a few details about its shape. Suppose there are p distinct
values among the ai, given by {â1, . . . , âp}. For any given âj suppose there are
qj distinct values among the bi in the subtrie R(âj , ∗), given by {b̂j,1, . . . , b̂j,qj}.
And finally, for any given âj and b̂j,k suppose there are rj,k distinct values among
the ci in the subtrie R(âj , ∗, b̂j,k), given by {ĉj,k,1, . . . , ĉj,k,rj,k}.

The deep padding of R is then

〈〈R〉〉 = (
∑

1≤j≤p

#j 7→ ∗ 7→ #1 7→ #1 7→ ∗ 7→ 1)

+ (
∑

1≤j≤p

âj 7→ ∗ 7→ #1 7→ #1 7→ ∗ 7→ 1)

+ (
∑

1≤j≤p
1≤k≤qj

âj 7→ ∗ 7→ #k 7→ #1 7→ ∗ 7→ 1)

5.9. INPUT PADDING 81

+ (
∑

1≤j≤p
1≤k≤qj
1≤l≤rj,k

âj 7→ ∗ 7→ b̂j,k 7→ #l 7→ ∗ 7→ 1)

+ (
∑

1≤j≤p
1≤k≤qj
1≤l≤rj,k

âj 7→ ∗ 7→ b̂j,k 7→ ĉj,k,l 7→ ∗ 7→ 1)

+ (
∑

1≤j≤p
1≤k≤qj
1≤l≤rj,k

âj 7→ ∗ 7→ b̂j,k 7→ ĉj,k,l 7→ ∗ 7→ x̂j,k,l)

To see why this amount of padding is sufficient consider some other trie

R′ =
∑
i

a′i 7→ ∗ 7→ b′i 7→ c′i 7→ ∗ 7→ x′
i

with the same cardinality. Its padding 〈〈R′〉〉 will be similar to 〈〈R〉〉 but with
different width at each level, say p′, q′j and r′j,k. When computing 〈〈R〉〉 · 〈〈R′〉〉
note that they have the first component of the sum in common and∑

i≤j≤min(p,p′)

#j 7→ ∗ 7→ #1 7→ #1 7→ ∗ 7→ 1

will always occur as part of the output. This part of the output will serve to
justify the time spent dealing with the first attribute.

A similar argument works for any of the other attributes. For instance, when
dealing with the fourth attribute we will be considering the join 〈〈R〉〉(âj , ∗, b̂j,k) ·
〈〈R′〉〉(â′j′ , ∗, b̂′j′,k′) for some specific a = âj = â′j′ and b = b̂j,k = b̂′j′,k′ . Here,
the fourth component of the sum comes to the rescue by ensuring that the
output at the very least contains∑

1≤l≤min(rj,k,r′j′,k′)

a 7→ ∗ 7→ b 7→ #l 7→ ∗ 7→ 1

This is the essence of why padding can be used to argue for worst-case output
optimality. The rest of this chapter is about proving this result, starting with
some minor observations.

Lemma 7. For any tries R,S : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K

1. |∂R| ≤ 2k

2. deg 〈〈R〉〉 ≤ 2 · degR

3. deg 〈R〉 = degR

4. |〈〈R〉〉| ≤ 2k+1 · |R|

5. If R 6= 0 and S 6= 0 then ∂R · ∂S 6= 0.

82 CHAPTER 5. ALGEBRAIC EVALUATION

Proof. 1. For k = 0 the result is trivial. Otherwise:

|∂R| = |∂(R(∗) +
∑
i

R(ai))|

= |∂(R(∗))|+ |∂(
∑
i

R(ai))|

≤ 2k−1 + 2k−1

= 2k

2. Follows directly from the definitions of degree and padding.

3. By construction.

4. For k = 0 the result is trivial. Otherwise:

|〈〈R〉〉| = |〈R〉+ (∗ 7→ 〈〈R(∗)〉〉) + (
∑
i

(ai 7→ 〈〈R(ai)〉〉))|

≤ |〈R〉|+ |〈〈R(∗)〉〉|+
∑
i

|〈〈R(ai)〉〉|

≤ |R|+ 2k · |R(∗)|+
∑
i

2k · |R(ai)|

= |R|+ 2k(|R(∗)|+
∑
i

|R(ai)|)

= |R|+ 2k · |R|
≤ 2k+1 · |R|

5.10 Worst-case Output Size
Let C1, . . . , Cn be collapsed tries, i.e. Ci = ∂Ci. Define the worst-case output
size

ωC1,...,Cn
(r1, . . . , rn)

to be the maximum value of |R1 ⋊⋉ · · · ⋊⋉ Rn| over all tries R1, . . . , Rn with
∂Ri ⊆ Ci and |Ri| = ri.

In general, we can think of Ci as measuring how complex Ri is allowed to be
in terms of wildcard usage. The traditional notion of worst-case output size is
recovered when |Ci| = 1 for all i. In that case, the Ci function as the algebraic
analogue of a database schema.

Example 8. Consider singleton tries R1, . . . , Rk : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K
defined by:

R1 = a1 7→ ∗ 7→ ∗ 7→ · · · 7→ ∗ 7→ ∗ 7→ 1

5.11. MAIN THEOREM 83

R2 = ∗ 7→ a2 7→ ∗ 7→ · · · 7→ ∗ 7→ ∗ 7→ 1

R3 = ∗ 7→ ∗ 7→ a3 7→ · · · 7→ ∗ 7→ ∗ 7→ 1

...
Rk = ∗ 7→ ∗ 7→ ∗ 7→ · · · 7→ ∗ 7→ ak 7→ 1

Let Si = Ri + 1 where 1 = ∗ 7→ . . . 7→ ∗ 7→ 1 is the unit of the join algebra.
Then |Si| = 2 for all i, but |⋊⋉i Si| = 2k. In general, the worst-case output size
of nonstandard joins is not limited by the AGM bound [22].

Lemma 9. Given positive integers a1, . . . , an it holds that

ωC1,...,Cn(a1r1, . . . , anrn) ≤
∏
i

ai · ωC1,...,Cn(ri, . . . , rn)

Proof. By symmetry it suffices to show that

ωC1,...,Cn(ar1, r2, . . . , rn) ≤ a · ωC1,...,Cn(r1, r2, . . . , rn)

Let R1, . . . , Rn be such that |R1| = ar1, |Ri| = ri for i > 1 and |R1 · · ·Rn| is
maximal. Choose any decomposition R1 =

∑
1≤j≤a Sj such that |Sj | = r1. By

linearity we have

R1R2 · · ·Rn = (
∑

1≤j≤a

Sj)R2 · · ·Rn =
∑

1≤j≤a

(SjR2 · · ·Rn)

The cardinality of the right hand side is clearly bounded by a·ωC1,...,Cn(r1, . . . , rn)
and since R1, . . . , Rn was assumed to have maximal output size this is also an
upper bound for ωC1,...,Cn

(ar1, r2, . . . , rn).

5.11 Main Theorem
Lemma 10. Suppose Ri ⊆ R′

i for 1 ≤ i ≤ n. Then computing ⋊⋉i Ri is
asymptotically no slower than computing ⋊⋉i R

′
i.

Proof. As long as the Ri and the R′
i tries have the same order when sorted by

degree, the result is trivial. It therefore suffices to consider the “discontinuity”
when two tries trade places. Suppose degRi ≤ degRi+1 and degR′

i ≥ degR′
i+1.

There must be intermediate tries Ri ⊆ S ⊆ R′
i and Ri+1 ⊇ T ⊇ R′

i+1 such that
degS = degT . Again it suffices to consider the discontinuity at any such pair
S and T .

Tracing the execution of the algorithm when S is sorted before T versus the
opposite we see that the difference is as follows: in the former case we end up
computing S(a) · T ‡(a) = S · (T (a) + T (∗)) and S(∗) · T (a), in the latter case
we end up computing S‡(a) · T (a) = (S(a) + S(∗)) · T (a) and S(a) · T (∗). Both
of these are at least as fast as computing the three joins S(a) · T (a), S(a) · T (∗)
and S(∗) · T (a) separately. Computing the three separate joins is at the very

84 CHAPTER 5. ALGEBRAIC EVALUATION

worst 3
2 times slower than either of the two approaches (applying the lemma

inductively).
Discontinuities where tries trade places may happen more than once, but

the number of times is in any case bounded by a function of n.

Theorem 11. Let R1, . . . , Rn : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K be arbitrary in-
puts for the join. Then the trie merging algorithm computes ⋊⋉j 〈〈Rj〉〉 in time
O(|⋊⋉j 〈〈Rj〉〉|).

Proof. By induction on k. For k = 0 the result is trivial. For k > 0 assume
without loss of generality that deg 〈〈R1〉〉 ≤ · · · ≤ deg 〈〈Rn〉〉. Consider the work
being done at step i in the loop. We can write 〈〈Ri〉〉 as∑

1≤p≤deg Ri

(ap 7→ 〈〈Ri(ap)〉〉) + (#p 7→ ∂(Ri(ap)))

Looping through the ap’s and looking up 〈〈R〉〉j(∗) for j < i as well as 〈〈R〉〉†j(ap)
for j > i takes O(p) work. Looping through the #p’s similarly takes O(p) work.

For each #p note that since tries are sorted by degree we must in fact have
∂(Rj(ap)) ⊆ 〈〈R〉〉†j(#p) for j ≥ i. We must also have ∂(〈〈R〉〉j(∗)) ⊆ 〈〈R〉〉j(∗)
for each j < i, otherwise the break condition of the loop would have activated.
Hence we have (⋊⋉j<i ∂(〈〈R〉〉j(∗)))(⋊⋉j≥i ∂(〈〈R〉〉j(ap))) 6= 0 for each p. This
produces p units of output to which we ascribe the O(p) work done.

We still need to account for the work done in recursive calls. The recursive
joins involving collapsed tries compute in constant time since the sizes involved
are bounded by a constant. For the remaining joins we note that the tries in
the recursive call have the right shape (namely, 〈〈R〉〉 for some R) to invoke the
induction hypothesis. Such a recursive join looks like

T p
i = (⋊⋉1≤j<i 〈〈Rj(∗)〉〉) · 〈〈Ri〉〉(ap) · (⋊⋉i<j≤n 〈〈Rj〉〉†(ap))

Applying the induction hypothesis, the cost for computing this for all p for all
i is bounded by ∑

1≤i≤n

∑
1≤p≤deg Ri

|T p
i |

We eliminate the inner sum by instead considering the cardinality of the union.

∑
1≤i≤n

∣∣∣∣∣∣
∑

1≤p≤deg Ri

ap 7→ T p
i

∣∣∣∣∣∣
The outer sum is eliminated analogously.∣∣∣∣∣∣

∑
1≤i≤n

∑
1≤p≤deg Ri

ap 7→ T p
i

∣∣∣∣∣∣
This total is clearly bounded by the total size of the output, completing the
proof.

5.11. MAIN THEOREM 85

Corollary 12. Let Ri, . . . , Rn : A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K be tries with ∂Ri ⊆ Ci.
Then trie merging runs in O(ωC1,...,Cn(|R1|, . . . , |Rn|)).

Proof. By Theorem 11 trie merging computes ⋊⋉j 〈〈Rj〉〉 in time O(|⋊⋉j 〈〈Rj〉〉|) =
O(ωC1,...,Cn

(|〈〈R1〉〉|, . . . , |〈〈Rn〉〉|)). Since Rj ⊆ 〈〈Rj〉〉 for each j we apply Lemma 10
to show that also ⋊⋉ Rj is computed in time O(ωC1,...,Cn

(|〈〈R1〉〉|, . . . , |〈〈Rn〉〉|)).
By Lemma 4 and using Lemma 9 we have

ωC1,...,Cn
(|〈〈R1〉〉|, . . . , |〈〈Rn〉〉|) ≤ ωC1,...,Cn

(2k+1|R1|, . . . , 2k+1|Rn|)
≤ 2n(k+1) · ωC1,...,Cn

(|R1|, . . . , |Rn|)

Consequently, computing ⋊⋉j Rj using trie merging takes
O(ω(|R1|, . . . , |Rn|)) steps.

Corollary 13. Algebraic join is worst-case optimal for standard joins.

Proof. By Corollary 12 where |Ci| = 1 for all i.

86 CHAPTER 5. ALGEBRAIC EVALUATION

Chapter 6

Implementation

We now present an overview of how to implement the theory using Haskell.
The design has roots in the work of Henglein and Larsen [28], but has diverged
significantly.

We first give the encoding of modules as a kind, and then illustrate how
to represent vectors efficiently. This is followed by an explanation of run-time
optimisations and evaluation of homomorphisms. Finally, we discuss some of
the finer points of Generalised Algebraic Data Types and Type Families and
the importance of natural transformations through their connection with poly-
morphism.

6.1 Spaces
We begin by declaring an abstract representation of spaces (i.e. modules/algebras):
data Space :: Type where

-- | Scalars.
K :: Space
-- | Finite map.
Copi :: b -> Space -> Space
-- | Map.
Pi :: b -> Space -> Space
-- | Direct sum.
(:+:) :: Space -> Space -> Space
-- | Tensor product.
(:*:) :: Space -> Space -> Space
-- | Polynomials.
Poly :: Space -> Space
-- | Linear maps.
(:->) :: Space -> Space -> Space

type Free b = Copi b K
type Cofree b = Pi b K
type Dual v = v :-> K

On the face of it Space is a type and identifiers like Copi are terms. However,
we are going to use the “Data Kinds” GHC extension, which allows promoting

87

88 CHAPTER 6. IMPLEMENTATION

types to kinds and terms to types. This can be used to model categories with
Type being the category Set of sets and functions1 and Space being ModK (for
any choice of K). Haskell does not allow direcly talking about objects of types
of kind other than Type, but we can use the Space kind as a domain-specific
type system that is interpreted by a suitable functor.

6.2 Vectors
We now turn to the representation of vectors. To this end we use a type Vec k
v which can be thought of as a family of forgetful functors | · | : ModK → Set,
one for each K. The representation will be dependent on v, but in all cases
we need closure under addition and scalar multiplication. Hence we use the
following definition

data Vec k v = Zero
| Add (Vec k v) (Vec k v)
| Mul k (Vec k v)
| Gen (Gen k v)

where Gen k v is a subset that generates the space (it is not necessarily a basis).
The space-dependent part of the representation is defined as a type family:

data family Gen k (v :: Space) :: Type

Elements of Gen k v can be thought of as being in “weak head canonical form”
— they contain information specific to v though their subterms are not neces-
sarily generators. The separation of vectors into Vec k v and Gen k v turns
out to be very useful since we can handle linearity in a generic manner. It also
enables us to express in the type system that a function is defined by its action
on generators.

The simplest instance of Gen k v is the scalar space:

newtype instance Gen k K = Scalar k

For direct sums (i.e. binary coproducts/products) we store each component:

data instance Gen k (u :+: v) = DirectSum (Vec k u) (Vec k v)

Generators for tensor products have a completely analogous declaration:

data instance Gen k (u :*: v) = Tensor (Vec k u) (Vec k v)

The difference is that homomorphisms act bilinearly on them. Note that we
could have defined Tensor as taking generators rather than vectors and this
would be perfectly adequate for representing any vector since addition and mul-
tiplication can be pushed out. Unfortunately, this would force us to always

1Haskell does not actually implement the semantics of Set, one of the reasons being that
functions are partial. However, the parts of Haskell that we actually employ ultimately stay
within the “Set-like” subset.

6.2. VECTORS 89

factor tensor products into a canonical form which incurs a quadratic size in-
crease in the worst case. Depending on what operations we may wish to perform
on a tensor product this price does not necessarily need to be paid.

For finite maps we could just take the categorical definition literally and
define:

data instance Gen k (Copi b v) = Inj b

This is at odds with how we want to think about finite maps operationally —
as database indices allowing efficient querying — and this goal is not served
well by what essentially amounts to an unordered list. However, the above
definition is the only adequate polymorphic solution. Note that to demonstrate
the existence of finite maps we actually need decidable equality (which relies on
Excluded Middle) on the index set which is impossible to implement in general.
This is not much of a problem since in practice we only need to handle indices
which are first order data (i.e. types built using primitives, sums, products and
recursion). Therefore we will use an adaptive representation depending on the
index type.

A unit index is simply represented by a single vector:

newtype instance Gen k (Copi () v) = CopiUnit (Vec k v)

Finite precision integers use a patricia tree (named IntMap in the Haskell
standard library):

newtype instance Gen k (Copi Int v) = CopiInt (IntMap (Vec k v))

Missing keys are interpreted as yielding a zero.
Sum types are represented by two finite maps, one for lefts and one for rights:

data instance Gen k (Copi (Either b c) v) =
CopiSum (Vec k (Copi b v)) (Vec k (Copi c v))

Product types exploit the isomorphism B ⇒ C ⇒ V ∼= (B × C) ⇒ V by
currying:

data instance Gen k (Copi (b, c) v) = CopiProd (Vec k (Copi b (Copi c v)))

This kind of adaptive representation where the structure of a finite map
resembles the structure of the domain type is very much like a generic trie
[13]. Yet in the context of linear algebra this data structure arises naturally as
the most direct realisation of the various factorisation theorems. The common
approach of assigning some (perhaps arbitrary) order to the index set and using
search trees is, by comparison, less natural since order relations do not occur
anywhere in our theory.

Now, how do we implement (7→) : B → V → B ⇒ V given our choice of
representation? Ideally, we want something like:

inj :: b -> Vec k v -> Vec k (Copi b v)

90 CHAPTER 6. IMPLEMENTATION

However, the type signature cannot be implemented because b is polymorphic
(this is actually a feature as discussed in Section 6.5). To solve this problem,
we introduce a type class to identity the subset of types that are usable as finite
map indices. Since we are limiting ourselves to first order data the class is aptly
named:

class Eq b => FirstOrder b where
inj :: b -> Vec k v -> Vec k (Copi b v)
intersect :: (Ring k) => (Vec k u -> Vec k v -> Vec k w)

-> Vec k (Copi b u) -> Vec k (Copi b v)
-> Vec k (Copi b w)

The Eq superclass is not strictly necessary, but it makes good sense because Eq
represents the notion of decidable equality (or possibly equivalence) on some
type.

Implementations of inj are generally straightforward. For instance, prod-
ucts are handled as follows:

inj (b, c) x = Gen . CopiProd $ inj b (inj c x)

The intersect method is crucial for good performance. It takes a merge
function and two finite map vectors and produces a new finite map with their
common indices and merged values. The special case where one of the finite
maps is a singleton yields a lookup function:

lookup :: (FirstOrder b) => b -> Vec k (Copi b v) -> Vec k v
lookup b x = mulH `ev` intersect (inj b one) x

For primitive types intersect uses an appropriate intersection algorithm
from the underlying data structure:

intersect f x y = Gen . CopiInt $
IntMap.intersectionWith f (fromCopiInt $ canonicalCopiInt x)

(fromCopiInt $ canonicalCopiInt y)

It makes use of an auxiliary function for computing the weak head canonical
form.

canonicalCopiInt :: (Ring k) => Vec k (Copi Int v) -> Gen k (Copi Int v)

It is hard to overstate the importance of this approach; from this all of our
algorithmic efficiency is derived. By handling data in bulk intersect runs
in linear time — canonicalCopiInt and IntMap.intersectionWith both take
linear time. Contrast this with a naive expansion by linearity in both arguments
incurring a quadratic penalty in the worst case.

Intersection of sums proceeds by separating into lefts and rights (using
partitionCopiSum) and calling recursively.

intersect f x y = Gen $ CopiSum (intersect f xb yb) (intersect f xc yc)
where

(xb, xc) = partitionCopiSum x
(yb, yc) = partitionCopiSum y

6.2. VECTORS 91

Intersection of products consists of unraveling the underlying nested finite
maps (using curryCopiProd) and then calling intersect recursively.

intersect f x y = Gen . CopiProd $ intersect (intersect f)
(curryCopiProd x)
(curryCopiProd y)

We can show that intersect runs in linear time in general. Define the size
of a term to be the size of its representation when viewed as a tree, count-
ing elements of Vec k u and Vec k v as unit size (they are essentially opaque
pointers).

Lemma 14. If f runs in time O(m′+n′) for all x' of size m′ and y' of size n′

and if x :: Vec k (Copi b u) has size m and y :: Vec k (Copi b v) has
size n then intersect f x y runs in time O(m+ n).

Proof. By induction on the type b. First note that all the auxiliary functions
run in linear time and produce output of linear size. For primitive types we
rely on the time bound provided by the integer map implementation; see e.g.
Okasaki and Gill [29]. The case for sums follows by straightforward induction.
Finally, for products we first use induction to establish that intersect f runs
in linear time, then by induction again we get the desired result.

At this point it is pertinent to remark on the cost model. We only admit
primitive types that can be represented in a finite number of bits and conse-
quently allow efficient indexing by e.g. patricia trees. Large numbers must be
represented by, say, a list of words and therefore contribute more to the size of
the input. Hence, we are speaking of linearity in the amount of data and not
the number of elements. For a more thorough explanation of this distinction see
“Generic top-down discrimination for sorting and partitioning in linear time”
[30].

For products we use the representation suggested by the universal property:

data instance Gen k (Pi b v) = PiExt (b -> Vec k v)

For homomorphisms there is no fully adequate representation. Either we
provide a general constructor for promoting functions of type Vec k u -> Vec
k v to Hom k (u :-> v) with no guarantee of linearity; or we provide con-
structors for specific classes of homomorphisms in such a way that linearity is
unavoidable, but we miss out on homomorphisms that are linear for less obvious
reasons. We choose to omit a general purpose “unsafe” constructor, since all
the linear maps we actually care about can be represented using a reasonable
number of constructors.

The type is declared using Generalised Algebraic Data Types (GADT’s)
allowing each constructor to constrain the type indices:

data instance Gen k (u :-> v) where

We have completely general homomorphisms like identity and composition:

92 CHAPTER 6. IMPLEMENTATION

IdH :: Gen k (v :-> v)
ComposeH :: Vec k (v :-> w) -> Vec k (u :-> v) -> Gen k (u :-> w)

The basic module operations have constructors too:

AddH :: Gen k (v :+: v :-> v)
MulH :: Gen k (K :*: v :-> v)

Previously established natural transformations provide a canonical way of
mapping out of each type of space:

PiH :: Vec k (Copi b (u :-> v)) -> Gen k (Pi b u :-> v)
CopiH :: (FirstOrder b) => Vec k (Pi b (u :-> v)) -> Gen k (Copi b u :-> v)
ScalarH :: Vec k v -> Gen k (K :-> v)
SumH :: Vec k (u :-> w) -> Vec k (v :-> w) -> Gen k (u :+: v :-> w)
TensorH :: Vec k (u :-> v :-> w) -> Gen k (u :*: v :-> w)

They cover all possible homomorphisms out of their respective domains, safe
for PiH which is not in general capable of expressing all homomorphisms from
products2.

In addition, there are a handful of special-case homomorphisms that allow
more efficient execution under the right circumstances. For instance, the ⊗
functor applied to two functions acts independently on each part of a tensor
product:

LiftTensorH :: Vec k (u1 :-> v1) -> Vec k (u2 :-> v2)
-> Gen k (u1 :*: u2 :-> v1 :*: v2)

6.3 Run-time Optimisation
A given vector can be represented in many ways. In fact, we have deliberately
tried to maximise the number of choices in representation. The idea is that we
cannot determine statically how producers and consumers will be connected.
Thus, producers construct their output in the locally most convenient format
and consumers are then expected to factor their input as necessary. Consumers
benefit too if they are able to work directly with the (potentially much smaller)
input.

There is a caveat, though. What if a value is shared by many consumers?
In that case, there is a possibility that they are all performing the exact same
factorisation. This is seldom an asymptotic disadvantage, since most homo-
morphisms only need to factor the part of the input that they are processing
anyway.

Nevertheless, there might be practical efficiency gains to be had by suitably
caching the result of factorisations. A simple way would be to expand Vec k
v with a constructor Cached (Vec k v) (Vec k v) where the first element is
the producer’s preferred form and the second element is some (not necessarily
fully) factorised form.

2When b is countable and k is finite it is sufficient to represent all computable functions!

6.4. EVALUATION 93

6.4 Evaluation
The most important function in the implementation is the evaluation map,
which represents ev : (U → V)⊗ U → V . It is declared as follows:
ev :: (Ring k) => Vec k (u :-> v) -> Vec k u -> Vec k v

Apart from a case for zero elements, it exploits linearity in the function argument
to reach a generator:
ev Zero _ = zero
ev _ Zero = zero
ev (Add f g) x = f `ev` x .+. g `ev` x
ev (Mul k f) x = k *. f `ev` x
ev (Gen f) x = evGen f x

Evaluation where the function is a generator is performed by an auxiliary func-
tion:
evGen :: (Ring k) => Gen k (u :-> v) -> Vec k u -> Vec k v

Some homomorphisms can be applied directly to non-generator parameters.
This primarily includes completely generic homomorphisms such as identity
and composition:
evGen IdH x = x
evGen (ComposeH f g) x = f `ev` (g `ev` x)

Otherwise, we use linearity to reduce the parameter argument to a generator:
evGen f (Add x y) = f `evGen` x .+. f `evGen` y
evGen f (Mul k x) = k *. f `evGen` x
evGen f (Gen x) = evGenGen f x

Finally, we have an auxiliary function for when both arguments are generators:
evGenGen :: (Ring k) => Gen k (u :-> v) -> Gen k u -> Vec k v

This is where most of the dynamic optimisation takes place. For instance
evGenGen (LiftTensorH f g) (Tensor x y) = f `ev` x .*. g `ev` y

where .*. is infix tensor product.

6.5 GADT’s Versus Type Families
There are generally two ways of programming with adaptive representations in
Haskell: GADT’s and Type Families. We have chosen to encode Gen k v as a
type family, while Henglein and Larsen [28] use GADT’s. This choice deserves
an explanation.

Using GADT’s we would have something like
data Gen k :: Space -> Type where

Scalar :: k -> Gen k K
DirectSum :: Vec k u -> Vec k v -> Gen k (u :+: v)
Tensor :: Vec k u -> Vec k v -> Gen k (u :*: v)
... etc ...

94 CHAPTER 6. IMPLEMENTATION

An immediate difference is that using GADT’s we have a closed world — all
constructors that are or ever will be are listed in one place. Type families, by
contrast, are open to extension. This is of limited use in our case since the kind
of spaces is already closed, the main advantage being that new primitive finite
map index types can be supported.

The main reason for our choice has do with parametricity, the notion that
polymorphic values can only be handled opaquely. In other words, they are
natural transformations in Hask[31].

GADT’s, being closed, allow pattern matching which provides information
about a polymorphic type. For example:
getScalar :: Gen k v -> Maybe k
getScalar (Scalar k) = Just k
getScalar _ = Nothing

Thus, parametricity does not provide much when GADT’s are involved since
they come equipped with a too powerful elimination principle. When Gen k
v is declared as a type family getScalar will not type check — we are only
allowed to match on a constructor when we know for certain that the type is
compatible, such as in the following:
getScalar :: Gen k K -> k
getScalar (Scalar k) = k

More interestingly when we write a type signature like f :: Vec k (u :*:
v) -> Vec k (v :*: u) then (providing it is linear) f represents a natural
transformation in ModK . The inability to pattern match on polymorphic values
means that functions from type families are harder to write, but easier to reason
about.

Of course, sometimes we do want to write unnatural functions! Observe that
dualI : (I ⇒ V) → (I → V) is an unnatural embedding. Indeed, we cannot
(reasonably) implement a function with such a type signature:
dual :: Vec k (Copi b v) -> Vec k (Pi b v)

This also makes sense operationally since we only admit first order indices in
finite maps. Consequently, the solution is to add the appropriate type class
constraint:
dual :: (FirstOrder b) => Vec k (Copi b v) -> Vec k (Pi b v)
dual x = Gen . PiExt $ \b -> lookup b x

Note that this is not a violation of parametricity. Rather, the meaning of para-
metricity depends on the type and adding the FirstOrder constraint results
in a correspondingly weaker property. In summary, the choice of type families
does not limit what operations can be implemented, but it enables us to express
assumptions clearly and enforces honesty.

Chapter 7

Discussion

7.1 Related Work
We have touched many big areas of research: algebra, databases, language
design, semantics and more. Naturally, the magnitude of potentially related
work is enormous. The most pertinent references are explained below, separately
for each chapter.

7.1.1 Algeo
Algebraic λ-calculi. A related approach to computing with linear algebra is
the idea of extending the λ-calculus with linear combinations of terms [8, 9],
though such approaches do not provide generalised reversibility in the form of
adjoints. Extending the λ-calculus in this way is a delicate ordeal that easily
leads to collapse (e.g. 0 = 1) from interactions between sums and fixpoints.
Algeo evades these problems by taking a different view of functions, namely
that base elements of type τ1 → τ2 are b1 7→ b2 where b1 and b2 are base
elements, and function application is linear in both arguments (this approach
was briefly considered in [9] and discarded due to wanting a strict extension of
untyped λ-calculus).

It is possible in Algeo to define an abstraction λx.e as syntactic sugar for
[x̂ : 〈τ1〉] x̂ 7→ ex:=!x̂ of type 〈τ1〉 → τ2. The input must be a bag type to
model the nonlinearity of function application in algebraic λ-calculi. However,
the fixpoint-esque operators definable in Algeo have different semantics than in
standard λ-calculus and do not allow the kind of infinite unfolding that so easily
leads to paradoxes. The simplest such operator is fix : (τ → τ)→ τ defined by
fix (x 7→ x) ⇔ x, which is just a repackaged version of ⋊⋉. To get something
approaching the usual concept of fixpoint we again need bags:

fix : 〈τ → τ〉 → τ fix f⇔ !f (!f̂ix f)
Even ignoring the bag operations fix is not a fixpoint combinator in the λ-
calculus sense since fix e = !e (!f̂ix e) does not hold in general when e is not

95

96 CHAPTER 7. DISCUSSION

a base value. We can try to create a paradox by considering e.g. e = fix 〈[x :
τ]x 7→ −1; x〉. It is indeed the case that e = (−1; e) and therefore that e = 0, but
this only emphasises what we already know: that Algeo is powerful enough to
express arbitrary constraints and that recognising 0 is uncomputable in general.

Reversible and functional logic programming. Reversible programming
languages have seen a great deal of research in recent years thanks to their ap-
plications in surprisingly diverse areas such as debugging [32, 33], robotics [34],
discrete event simulation [35] and quantum computing [36, 37, 38]. For this
reason, many different styles of reversible programming have been explored,
notably imperative [39], object-oriented [40], functional [41, 42, 43], and paral-
lel [43, 32].

The functional logic paradigm of programming was pioneered by languages
such as Curry [44, 45] and Mercury [46]. Along with reversible functional pro-
gramming languages such as Rfun [41], CoreFun [47], and Theseus [48], they
have served as inspiration for the design of Algeo. Using the prefix algebraic
was explored by ALF (Algebraic Logic Functional programming language) [49],
albeit this use of algebra is—like in so many other cases—different from ours.
Unlike Algeo, neither of the conventional functional logic programming lan-
guages come with an explicit notion of multiplicity and the added benefits in
expressing data of a probabilistic, fractional, or an “inverse” nature, nor do they
have adjoints. On the other hand, while the reversible functional languages all
have a notion of inversion, their execution models and notions of reversibility
differ significantly from those found in Algeo.

Modules, databases, and query languages. Free modules can be seen as
a form of generalised multisets. When permitting negative multiplicities, this
allows the representation of database table schemas as (certain) free modules,
tables as vectors of these free module, and linear maps as operations (e.g.,
insertion, deletion, search, aggregation, joins, and much more) acting on these
tables. The structural theory of modules that led to the development of Algeo,
and its relation to database representation and querying, is described in [4].

Abstract Stone duality. Abstract Stone duality (see, e.g., [50]) is a syn-
thetic approach to topology and analysis inspired by Stone’s famous duality
theorem between categories of certain topological spaces and certain order struc-
tures. An interesting feature of abstract Stone duality is that it permits the in-
direct definition of numbers from a description (i.e., a predicate) via a method
known simply as definition by description, provided that it can be shown that
a description is true for exactly one number. This is not unlike the indirect
description of terms in Algeo, though instead of requiring descriptions to be
unique, the result of an indirect description in Algeo is instead the aggregation
over all terms satisfying this description.

7.1. RELATED WORK 97

7.1.2 Query Processing
Our modules and associative algebras provide a general, established and mathe-
matically deep and well-studied reference framework for structures proposed
in the literature, such as provenance semirings [51] and semiring dictionar-
ies [52]. For example, in provenance semirings a K-relation is an element of
FK [Ta1

× . . . × Tan
]. Replacing K by R = N[X], the free commutative semir-

ing generated by X yields queries evaluated over R instead of K. This in-
corporates provenance for aggregations [53] since FK [T] provides folding over
arbitrary modules. Our extension with wildcards extends provenance from fi-
nite K-relations to infinite K-relations. Further, our approach accounts for
probabilistic databases [54] as algebras FR[T], with real numbers serving as
quasi-probabilities, as well as sets with negative multiplicity (see, e.g., [55, 56]).

Linear algebra has previously been proposed as a framework for interpreting
and implementing querying on databases. Notably, typed matrix algebra [57,
58, 59, 60] has been used to provide operations on matrix-shaped data (see
also array programming languages such as Futhark [61] and Single Assignment
C [62]). Note that our approach works on infinite-dimensional spaces, not only
finite-dimensional ones, and it is essential to represent linear maps as functions
rather than matrices. More closely related to our work, there are expressive
linear algebra-based domain-specific languages/frameworks [63, 64] that provide
expressive database and data analytics operations, with evaluation to standard
normalised data structures using Kiselyov’s tagless final approach. These do
not support efficient data structures and execution of bilinear maps, however,
where we employ symbolic tensor products and efficient intersection, aided by
compact maps for both expressiveness and efficiency.

A probabilistic database is database that associates a probability from [0, 1]
with each tuple in the relations. There are different treatments, depending on
the operations executed on them; see for example [54]. The measure of a relation
is the sum of probabilities associated with its elements. If the measure is 1, the
relation represents a (finite) probability distribution.

The natural setting of probabilistic databases as algebras is FR[T], with real
numbers serving as quasi-probabilities since addition and subtraction can move
them out of [0, 1]. It is possible, however, to define a nonlinear operation x∨ y,
as in fuzzy logic [65]:

x ∨ y = (x+ y)− (xy).

It has the property that x ∨ y ∈ [0, 1] if x, y ∈ [0, 1] and can thus be used to
model (nonlinear) union of probabilistic databases.

The problem of efficient execution of relational database queries has been
studied extensively, with joins in particular posing a challenge. Traditional
methods rely on decomposing k-ary joins into binary joins, carefully creating a
good query plan in order to minimise the sizes of intermediate results and out-
puts [14], while our approach instead hinges on sensible and efficient expression
simplification (see [66] for a formal treatment of this problem). While it is pos-
sible to evaluate acyclic join queries in time linear in the size of the query, the
input, and the output [15, 16] and there are methods that deal with “almost”

98 CHAPTER 7. DISCUSSION

acyclic join queries [17], this is infeasible for cyclic queries such as the triangle
query, as deciding whether the output is empty is NP-hard [18]. To quantify
how good a query algorithm is, the notion of worst-case optimal complexity was
developed [19, 20], focussing on the data complexity of the problem, which ig-
nores the size of the query itself [21]. A join algorithm is worst-case optimal if
it executes in time linear in N and O, where O is the maximal size of an output
of the join query applied to input relations whose sizes sum to N .

We have drawn on a great number of categorical concepts, not only to drive
generalisation and identify suitable compositional constructs that make for a
pleasant framework with strong and useful properties, but also to exploit term
constructors as symbolic data structures and exception-less algebraic equalities
for their efficient execution. It is difficult to do justice to the many works in
category theory, abstract algebra and categorical functional programming we
have built on. Most closely related is [67], which presents a framework for
relational algebra based on the adjunctions that generate it.

7.1.3 Simplification
We have shown that relational joins are special kinds of algebraic joins over semi-
modules whose elements can be efficiently represented as tries with a wildcard
that provide representing finite and certain infinite relations. We have designed
an algebraic join algorithm by merging tries whose worst-case optimality follows
from an input padding argument that intuitively provides a shadow element to
each input element.

In this fashion we formulate the K-relations framework [51] in terms of
associative-commutative K-algebras on semimodules, where join is the multi-
plication and show that they can be implemented in worst-case optimal time ir-
respective of the underlying commutative semiring. This is done by trie merging
on generalized tries with wildcards that can represent not only finite relations,
but also infinite ones. Our algorithm is similar to Leapfrog Join [26] in the sense
that it uses tries, but it iterates over tries not in sorted order of the keys (edge
labels), but processes trie nodes in order of increasing outdegree. One of the
key ideas is to reduce the problem one attribute at a time rather than one join
at a time [26, 2]. Precursors to this approach can be found in e.g. approaches
to Bayesian network inference [68, 69] and SAT solving [70].

Various generalizations of the join problem have been studied, such as for
probabilistic databases [54], aggregating over arbitrary semirings [51] or the gen-
eral notion of functional aggregate queries [25]. Although usually not empha-
sized much, various generalizations correspond to different notions of collections:
ordinary sets (relational algebra), multisets (bag semantics, or equivalently us-
ing multiplicities from the semiring N), polysets [3] (using multiplicities from
the ring Z), unnormalized probabilistic sets [54] (using multiplicities from the
semiring R+).

When discussing complexity of data the representation scheme is important.
The traditional approach is a simple list of tuples, but more compact structures
are possible such as generic tries [13], symbolic Cartesian products with [2, 3]

7.2. FUTURE WORK 99

or without symbolic multiplicities [71, 72, 28, 73].

7.2 Future Work
We first describe possible future work for each chapter in isolation and then give
a bird’s eye view of how the project as a whole could develop.

7.2.1 Algeo
We have presented the reversible functional logic programming language Algeo,
described its syntax and type system, and given it semantics in the form of a
system of equations. We have illustrated the use of Algeo through applications
and examples, and described applications in areas such as database querying
and logic programming with an improved notion of negation.

As regards avenues for future research, we consider developing an imple-
mentation based on this work to be a logical next step. However, this is not
as trivial as it may appear at first glance, as it requires the development of
strategies for performing nontrivial rewriting using the equational theory. In
particular, we don’t believe that there is an obvious optimal evaluation strategy
for Algeo, as it would have to optimally solve all expressible problems (e.g.,
matrix diagonalisation, three-way joins).

An extension to Algeo not considered here is that of dual types, reflecting
the notion of dual modules and vector spaces in linear algebra. To include these
would permit Algeo to use multiplicities in the complex numbers, in turn paving
the way for using Algeo to express quantum algorithms.

We would also find it interesting to use Algeo to study polylogic (as described
in Section 3.5), in particular its use as a reasonable semantics for negation not
involving the impure and unsatisfying negation-as-failure known from Prolog.
Finally, since Algeo permits aggregating over infinite collections of values, it
seems that there is at least some connection to nonstandard analysis and linear
algebra (see also [74]) which could be interesting to elaborate. In fact, permit-
ting the use of nonstandard real (or complex) numbers as multiplicities would
allow automatic differentiation (see [5] for a recent, combinatory approach to
automatic differentiation on Hilbert spaces) to be specified in an exceedingly
compact manner, which could lead to further applications in machine learning
and optimization.

7.2.2 Query Processing
While logic programming does well in handling positive queries, negation is
typically handled in an ad-hoc and unsatisfactory way, for example through
negation as failure. In our setting, data with negative multiplicity is handled
no different from data in positive quantity: can this give a more satisfactory
treatment of negation in logic programming? Further, in the current form, our
setting is quite conservative in that it is not capable of describing recursive

100 CHAPTER 7. DISCUSSION

queries, even if they are ultimately well-behaved. A possible solution to this
shortcoming would be to study modules which are somehow topological (e.g.,
appropriately ordered, or equipped with a norm or inner product), as this could
give us access to fixed point theorems directly associated with the semantics of
recursion.

7.2.3 Simplification
Generalisation of wildcards. All of our constructions have nice categorical
properties. Let us give them the following names:

W (A) = A∗

T (A1, . . . , Ak) = A1 ⇒∗ · · · ⇒∗ Ak ⇒∗ K

T op(A1, . . . , Ak) = A1 → · · · → Ak → K

They are in fact functors W : Set → Set, T : Setk → Mod and T ◦ : Setk →
Modop. Deep lookup is actually a dinatural transformation (·)‡ : T ◦W k .→ T op

(where W k means W applied component-wise to k-tuples). A natural question
to ask is for what choices of W and (·)‡ will things “work out”.

As remarked earlier there is a redundancy for finite sets where ∗ is not
strictly necessary, but still useful for compact representations. This is not a
wart to be concealed, but rather an avenue to explore. What happens if we add
more redundant symbolic representatives of subsets? Can we extend the scope
of problems that algebraic joins can deal with or improve efficiency of existing
ones?

More algebra. Let K = Q and suppose

R = (∗ 7→ 3) + (a 7→ 2)

S = (∗ 7→ 1
3)− (a 7→ 2

15)

It can be verified that RS = 1 so we would be justified in writing R−1 = S.
On the other hand clearly not all nonzero tries have inverses — to wit, any trie
that does not represent a cofinite set.

As another example, let K be closed under square roots. Then any trie T
has a square root given by

√
T = (∗ 7→

√
T (∗)) +

∑
a

(a 7→
√
T (∗) + T (a)−

√
T (∗))

This naturally prompts a host of questions. Exactly which set of tries have
inverses and what does that mean relationally? What about the largest alge-
braically closed subset? Can we factorize tries meaningfully? Can we gainfully
apply spectral decomposition to linear maps between tries? And so on and so
forth.

7.3. CONCLUSION 101

Functional aggregate queries Since our algebraic approach can easily deal
with ordinary joins in a worst-case optimal manner, a natural next step would
be to tackle functional aggregate queries (FAQ’s)[25]. There is similarity in
the use of semirings, though some work is needed to integrate FAQ’s with a
more principled algebraic foundation such as ours. Nevertheless, if a proper
algebraic foundation can be found for this wider class of problems it would not
be surprising if a similarly simple worst-case optimal algorithm were to emerge.

7.2.4 Bird’s Eye View
The next major step in the research programme is to craft an efficient imple-
mentation of Algeo and use that to evaluate queries. As noted previously Algeo
programs are hard to evaluate in general, but the subset corresponding to query
expressions is significantly simpler. In particular, attaining worst-case output
optimality for conjunctive queries should very much be possible. More ambi-
tiously, a parallel implementation of Algeo by compiling to e.g. Futhark [61]
would be interesting.

There is also the question of how to go from query evaluation to an actual
database system. Theoretically, the framework supports all the basic trappings
of a system: schemas, insertion/deletion, etc. Practically, many details need to
be worked out. One could see Algeo as similar to Prolog with its natural support
for persistent relations. More modern developments like the Cell language [75]
can also serve as inspiration.

7.3 Conclusion
The research programme set sail with the ambition of showing that linear algebra
makes a compelling alternative to relational algebra as a foundation for query
processing. We hoped to make a beautiful theory that also lends itself well to
efficiency in practice.

The results have certainly exceeded expectations! Not only did we fulfill our
initial objectives, we also made essential algorithmic advances (worst-case opti-
mality of algebraic joins) and developed a new surprisingly powerful program-
ming language (Algeo) to better support the emerging paradigm of algebraic
programming.

The conclusion is inescapable: the marriage of abstract algebra and pro-
gramming is a fruitful endeavour and the journey has just begun.

102 CHAPTER 7. DISCUSSION

Bibliography

[1] Richard Bird and Oege de Moor. Algebra of Programming. Prentice-Hall,
Inc., USA, 1997.

[2] Mikkel Kragh Mathiesen. Infinite-dimensional linear algebra for efficient
query processing. Master’s thesis, Department of Computer Science, Uni-
versity of Copenhagen (DIKU), August 2016.

[3] Fritz Henglein and Mikkel Kragh Mathiesen. Module theory and query pro-
cessing (extended abstract). In Proc. Mathematically Structured Functional
Programming (MSFP), MSFP ’20, 2020.

[4] Fritz Henglein, Robin Kaarsgaard, and Mikkel Kragh Mathiesen. The pro-
gramming of algebra. In Proc. 9th Workshop on Mathematically Structured
Functional Programming (MSFP), pages 71–92, Munich, Germany, April
2022. Electronic Proceedings in Theoretical Computer Science (EPTCS).

[5] Martin Elsman, Fritz Henglein, Robin Kaarsgaard, Mikkel Kragh Math-
iesen, and Robert Schenck. Combinatory adjoints and differentiation. In
Proc. 9th Workshop on Mathematically Structured Functional Programming
(MSFP), pages 1–26, Munich, Germany, April 2022. Electronic Proceedings
in Theoretical Computer Science (EPTCS).

[6] Fritz Henglein, Robin Kaarsgaard, and Mikkel Kragh Mathiesen. Algeo:
An algebraic approach to reversibility. In Claudio Antares Mezzina and
Krzysztof Podlaski, editors, Reversible Computation, pages 128–145, Cham,
2022. Springer International Publishing.

[7] David HD Warren. An abstract Prolog instruction set. Technical report,
1983.

[8] Lionel Vaux. The algebraic lambda calculus. Mathematical. Structures in
Comp. Sci., 19(5):1029–1059, oct 2009.

[9] Pablo Arrighi and Gilles Dowek. Linear-algebraic λ-calculus: Higher-order,
encodings, and confluence. In Proceedings of the 19th International Con-
ference on Rewriting Techniques and Applications, RTA ’08, page 17–31,
Berlin, Heidelberg, 2008. Springer-Verlag.

103

104 BIBLIOGRAPHY

[10] Robin Kaarsgaard. Condition/decision duality and the internal logic of
extensive restriction categories. In Proceedings of the Thirty-Fifth Confer-
ence on the Mathematical Foundations of Programming Semantics (MFPS
XXXV), volume 347 of Electronic Notes in Theoretical Computer Science,
pages 179–202. Elsevier, 2019.

[11] Matija Pretnar. An introduction to algebraic effects and handlers. invited
tutorial paper. In The 31st Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXXI), volume 319 of Electronic Notes
in Theoretical Computer Science, pages 19–35, 2015.

[12] Fritz Henglein and Ralf Hinze. Distributive sorting and searching: From
generic discrimination to generic tries. In Chung-chieh Shan, editor, Proc.
11th Asian Symposium on Programming Languages and Systems (APLAS),
volume 8301 of Lecture Notes in Computer Science (LNCS), pages 315–332.
Springer, December 2013.

[13] Ralf Hinze. Generalizing generalized tries. J. Funct. Program, 10(4):327–
351, 2000.

[14] Goetz Graefe. Query evaluation techniques for large databases. ACM
Comput. Surv., 25(2):73–169, June 1993.

[15] Dan E. Willard. An algorithm for handling many relational calculus queries
efficiently. Journal of Computer and System Sciences, 65(2):295 – 331, 2002.

[16] Anna Pagh and Rasmus Pagh. Scalable computation of acyclic joins. Jour-
nal of the ACM, 2006.

[17] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-
decompositions. J. ACM, 49(6):716–752, November 2002.

[18] David Maier, Yehoshua Sagiv, and Mihalis Yannakakis. On the complexity
of testing implications of functional and join dependencies. Journal of the
ACM (JACM), 28(4):680–695, 1981.

[19] H.Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algo-
rithms. In Proceedings of the 31st symposium on Principles of Database
Systems, pages 37–48. ACM, 2012.

[20] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case
optimal join algorithms. Journal of the ACM (JACM), 65(3):1–40, 2018.

[21] Moshe Vardi. The complexity of relational query languages (extended ab-
stract). pages 137–146, 01 1982.

[22] Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query
plans for relational joins. volume 42, pages 739 – 748, 11 2008.

[23] Martin Grohe and Dániel Marx. Constraint solving via fractional edge
covers. ACM Transactions on Algorithms (TALG), 11(1):1–20, 2014.

BIBLIOGRAPHY 105

[24] Hung Q Ngo, Christopher Re, and Atri Rudra. Skew strikes back:
New developments in the theory of join algorithms. arXiv preprint
arXiv:1310.3314, 2013.

[25] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. Faq: Questions
asked frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS ’16, pages
13–28, New York, NY, USA, 2016. Association for Computing Machinery.

[26] Todd L. Veldhuizen. A simple, worst-case optimal join algorithm. In Nicole
Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th
Int’l Conf. on Database Theory (ICDT), pages 96–106, Athens, Greece,
March 2014. Openproceedings.org.

[27] Todd L. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm.
CoRR, abs/1210.0481, 2012.

[28] Fritz Henglein and Ken Larsen. Generic multiset programming with
discrimination-based joins and symbolic Cartesian products. Higher-Order
and Symbolic Computation (HOSC), 23:337–370, 2010. Publication date:
November 24, 2011.

[29] Chris Okasaki and Andrew Gill. Fast mergeable integer maps, 1998.

[30] Fritz Henglein. Generic top-down discrimination for sorting and partition-
ing in linear time. Journal of Functional Programming, 22(3):300–374,
2012.

[31] Philip Wadler. Theorems for free! In Proc. ACM Conf. Functional Pro-
gramming and Computer Architecture, pages 347–359, 1989.

[32] James Hoey and Irek Ulidowski. Reversible imperative parallel programs
and debugging. In Michael Kirkedal Thomsen and Mathias Soeken, editors,
Reversible Computation, pages 108–127. Springer, 2019.

[33] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. CauDEr:
A causal-consistent reversible debugger for Erlang. In International Sympo-
sium on Functional and Logic Programming (FLOPS 2018), pages 247–263.
Springer, 2018.

[34] Ulrik Pagh Schultz, Johan Sund Laursen, Lars-Peter Ellekilde, and Hol-
ger Bock Axelsen. Towards a domain-specific language for reversible as-
sembly sequences. In Jean Krivine and Jean-Bernard Stefani, editors, RC
2015, volume 9138 of Lecture Notes in Computer Science, pages 111–126.
Springer, 2015.

[35] Markus Schordan, David Jefferson, Peter Barnes, Tomas Oppelstrup, and
Daniel Quinlan. Reverse code generation for parallel discrete event simula-
tion. In Jean Krivine and Jean-Bernard Stefani, editors, RC 2015, volume
9138 of Lecture Notes in Computer Science, pages 95–110. Springer, 2015.

106 BIBLIOGRAPHY

[36] Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. From symmet-
ric pattern-matching to quantum control. In International Conference on
Foundations of Software Science and Computation Structures (FOSSACS
2018), pages 348–364. Springer, 2018.

[37] Chris Heunen and Robin Kaarsgaard. Quantum information effects. Pro-
ceedings of the ACM on Programming Languages, 6(POPL), 2022.

[38] C. Heunen and R. Kaarsgaard. Bennett and Stinespring, together at last. In
Proceedings 18th International Conference on Quantum Physics and Logic
(QPL 2021), volume 343 of Electronic Proceedings in Theoretical Computer
Science, pages 102–118. OPA, 2021.

[39] Tetsuo Yokoyama and Robert Glück. A reversible programming language
and its invertible self-interpreter. In Partial Evaluation and Program Ma-
nipulation. Proceedings, pages 144–153. ACM, 2007.

[40] Lasse Hay-Schmidt, Robert Glück, Martin Holm Cservenka, and Tue
Haulund. Towards a unified language architecture for reversible object-
oriented programming. In International Conference on Reversible Compu-
tation (RC 2021), pages 96–106. Springer, 2021.

[41] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Towards a
reversible functional language. In Alexis De Vos and Robert Wille, editors,
Reversible Computation, pages 14–29. Springer, 2012.

[42] Roshan P James and Amr Sabry. Information effects. ACM SIGPLAN
Notices, 47(1):73–84, 2012.

[43] Naoki Nishida, Adrián Palacios, and Germán Vidal. A reversible seman-
tics for Erlang. In Manuel V Hermenegildo and Pedro Lopez-Garcia, edi-
tors, Logic-Based Program Synthesis and Transformation (LOPSTR 2016),
pages 259–274. Springer, 2017.

[44] Sergio Antoy and Michael Hanus. Functional logic programming. Commu-
nications of the ACM, 53(4):74–85, 2010.

[45] Michael Hanus. Functional logic programming: From theory to Curry. In
Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics:
Essays in Memory of Harald Ganzinger, pages 123–168. Springer, 2013.

[46] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution
algorithm of Mercury, an efficient purely declarative logic programming
language. The Journal of Logic Programming, 29(1):17–64, 1996.

[47] Petur Andrias Højgaard Jacobsen, Robin Kaarsgaard, and
Michael Kirkedal Thomsen. CoreFun: A typed functional reversible
core language. In Jarkko Kari and Irek Ulidowski, editors, Reversible
Computation (RC 2018), pages 304–321. Springer, 2018.

BIBLIOGRAPHY 107

[48] Roshan P. James and Amr Sabry. Theseus: A high level language for
reversible computing. Work-in-progress report, 2014.

[49] ALF: Algebraic logic functional programming language. https:
//www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/
impl/fp_lp/alf/0.html. Accessed 2022-06-30.

[50] Andrej Bauer and Paul Taylor. The Dedekind reals in abstract Stone du-
ality. Mathematical Structures in Computer Science, 19(4):757–838, 2009.

[51] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance
semirings. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’07, pages
31–40, New York, NY, USA, June 2007. Association for Computing Ma-
chinery.

[52] Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. Func-
tional collection programming with semi-ring dictionaries. arXiv preprint
arXiv:2103.06376, 2021.

[53] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for ag-
gregate queries. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 153–164,
2011.

[54] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases. The VLDB Journal, 16(4):523–544, October 2007.

[55] Daniel Loeb. Sets with a negative number of elements. Advances in Math-
ematics, 91(1):64–74, 1992.

[56] Jacques Carette, Alan P. Sexton, Volker Sorge, and Stephen M. Watt.
Symbolic domain decomposition. In Serge Autexier, Jacques Calmet,
David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and
Alan P. Sexton, editors, Intelligent Computer Mathematics, pages 172–188.
Springer, 2010.

[57] José Nuno Oliveira and Hugo Daniel Macedo. The data cube as a typed lin-
ear algebra operator. In Proceedings of The 16th International Symposium
on Database Programming Languages, pages 1–11, 2017.

[58] J.N. Oliveira. Towards a linear algebra of programming. Formal Aspects
of Computing, 24(4):433–458, 2012.

[59] J. Oliveira. Typed linear algebra for weighted (probabilistic) automata.
Implementation and Application of Automata, pages 52–65, 2012.

[60] H.D. Macedo and J.N. Oliveira. Typing linear algebra: A biproduct-
oriented approach. Science of Computer Programming, 2012.

https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/fp_lp/alf/0.html
https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/fp_lp/alf/0.html
https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/fp_lp/alf/0.html

108 BIBLIOGRAPHY

[61] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and
Cosmin E. Oancea. Futhark: Purely functional gpu-programming with
nested parallelism and in-place array updates. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2017, pages 556–571. ACM, 2017.

[62] Sven-Bodo Scholz. Single-assignment C — functional programming using
imperative style. In 6th International Workshop on Implementation of
Functional Languages (IFL’94), Norwich, England, UK, pages 211–2113.
University of East Anglia, Norwich, England, UK, 1994.

[63] Oleg Kiselyov. Reconciling abstraction with high performance: A metao-
caml approach. Foundations and Trends in Programming Languages,
5(1):1–101, 2018.

[64] Amir Shaikhha and Lionel Parreaux. Finally, a polymorphic linear alge-
bra language (pearl). In 33rd European Conference on Object-Oriented
Programming (ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2019.

[65] Petr Hájek. Metamathematics of Fuzzy Logic. Dordrecht, Boston and
London: Kluwer Academic Publishers, 1998.

[66] Jacques Carette. Understanding expression simplification. In Proceedings of
the 2004 International Symposium on Symbolic and Algebraic Computation,
ISSAC ’04, page 72–79. ACM, 2004.

[67] Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu. Relational
algebra by way of adjunctions. Proceedings of the ACM on Programming
Languages: International Conference onf Functional Programming (ICFP),
2(ICFP):86, September 2018.

[68] Nevin Lianwen Zhang and David Poole. A simple approach to bayesian
network computations, 1994.

[69] Nevin Lianwen Zhang and David Poole. Exploiting causal independence
in bayesian network inference. J. Artif. Int. Res., 5(1):301–328, December
1996.

[70] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[71] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodný. Fdb: A query
engine for factorised relational databases. Proc. VLDB Endow., 5(11):1232–
1243, July 2012.

[72] Fritz Henglein. Optimizing relational algebra operations using
discrimination-based joins and lazy products. In Proc. ACM SIGPLAN
2010 Workshop on Partial Evaluation and Program Manipulation, pages
73–82, New York, NY, USA, January 18-19 2010. ACM. Also DIKU
TOPPS D-report no. 611.

BIBLIOGRAPHY 109

[73] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations
of query results. ACM Transactions on Database Systems (TODS), 40(1):2,
2015.

[74] Stefano Gogioso and Fabrizio Genovese. Infinite-dimensional categorical
quantum mechanics. In Ross Duncan and Chris Heunen, editors, Proceed-
ings 13th International Conference on Quantum Physics and Logic (QPL
2016), volume 236 of Electronic Proceedings in Theoretical Computer Sci-
ence. OSA, 2016.

[75] The Cell programming language. https://www.cell-lang.net. Accessed
2022-06-30.

https://www.cell-lang.net

	Introduction
	Whirlwind Tour
	Attributions
	Contributions
	Overview

	Preliminaries
	Motivation
	Prerequisites
	Structures
	Category Theory
	Categories Under Consideration
	Meet the Modules
	Inner Products and Adjoints
	Functors and Isomorphisms
	The Adjoint Perspective

	The Algeo Language
	Motivation
	Algeo Tutorial
	Definitions
	Functions
	Products
	Dataflow operations
	Booleans

	Syntax and Semantics
	Type System
	Axiomatic Semantics
	Justification of the Semantics
	Derived Equations and Evaluation
	Relation to Linear Algebra

	Denotational Semantics
	The Category of Terms
	The Category of Spans
	Interpreting Types
	Interpreting Morphisms
	Coherence

	Applications

	Query Processing
	Motivation
	Overview
	Linear Algebra as a Query Language

	Algebraic Evaluation
	Evaluation by Simplification
	Data Structures
	Free Structures
	Finite Maps

	Problem Statement
	Prior Art

	Tries
	Joins
	Degree and Cardinality
	Merging
	The Woes of Join
	Input Padding
	Worst-case Output Size
	Main Theorem

	Implementation
	Spaces
	Vectors
	Run-time Optimisation
	Evaluation
	GADT's Versus Type Families

	Discussion
	Related Work
	Algeo
	Query Processing
	Simplification

	Future Work
	Algeo
	Query Processing
	Simplification
	Bird's Eye View

	Conclusion

