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A B S T R A C T

With the emergence of deep learning-based Natural Language Pro-
cessing (NLP), the field of conversational Artificial Intelligence (AI)
has gone from a mere pipe-dream to full-blown commercial integra-
tion into our society in the span of less than a decade. The recent ad-
vances of conversational systems are primarily driven by data-hungry
models that require vast quantities of data, which poses several chal-
lenges in terms of the models’ performance and their societal impacts.

This thesis presents work that contributes to the field of NLP and
conversational AI in multiple ways. The first part explores methods
for building more intelligent dialogue systems. Here we examine how
user feedback can be incorporated to transfer knowledge from one do-
main to another more efficiently, how to resolve elliptical structures
in a conversational context and how bias in dialogue-based data col-
lection guidelines can manifest itself in the resulting corpora.

The second part looks at how NLP models adhere to socio-demographic
fairness principles under different constraints, namely compression
and privacy. While compressing neural models for the sake of a re-
duced memory footprint and inference cost is an attractive trait, we
find that pruning methods in text classification systems lead to an in-
crease in disparity of performance among different groups. Similarly,
model privacy is also shown to be at odds with fairness principles,
but we find that combined with distributionally robust optimization,
it can lead to both private and fair models.
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R E S U M É

Med fremgangen af sprogteknologi (NLP) baseret på dyb læring har
konversationel kunstig intelligens (AI) bevæget sig fra at være ønske-
tænkning til en fuldt ud kommerciel integrering i vores samfund på
mindre end et årti. De nylige fremskridt inden for sprogteknologi-
ske konversationelle løsninger har primært været drevet af modeller
som kræver enorme mængder af data hvilket giver giver flere udfor-
dringer, både med hensyn til deres ydeevne men også hvordan de
påvirker vores samfund.

Denne afhandling presenterer ny forskning der bidrager til NLP og
konversationel AI på flere måder. Den første del udforkser nye meto-
der til at konstruere mere intelligente dialogsystemer. Her undersø-
ges det hvordan man mere effektivt kan anvende feedback fra bruge-
re til at overføre viden fra et domæne til et andet, hvordan man kan
løse elliptiske konstruktioner i en konversationel kontekst og hvordan
bias i retningslinjer til dialog-baseret dataindsamling kan manifistere
sig i det resluterende korpus.

I den anden del tager kigger vi nærmere på hvordan NLP modeller
overholder socio-demografiske retfærdighedsprincipper når de bliver
udsat for forskellige restriktioner, mere specifikt komprimering og
modelprivathed. At komprimere neurale modeller for at reducere
deres hukommelsesafktryk og inferensomkostninger er en attraktiv
egenskab, men vi viser at denne process i tekstklassificeringsssyste-
mer kan medføre en ubalance i modellers ydeevne på tværs af forskel-
lige grupper. Tilsvarende ser vi også at modelprivathed som udgangs-
punkt er i modstrid med disse retfærdighedsprincipper, men når det
kombineres med robuste optimeringsmetoder kan det medføre både
private og retfærdige modeller.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

Conversations are one of the most central parts of human-to-human
communication, and while it, for you and me, may seem like a mat-
ter of course, it remains an intricate process between multiple sub-
jects that in the field of Artificial Intelligence (AI) has been studied
for decades (Austin, 1962). Natural Language Processing (NLP) is the
interdisciplinary field between linguistics, computer science and AI
that studies natural language from a computational perspective to
understand the interaction between humans and machines. The cre-
ation of intelligent conversational systems, using NLP, that mimics
the intricacies of human dialogue, in terms of expression but also
comprehension, has been a long outstanding goal of AI (Green et al.,
1961; Weizenbaum, 1966). As an academic field, NLP, and thus also
conversational AI, has seen massive a growth with the emergence
of deep learning (Gao, Galley, and Li, 2018; Ni et al., 2021) and par-
ticularly within the last few years with the rise of large pre-trained
language models (LM) (Bommasani et al., 2021).

Due to this growth, conversational systems using NLP have seen
a surge of commercial applications and success over the recent years.
Personal virtual assistants (such as the Google Assistant, Amazon’s
Alexa and Apple’s Siri) that enable users to interact with their smart
devices through speech to get directions, book appointments and con-
trol appliances are being deployed at an unprecedented rate. Mean-
while, organizations are at an increasing rate utilizing conversational
agents, e.g. for customer support related purposes. In 2019, the global
market for conversational systems was forecast to grow by almost
30% annually over a five year period.1

At the same time, critical decisions in our society, be it in areas
such as healthcare (Obermeyer et al., 2019), criminal justice (Rigano,
2018), or finance (Phaneuf, 2020), are increasingly being made with
the assistance of intelligent systems based on Machine Learning (ML)
and NLP. Machine-aided decision-making has many upsides, such as
a significant increase in efficiency and reduced monetary cost; how-
ever, it can also have unintended consequences if e.g. the models at
the foundation of the decisions favour one socio-demographic group
over another. This bias is harmful from a decision-making standpoint
and can unknowingly exacerbate itself in the long term. Without in-
forming the models we train with an implicit understanding of social
bias and negative stereotyping, they will inevitably reflect the bias

1 https://markets.businessinsider.com/news/stocks/global-chatbot-market-

anticipated-to-reach-9-4-billion-by-2024-robust-opportunities-to-arise-

in-retail-ecommerce-1028759508

3



4 introduction

contained in the data itself. Studying the ethical impacts of the algo-
rithms we deploy was for a time overshadowed by the many break-
throughs that NLP has experienced, but in recent years an increasing
number of concerning instances of biases has started to surface (see
examples in Section 1.2). As such, Ethical AI as a field on its own
is rapidly establishing itself2, with some of the biggest academic ML
conferences now requiring authors to discuss possible harmful im-
pacts of their research.3

In this dissertation, we explore two main directions of research. The
first is in the field of conversational AI, where we investigate how to
improve data efficiency and quality for training better dialogue and
question-answering systems and how we need to be mindful of po-
tential biases when collecting new resources. The second direction
studies the impact of the NLP models we deploy through the lens of
fairness, more specifically, how neural models satisfy fairness princi-
ples under different circumstances.

1.1 conversational artificial intelligence

Dialogue systems4 that communicate with users through text, speech
or a combination once only existed in the world of Sci-Fi books and
movies; however, with the technological advances we have been ex-
periencing in the past decades, it seems like we have achieved what
was previously only possible in fiction. The field of Conversational
AI has come a long way from its infancy of rule-based systems in
the 1960’s (Weizenbaum, 1966) to the new era of data-driven neural
models that deep learning has unlocked (Gao, Galley, and Li, 2018;
Ni et al., 2021; Serban et al., 2018). This section briefly summarises
the current landscape of dialogue systems, their role in society, and
the challenges we still face and, to some extent, address in this project.
This section only covers a fraction of the current research of dialogue
systems. For a more comprehensive review, refer to (Chen et al., 2017;
Jurafsky and Martin, 2020; Ni et al., 2021; Santhanam and Shaikh,
2019). When referring to conversational systems, we generally distin-
guish between two main categorizations, namely open-ended dialogue
systems (or chatbots) and task-oriented dialogue systems. The differences
are briefly outlined below.

2 For example the AIES conference: (AIES ’18: Proceedings of the 2018 AAAI/ACM Con-
ference on AI, Ethics, and Society 2018)

3 NeurIPS ethics statement: https://nips.cc/FAQ/EthicsFairnessInclusivityandCodeofConduct
4 Generally, the literature uses "dialogue systems" and "conversational systems/AI"

interchangeable; this chapter does so as well.



1.1 conversational artificial intelligence 5

1.1.1 Open-ended dialogue systems

Chatbots seek to simulate human-human dialogues by engaging users
in natural or informal conversations that do not necessarily have a
specific objective, and their application mainly lean toward entertain-
ment. Its use-cases have its roots in clinically psychology, with sys-
tems such as ELIZA (Weizenbaum, 1966) and PERRY (Colby, Weber,
and Hilf, 1971), but it has since evolved into conversational agents
that can pretty much talk about anything, like Cleverbot5 and Face-
books BlenderBot (Roller et al., 2021). The new school of open-ended
dialogue systems, using large-scale pre-trained LMs as their back-
bone, now offers features like incorporating personalities that pro-
vides the agents with more human-like mannerisms such as empa-
thy, more engaging talking points, and a notion of knowledge (Adi-
wardana et al., 2020; Dinan et al., 2019; Roller et al., 2021; Wolf et al.,
2019; Zhang et al., 2020). Nevertheless, human evaluation studies of
current open-ended dialogue systems indicate that these systems still
are far from perfect. They sometimes suffer from memory issues dur-
ing extended conversations, repetitions and contradictions, as well as
hallucinogenic behaviour (Roller et al., 2021).

1.1.2 Task-oriented dialogue systems

Where open-ended dialogue systems often do not have a specific
purpose in their communicative efforts, task-oriented dialogue sys-
tems on the other hand are concerned with providing a service that
achieves a goal. As mentioned previously, these can be virtual per-
sonal assistants, such as Siri or Alexa, that can search, play music, or
set alarms via voice-assisted commands. Compared to open-ended
dialogue systems, task-oriented dialogue systems often have a more
limited scope of interaction and are often designed using a modular
approach. The traditional task-oriented dialogue pipeline is usually
divided into four major components, namely (i) Natural Language
Understanding (NLU) for interpreting user intents, (ii) the Dialogue
State Tracking (DST) module to keep track of the history and current
internal state of the conversation, (iii) a dialogue policy for determin-
ing the next course of action and (iv) a Natural Language Generation
(NLG) module for generating a response to the user based on the cho-
sen action and internal state (Chen et al., 2017; Jurafsky and Martin,
2020). Although the modular design allows for highly optimized in-
dividual components, it might not improve the overall performance
when employed in conjunction. As an alternative, complete end-to-
end neural dialogue systems have been suggested as a more straight-
forward solution (Budzianowski and Vulić, 2019; Ham et al., 2020;

5 https://www.cleverbot.com/



6 introduction

Hosseini-Asl et al., 2020; Le et al., 2020; Lei et al., 2018; Li et al., 2017;
Peng et al., 2020).

Although open-ended, as well as task-oriented, dialogue research
overlaps in some aspects, such as generating responses in a natural
language, the research in Part ii of this thesis mainly focuses on the
task-oriented setting.

1.1.3 Challenges in conversational AI systems

Even though conversational AI as a field has come a long way, many
issues persist. Among the most prevalent ones are issues related to
data and ethics which are unfolded below.

data Data-driven dialogue systems are heavily dependent on high
quality data. Task-oriented dialogue systems are usually trained on
fully annotated large-scale corpora of human-human dialogue such
as MultiWOZ (Budzianowski et al., 2018; Eric et al., 2020; Zang et
al., 2020). Large-scale corpora can, due to their detailed level of an-
notation, be costly to collect, and can thus be a severely limiting as-
pect of improving the user experience. New unsupervised transfer
learning methods that leverage large quantities of raw text, and con-
versations, have, for this reason, been proposed. Wolf et al. (2019)
show that using transformer-based (Vaswani et al., 2017) generative
pre-training (GPT) (Radford et al., 2018) can result in more person-
able conversational agents. In the task-oriented setting Budzianowski
and Vulić (2019) simplifies the pipeline by providing a unified end-
to-end framework, based on GPT-2 (Radford et al., 2019). Zhang et
al. (2020) trains a tunable response generation model, DialoGPT, on
a large corpora of Reddit comments, leading to improved conversa-
tional representations for downstream dialogue tasks. In Part ii we
explore another approach of transferring knowledge when expand-
ing the domains supported by task-oriented dialogue systems that
relies on weaker supervision signals. Additionally, we also show how
data curators should be mindful of ways annotation guidelines nega-
tively can impact the quality of the data.

ethical concerns Since many of the state-of-the-art conversa-
tional systems are trained using large-scale dialogue datasets, this
makes them vulnerable to encoding implicit biases in the data (Hen-
derson et al., 2018). Cercas Curry and Rieser (2018) examine how con-
versational AI systems respond to sexual and offensive requests and
find that responses range from non-engaging behaviour in commer-
cial systems to flirtatious behaviour in data-driven systems. Dinan et
al. (2020) analyze and identify gender bias in a number of different
dialogue datasets and find that the dialogue systems induced from
said data reflect and even amplify this bias. They propose to mitigate
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gender bias through data augmentation (gender swapping) and bias
controlled training. Dinan et al. (2021) surveys the landscape of bias
and safety issues in end-to-end conversational models that are based
on large-scale LMs and provides a framework for how and when to,
or when not to, release them. In a similar line of research, (Bender
et al., 2021) takes a step back and analyzes, among others, the ethical
risks that these foundational models are associated with.

In the next section we delve further into the topic of bias and fair-
ness in NLP and steps we can take to mitigate bias.

1.2 fairness in natural language processing

With the rapid integration of NLP and ML in everyday software solu-
tions, it has become imperative to monitor the societal impact of the
algorithms we deploy (Hovy and Spruit, 2016). It is vital that these
system does not exhibit discriminatory behaviour against protected
groups and it is imperative that they ensure equal opportunity for
individuals across the entire population.6

A series of recent instances of systematic and algorithmic bias are
particularly concerning. Amazon discovered, that an attempt to use
AI to automate their recruitment process led to the model favouring
male candidates over their female counterparts due to lack of rep-
resentation in the data (Dastin, 2018). For the computer vision field,
Buolamwini and Gebru (2018) show that bias are also very present
in commercial gender classifications systems, such as facial recog-
nition systems, exhibiting a significantly higher error rate among
darker-skinned females compared to light-skinned males, again due
to under-representation in the data. Obermeyer et al. (2019) reveals
how a racial bias in prediction algorithms used in the U.S. health
care system, due to the reliance on biased predictor variables, un-
derestimates the medical needs of black patients compared to white
patients, affecting millions of people. They use health costs as a proxy
to reflect their health needs, and since less money was spent on black
patients, the model falsely estimated that black patients had the same
needs as healthier white patients. In the context of NLP, unsuper-
vised representations of words, such as word embeddings (Mikolov
et al., 2013; Pennington, Socher, and Manning, 2014) or contextual
representations derived from pre-trained LMs (Devlin et al., 2019; Pe-
ters et al., 2018; Radford et al., 2019) are synonymous with state-of-
the-art systems. They are often extracted from vast quantities of text
corpora that have been curated from the Internet. Since bias at the
fundamental level is inherently integrated into our society, models

6 Here we refer to groups that are legally protected due to attributes such
as age, gender and race. See the following URL for a complete list:
https://ec.europa.eu/info/aid-development-cooperation-fundamental-

rights/your-rights-eu/know-your-rights/equality/non-discrimination_en
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can unintentionally reflect the same systematic biases that we project.
Bolukbasi et al. (2016) show how word embeddings end up reinforc-
ing negative gender stereotypes by examining word analogies such as
"man is to computer programmer as woman is to X", where it turns
out "homemaker" is the most likely candidate. Similarly, we also see
that text generated by LMs, such as OpenAI’s GPT-3 (Brown et al.,
2020), have been shown to generate racist and toxic language when
prompted with specific snippets.7 Both Brown et al. (2020) and Abid,
Farooqi, and Zou (2021) also discuss the societal biases that GPT-3
encodes, such as occupation discrimination based on genders, how
the religion of Islam is associated with negatively loaded words like
"terrorist", and how different sentiments are attributed to different
ethnic races.

Adopting these representations blindly are therefore destined to
propagate these biases further downstream to the task at hand.

1.2.1 The Notion of fairness

As previously mentioned, one of the focus areas of this thesis is that
of fairness, which can be defined as the absence of prejudice and dis-
crimination for a group based on their descriptive attributes. We con-
sider an algorithm, or model, to be fair if the output is independent
of a set of given variables that should not influence the outcome of
the prediction. The work mainly focuses on personal traits such as
gender, disability, race, sexual orientation, etc.

In machine learning systems we usually quantify fairness by ob-
serving potential divergences in prediction rates on sub-populations
with labelled attributes. There exists many ways of measuring model
fairness. Gajane (2017) and Verma and Rubin (2018) formally de-
fines several agreed upon measures of fairness for analysing bias in
machine learning. In Part iii of this thesis, we mainly concern our-
selves with group fairness, which are derived from the notion of col-
lectivist egalitarianism for distributive justice (Gajane, 2017; Rawls,
1971). We outline a three different variations of group fairness and
the conditions a model is considered fair under: (i) demographic par-
ity: when protected groups should have equal rates of positive out-
comes. (ii) equality of opportunity: when protected groups should
have equal rates of true positives.and (iii) equalized odds: when pro-
tected groups should have equal rates of true positives and false posi-
tives.

7 https://www.technologyreview.com/2020/10/23/1011116/chatbot-gpt3-openai-

facebook-google-safety-fix-racist-sexist-language-ai/
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1.2.2 Common sources of bias

Properly identifying the origin of potential bias is an important tool in
reducing harmful societal effects. We generally distinguish between
three sources of bias, namely the data we train our models on, the
models themselves and the modelers behind them (Bommasani et al.,
2021).

data In NLP, text corpora lie at the foundation of our predictive
models. It is important that the data is representative of the real world
in the context we deploy them in. However, human subjectivity, as
well as underlying social biases, will manifest itself in the estimator
if not taken into account for (Caliskan, Bryson, and Narayanan, 2017;
Garg et al., 2018; Henderson et al., 2018; Paullada et al., 2020; Voigt et
al., 2018). When some demographics or other members of protected
groups represented in the dataset do not reflect the true population, it
can lead to poor generalization. To reiterate a previous example, Buo-
lamwini and Gebru (2018) show that gender classification systems fail
to correctly classify dark-skinned females more so than light-skinned
males due to being vastly underrepresented in the dataset. In Chapter
4 we show how a dataset containing a lexical bias can lead to worse
model generalization on benchmarks where it is removed.

models While data is a common perpetrator when it comes to
bias, Hooker (2021) argues against the notion that a biased model is
only a reflection of the underlying data it has been trained on and
that model design is an essential aspect of mitigating bias. The de-
cisions we make during the development of a model, be it choosing
an appropriate objective function, optimizer or the architecture itself,
can help tackle the amplification of bias. Jiang et al., 2020 show that
the tail-end, or underrepresented features in general, are learned later
in the training process, demonstrating that choosing a learning rate
can also affect the fairness of a model (Hooker, 2021). As an example,
in Chapter 5 we show how model compression can exacerbate the
bias of NLP models.8 In Chapter 6 we show how differentially pri-
vate models also suffer the same fate if not explicitly accounted for in
the objective function.

modelers Just like raw textual data in many ways reflect the hu-
mans (along with their systematic biases) it is curated from, the mod-
els are a reflection of the developers designing it. If representation
and diversity among the people building the system are poor, the
design decisions might mirror that. Bommasani et al. (2021) argues
that for e.g. multilingual model, flawed data handling of underrepre-
sented languages in multilingual datasets (Caswell et al., 2021), result-

8 Hooker et al. (2019) also shows this phenomenon in the realm of facial recognition.
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ing in biased models, could be prevented if a better representation of
developers could have identified the issue earlier. Furthermore, they
also note that as the end-users of the models most likely are more
diverse than those developing it and integrating user feedback in the
model design to reduce bias is one way to move forward.

1.2.3 Mitigating bias

With the recent focus on uncovering unintended biases in ML and
NLP, efforts have similarly been made in avoiding and rectifying
them, some which have been hinted at in the previous section. There
is a long list of literature that attempts to address the issue of bias,
especially gender bias, in many aspects of NLP ranging from word
embeddings (Bolukbasi et al., 2016; Zhao et al., 2018b), coreference
resolution (Rudinger et al., 2018; Zhao et al., 2018a), sentiment anal-
ysis (Kiritchenko and Mohammad, 2018), machine translation (Van-
massenhove, Hardmeier, and Way, 2018) and language modeling (Bor-
dia and Bowman, 2019). However, while many of these post-hoc de-
biasing methods have shown to reduce gender bias significantly, they
make no guarantees for gender neutrality (Ethayarajh, Duvenaud,
and Hirst, 2019; Gonen and Goldberg, 2019).

Proactive measures have also been suggested to help practitioners
document potential pitfalls when it comes to identifying bias in the
development stage. For example, Gebru et al. (2018) and Bender and
Friedman (2018) suggest to create datasheets and data statements for
your datasets, which urges the creater to better characterize aspects
of the data, including potential biases. Mitchell et al. (2019) proposes
an analogous concept for the models themselves, e.g. the setting the
trained model is best suited to be deployed in, along with extensive
evaluation on different demographic groups. Similarly, in their sur-
vey of bias in NLP, Garrido-Muñoz et al. (2021) lists a number of
steps that helps software engineers deal with stereotyping bias for
applications of large-scale LMs.

Several authors approaches bias mitigation by optimizing directly
for out-of-distribution mixtures of sub-populations using distribu-
tionally robust optimization techniques (Hashimoto et al., 2018; Hu
et al., 2018; Levy et al., 2020; Oren et al., 2019; Sagawa et al., 2020a),
which we also adopt in Chapters 5 and 6.

1.3 research questions

This thesis is the product of an Industrial PhD project executed in col-
laboration with the Danish insurance company Topdanmark and the
Department of Computer Science at the University of Copenhagen.
The project is funded partially by Topdanmark and partially by the
Innovation Fund Denmark. The role of this project in the context of
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Topdanmark has mainly been exploring possible research ideas re-
lated to expanding its current use of conversational agents used for
automating part of the more than 1 million annual customer support
related queries regarding, e.g. their insurance policies. A specific chal-
lenge that the research in this thesis tackles relates, in two ways, to the
data we base our dialogue systems on: Firstly, how user feedback can
be beneficial when expanding task-oriented dialogue systems to new
domains, where high-quality annotations are unavailable (Chapter 2)
—secondly, the importance of guideline formulations regarding bias
when setting out to collect and annotate new dialogue data (Chapter
4). We also explore how to resolve sluices, a frequent and challeng-
ing elliptical structure in informal conversations, which can lead to
downstream improvements for conversational Question-Answering
(QA) systems (Chapter 3).

As we saw in the previous section, systematic biases and fairness
of NLP models, with respect to socio-demographic groups, is a major
concern in commercial applications as models can seemingly appear
to perform well on the surface while still failing to accommodate mi-
nority groups (Sagawa et al., 2020b). Based on some of the challenges
we outlined in Section 1.2, we can conclude that the bias problem in
NLP is of great relevance for industrial adaptation, for both legal as
well as ethical reasons. It is crucial that when we deploy NLP solu-
tions, be it text classification or conversational agents, based on pre-
trained representations that have been shown to propagate negative
stereotypes, practitioners need to verify that the fairness principles of
the model in its intended environment still is satisfied. In this thesis,
we investigate how well they do this under different constraints, such
as model compression (Chapter 5) and privacy (Chapter 6).

As previously outlined, dialogue systems are an increasingly adopted
paradigm that has already seen commercial success, including at Top-
danmark. Due to the dependence on high-quality datasets, we still
face many challenges that require further attention, both in terms of
model performance and the ethical issues that follow. As a response
to the problems highlighted in the previous sections, we motivate the
research in this thesis with five research questions.

The first three questions concern how we can improve the gener-
alization performance of our dialogue systems, both in terms of the
datasets we rely on as well as how we adapt to new domains, but
also how we can improve the quality of our existing data by resolv-
ing ambiguous language in conversation:

• How do we leverage user feedback to more efficiently improve
the generalization capabilities of our dialogue systems?

• How can we resolve implicit content from a conversational con-
text to improve the quality of our dialogue systems?
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• To what extent does the formulation of conversational data col-
lection guidelines influence the resulting corpora?

In the next part we shift our focus from improving generalization
of dialogue systems to the ethical challenges that we face in NLP,
namely model fairness. More specifically, we are interested in exam-
ining socio-demographic fairness of NLP models when subjected to
certain limitations. The last set of research questions is as follows:

• How well does our NLP models satisfy fairness principles when
subject to compression techniques?

• How is fairness affected by group robust optimization objec-
tives when under the influence of privacy preserving methods?

1.4 thesis overview and contributions

This thesis explores multiple aspects of NLP and is divided into four
parts, spanning two main research directions. This first part (Part i)
introduces the PhD project and the context in which it was conducted.
In Part ii, our first research direction, we investigate methods that im-
prove dialogue systems in multiple ways. Firstly, by exploring how
to, more efficiently, transfer Dialogue State Tracking systems to new
domains using user feedback at the dialogue-level in combination
with Reinforcement Learning (Chapter 2). We then study how to re-
solve conversational sluices, a complex elliptical structure, in order to
ultimately improve downstream performance of conversational QA
models that struggle doing so implicitly (Chapter 3). Lastly, we in-
vestigate how a bias in annotation guidelines for dialogue-based data
collection frameworks can insert itself in the resulting dataset, ulti-
mately leading to poor generalization on data where the bias is not
present (Chapter 4). In Part iii, our second direction, we explore con-
cepts of model fairness and bias in ML and NLP, main how well they
do so under different constraints, such as model compression (Chap-
ter 5) and privacy (Chapter 6). Lastly, in Part iv we summarize and
discuss our findings from Chapters 2 to 6 and suggest directions for
furthering the research presented here.

We summarize the contributions of the chapters that constitutes
this dissertation (Parts ii and iii) as follows:

• Task-oriented dialogue systems are typically trained using man-
ually annotated data at the turn-level, which are cumbersome
and expensive to obtain. Chapter 2 explores how we more ef-
ficiently can, using reinforcement learning, transfer DST mod-
els to new domains, by instead leveraging reward signals at
the dialogue-level, that are more easily accessible in a realistic
scenario. Our experiments demonstrates how our policy gradi-
ent based method quickly adapts to new domains as well as
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improves in-domain performance of already converged model
trained with regular turn-level supervision.

• Stand-alone wh-word questions, such as When?, are generally
trivial for people to understand in a conversation, but can pose
a real challenge for dialogue systems to interpret correctly when
the context has to be retrieved from past turns. In Chapter 3

we introduce the task of conversational sluice resolution, a per-
vasive and challenging ellipsis phenomenon. We crowd-source
a new dataset consisting of roughly 4000 annotated conversa-
tional sluices, collected from pre-existing Question-Answering
datasets and present a series of baselines based on both sequence-
to-sequence models as well as large pre-trained language mod-
els. Our human evaluation of automatically resolved sluices
show that they can at times rival the performance of human
annotators.

• In Chapter 4 we introduce and analyse the concept of guideline
bias, the unintended bias that arises from how guidelines are
formulated, in datasets collected using the Wizard-of-Oz frame-
work. We show two things: (i) how a simple bias toward the
verb like easily leads us to overestimate performance in the wild
by showing performance drops on semantically innocent pertur-
bations of the test data and how we through data augmentation
can, to some extent, mitigate it and (ii) how the order of the in-
structions influence the structure of the resulting conversation.

• Compressing models while minimizing loss of performance is
crucial for storage and inference coast in the age of portable de-
vices but can have unintended consequences. In Chapter 5, we
study the impact of weight pruning on fairness in NLP. We eval-
uate demographic group disparity across two architectures, two
pruning strategies and two datasets, including multilingual sen-
timent classification and English toxicity classification. We intro-
duce a new metric, fairness sensitivity to pruning that measures
how Rawlsian min-max fairness across demographic groups de-
creases with weight pruning. Our results suggest that pruning
increases group-level performance disparities, mostly at high
pruning rates and with some variance across architectures and
pruning strategies. Group-level disparities seem to be in part a
result of the instability of weight pruning. Our results also in-
dicate that weight pruning in combination with distributionally
robust optimization objectives can sometimes be used to induce
fairer, sparse classifiers.

• Chapter 6 investigates how Differential Privacy (DP) impacts
model fairness in two different settings, namely under (i) a
baseline empirical risk minimization and (ii) a group distribu-
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tionally robust optimization. In line with previous work, our
results show how DP disproportionately impacts minority sub-
populations negatively during training in the baseline setting;
more interestingly, however, we show that DP not only miti-
gates the decrease but also can improve fairness compared to
our non-private experiments in the distributionally robust set-
ting.
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D O M A I N T R A N S F E R I N D I A L O G U E S Y S T E M S
W I T H O U T T U R N - L E V E L S U P E RV I S I O N

abstract

Task oriented dialogue systems rely heavily on specialized dialogue
state tracking (DST) modules for dynamically predicting user intent
throughout the conversation. State-of-the-art DST models are typi-
cally trained in a supervised manner from manual annotations at the
turn level. However, these annotations are costly to obtain, which
makes it difficult to create accurate dialogue systems for new do-
mains. To address these limitations, we propose a method based on
reinforcement learning for transferring DST models to new domains
without turn-level supervision. Across several domains, our experi-
ments show that this method quickly adapts off-the-shelf models to
new domains and performs on par with models trained with turn-
level supervision. We also show our method can improve models
trained using turn-level supervision by subsequent fine-tuning op-
timization toward dialog-level rewards.

2.1 introduction

Intelligent personal assistants, such as Amazon Alexa, Apple Siri and
Google Assistant, are becoming everyday technologies. These assis-
tants can already be used for tasks such as booking a table at your
favorite restaurant or routing you across town. Such dialogue systems
potentially allow for smooth interactions with a myriad of online ser-
vices, but rolling them out to new tasks and domains requires expen-
sive data annotation. In developing goal-oriented dialogue systems,
dialogue state tracking (DST) refers to the subtask of incrementally
inferring a user’s intent as expressed over a sequence of turns. The
detected user intent is then used by the dialogue policy in order to
decide what action the system should take (Henderson, 2015). For
example, in a chatbot-based train reservation system, DST amounts
to understanding key information provided by the user as slot-value
pairs, such as the desired departure and arrival stations, the day and
time of travel, among others. With the introduction of the Dialogue
State Tracking Challenges (Williams et al., 2013), this line of research
has received considerable interest.

State-of-the-art models for dialogue state tracking are typically learned
in a fully supervised setting from datasets where slots and values
are annotated manually at the turn level (Mrkšić et al., 2017a; Nouri

18
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Figure 1: Illustration of our proposed domain transfer dialogue state tracker,
using a model MP trained with turn-level supervision on dP as a
starting point for the fine-tuning policy πθ(s|a) on domain dF.

and Hosseini-Asl, 2018; Ren et al., 2018; Zhong, Xiong, and Socher,
2018). This allows for high-accuracy models in a select number of
domains, where turn-level annotations are available. However, such
annotations are cumbersome and costly to obtain, and, in practice, a
bottleneck for producing dialogue systems for new domains.

In this paper, we present an approach to DST that pre-trains a
model on a source domain for which turn-level annotations exist,
then fine-tunes to other target domains for which no turn-level anno-
tation is directly available. In particular, we use standard maximum
likelihood training to induce a supervised model for the source do-
main, and resort to Reinforcement Learning (RL) from dialog-level
signals (e.g., user feedback) for transferring to the target domain, im-
proving target domain performance and potentially saving massive
annotation efforts. In addition to this, we also report consistent gains
using dialogue-level feedback to further improve supervised models
in-domain.

contributions To summarize, our contributions are: Relying on
only dialogue-level signals for target domain fine-tuning, we show that
it is possible to transfer between domains in dialogue state tracking
using reinforcement learning, gaining a significant increase in perfor-
mance over baselines trained using source-domain, turn-level anno-
tations. Second, we show that policy gradient methods can also be
used to boost the in-domain accuracy of already converged models
trained in the usual supervised manner.
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2.2 baseline architecture

Our proposed model is based on StateNet (Ren et al., 2018), which
uses separate encoders for the two basic inputs that define a turn: the
user utterance and the system acts in the previous turn. These inputs
are represented as fixed-size vectors that are computed from n-gram
based word vector averages, then passed through a number of hidden
layers and non-linearities. We concatenate these representations, and,
for every candidate slot, we compare the result to slot representations,
again derived from word vectors and intermediate layers. We update
the hidden state of a GRU encoding the dialogue history.and compare
this representation to all candidate values for a given slot. From this,
we compute the probability of slot-value pairs. For efficiency reasons,
we modify the original StateNet model to only update the GRU that
tracks the inner dialogue state after every turn and once all slots are
processed within that turn, rather than after every computation of
slot values.

Embedding slots and values, and treating them as an input to the
model rather than as predefined classes, are important features of
StateNet: These features enable zero-shot learning and make the ar-
chitecture a natural choice for domain transfer experiments, even if
it is not the first to enable zero-shot learning in dialogue state track-
ing in such a way (Ramadan, Budzianowski, and Gasic, 2018; Zhong,
Xiong, and Socher, 2018). In addition to being well suited for do-
main transfer, StateNet also produces state-of-the-art results on the
DSTC2 and WOZ 2.0 datasets (Henderson, Thomson, and Williams,
2014; Mrkšić et al., 2017b).

Training our model is split into two distinct phases. From a pre-
training domain dP for which manual turn-level annotations are avail-
able, we learn a model MP, using the available dialogues to train our
system until convergence on a held-out development set. Then, for a
further domain dF /∈ D− dP, where D is the set of available domains,
we use a policy gradient training to fine-tune MP to the new domain,
based on simulated user feedback, corresponding to how many goals
we met at the end of the conversation. Figure 1 presents an overview
of this training process.

pre-training In the pre-training phase, we use our implemen-
tation of the StateNet model. Just as Ren et al. (2018), we focus on
predicting the user state and use the information about the system
acts contained in the data. During pre-training, we rely on turn level
supervision, training models on a single domain and evaluating on a
held out set from that same domain.
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2.3 domain transfer using reinforcement learning

dialogue state tracking with rl Given a pre-trained model
MP trained on a domain dP, we fine-tune it on a new domain dF.
Since we do not have turn-level annotations for the target domain,
we cannot use maximum likelihood training to adapt to dF. This also
means that standard domain adaptation methods (Blitzer, McDon-
ald, and Pereira, 2006; Daume III and Marcu, 2006; Jiang and Zhai,
2007) are not applicable. Instead, we frame our transfer learning task
as a reinforcement learning problem and use policy gradient train-
ing. This allows us to use dialogue-level signals as a reward function.
Policy gradient training has advantages over value-based RL algo-
rithms, including better convergence properties, ability to learn opti-
mal stochastic policies and effectiveness in high-dimensional action
spaces (Sutton and Barto, 1998). Within this paradigm, the dialogue
state tracker can be seen as an agent that interact in the environment
of a dialogue. Throughout the conversation, the DST model tracks
the presence of slots in the conversation and assigns a probability dis-
tribution over the values, if present. At the end of a dialogue, repre-
sented by a state s, our model goes through the slots and performs an
action, a, by sampling a value from the present slot-value probability
distribution. It then receives a reward based on how well it predicted
slot-value pairs. We illustrate this training regime using dialog-level
feedback in the lower half of Figure 1.

dialog-level reward signal In a real-world setting, dynam-
ically obtaining turn-level rewards, for instance from user feedback,
is not only costly, but undesirable for the user experience. In contrast,
acquiring user feedback at the end of a dialogue, for instance in the
form of a 5-star scale, is more feasible and common practice in com-
mercial dialogue systems.

For practical reasons, we simulate this feedback in our experiments
by the success our model achieves in correctly predicting slot-value
pairs, assuming that model performance is correlated with user sat-
isfaction. Concretely, we use the Jaccard index between the predicted
(SP) and ground-truth (SG) final belief state:

Rgoal =
|SG ∩ SP |
|SG ∪ SP |

(1)

policy gradient methods We define the policy network πθ as
the StateNet network, which is initialized with a pre-trained model
MP. The weights of the StateNet network are then fine-tuned using
stochastic gradient ascent, i.e., in the direction of the gradient of the
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Domain Dialogues
Dialogues
with only

one domain

Turns/
Dialogue

Slots
Values

(processed)
Split sizes

(train-dev-test)

Taxi 2057 435 7.66 4 610 326-57-52

Train 4096 345 10.26 6 81 282-30-33

Hotel 4197 634 10.95 9 187 513-56-67

Restaurant 4692 1310 8.78 6 330 1199-50-61

Attraction 3515 150 7.69 2 186 127-11-12

Table 1: Statistics of the MultiWOZ dataset. The reported numbers are from
our processed dataset.

objective function ∇J(θ). The update in the vanilla policy gradient
algorithm is:

∇J(θ) = ∇θ logπθ(a|s)Rgoal (2)

We update the policy of the network after each iteration, following
Sutton and Barto (1998).

variance reduction methods Policy gradient methods suf-
fer form certain shortcomings. For instance, they frequently converge
to local, instead of global, optima. Furthermore, the evaluation of
a policy is inefficient and suffers from high variance (Sutton and
Barto, 1998). A common way to circumvent the above-mentioned is-
sues is to introduce a baseline model (Weaver and Tao, 2001). It is
typically initialized as a frozen copy of the pre-trained model MP.
The baseline models the reward Bgoal at the end of the dialog. We
can then define an advantage of an updated model over the initial
one as Agoal = Rgoal − Bgoal. In addition to subtracting the base-
line, we also add the entropy H(πθ(a|s)) of the policy to the gradient
to encourage more exploration (Williams and Peng, 1991), in order
to counteract the local optima convergence shortcoming. With these
modifications to the policy update in Eq. (2), we can rewrite the final
gradient as:

∇J(θ) = ∇θ logπθ(s|a)Agoal +αH(πθ(s|a)), (3)

where α is a term that control influence of the entropy.

hill climbing with rollbacks Since the policy gradient meth-
ods are prone to suffer from performance degradation over time (Kakade,
2002), we employ a rollback method when the policy starts to deviate
from the objective. The performance of the model is monitored ev-
ery few iterations on the development set. If the new model achieves
greater rewards than the previously best model, the new model is
saved. Contrarily, we roll back to the previous model that performed
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best and continue from there following other exploration routes if
the reward failed to improve for a while. When the policy degrades
beyond recovery, the rollback in combination with the slot-value dis-
tribution sampling can give a way to a path that leads to greater re-
wards. We note our hill climbing with rollbacks strategy is an instance
of a generalized version of the win-or-learn-fast policy hill climbing
framework (Bowling and Veloso, 2001).

2.4 experiments

2.4.1 Data

We use the MultiWOZ dataset (Budzianowski et al., 2018) which con-
sists of 10, 438 dialogues spanning 7 domains: Attraction, Hospi-
tal, Police, Hotel, Restaurant, Taxi and Train. The dataset con-
tains few dialogues in the police and hospital domains, so we do
not include these as the single domain dialogues in these domains
did not contain belief state labels. The MultiWOZ dataset consists
of natural conversations between a tourist and a clerk from an in-
formation center in a touristic city. There are two main types of di-
alogues. Single-domain dialogues include one domain with a possi-
ble booking sub-task. Multi-domain dialogues, on the other hand, in-
clude at least two main domains. MultiWOZ is much larger and more
complex than other structured dialogue datasets such as WOZ2.0
(Mrkšić et al., 2017b), DSTC2 (Henderson, Thomson, and Williams,
2014) and FRAMES (El Asri et al., 2017). In addition, unlike the pre-
vious datasets, users can change their intent throughout the conver-
sation, making state tracking much more difficult. Table 1 presents
statistics of domains used in experiments with the distinction be-
tween the case when the dialogue consists of only one or more do-
mains.

preprocessing multiwoz The user utterances and system ut-
terances used to trained our models contain tokens that were ran-
domly created during the creation of the data to simulate reference
numbers, train IDs, phone numbers, arrival and departure times and
post codes. We delexicalize all utterances by replacing these randomly
generated values with a special generic token. In addition, we replace
the turn label values with this special token and add that to the ontol-
ogy. As mentioned by Mrkšić et al. (2017a), delexicalizing all values
is not scalable to large domains as that requires to always have a dic-
tionary holding all possible values. Therefore, we do not delexicalize
any other values. Since MultiWOZ only contains the current belief
state at each turn, we create the labels by registering the changes in
the belief state from one turn to the next. The annotators were given
instructions on specific goals to follow, however at times they did not
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follow this goal. This lead to errors in the belief state such as wrong
labels or missing information. These instances also propagate further
down to our assigned gold turn labels. Furthermore, while prepro-
cessing the data, we found that there are more values present than
reported iin the ontology, therefore the number of values presented
here is higher than what is reported in Budzianowski et al. (2018). We
release our preprocessed data and preprocessing scripts.1

2.4.2 Implementation Details

Our pre-trained StateNet model is implemented without parameter
sharing and is not initialized with single-slot pre-training as in Ren et
al. (2018). We use the Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 10−3. We use an n-gram utterance representation size
of 3 and 3 multi-scale receptors per n-gram. The supervised models
are trained using a batch size of 16. The size of the GRUs hidden
state is 200 and the size of the word embeddings is 400. In line with
recent methods for dialogue state tracking, we use fixed pre-trained
embeddings and do not update them during the training (Mrkšić
et al., 2017a; Ren et al., 2018; Zhong, Xiong, and Socher, 2018). We
use the established data splits for train, development and testing and
apply early stopping if the joint goal accuracy has not improved over
20 epochs.

When fine-tuning with policy gradient, we evaluate on the develop-
ment set every 5 batches, saving the model if the reward has increased
since last. We use an independent hill climbing patience factor of 15,
reverting back to the previous best model if no improvements were
made in that period. We use a batch size of 16 in our fine-tuning ex-
periments. When applying policy gradient methods in practice, larger
batch sizes have shown to lead to more accurate policy updates (Pap-
ini, Pirotta, and Restelli, 2017), but due to the relatively small training
sets we found a batch size of 16 gave us the best sample efficiency
trade-off. Our implementation uses PyTorch (Paszke et al., 2017) and
is publicly available.1

2.4.3 Experimental Protocol

setups In our experiments, we report a number of different re-
sults: 1) Training a DST model MP with the usual turn-level supervi-
sion on the different domains. We only use dialogues which strictly
contains the labels of that single domain. We hypothesize that this
serves as an upper bound to the performance of the policy gradient
fine-tuning. 2) Evaluating the pre-trained models as a cross-domain
zero-shot baseline. We take a model pre-trained on dP and measure
its performance on dF for all domains in D− dP. This serves as the

1 https://github.com/coastalcph/dialog-rl
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lower bound for the performance of the policy gradient fine-tuned
models. We use this baseline and not a model fine-tuned on dF with
cross entropy training with dialogue level supervision on the final
belief state, as we simulate not having gold labels for each slot-value
pair, but rather only a scalar rating as the sole signal. 3) Fine-tuning
the pre-trained model MP to all other domains with policy gradient
as described in Section 2.3. We experiment with domain transfer from
dP to all domains in D − dP using only the user simulated dialog-
level reward using policy gradient. 4) Lastly, we report the results of
fine-tuning a model using policy gradient on the same domain it was
pre-trained on, dP, after convergence in order to see if the dialog-level
reward signal can further improve its performance. We here use the
same training and development data as the supervised model was
trained on.

metric We measure the performance of our models with what we
refer to as the turn level accuracy metric, which measures the ratio of
how many of the gold turn labels are predicted by the DST model
at each turn. The reported accuracy is the mean of all turns in the
evaluation set.

2.5 results

In Table 2 we present the results from our baseline StateNet model
and from policy gradient training for the in- and out-of domain sce-
narios. We also report the average out-of-domain accuracies for each
domain, to illustrate how policy gradient training in general performs
compared to the baseline. The table show the performance of trans-
ferring from each domain to all other domains. From the results we
observe that in almost all domain transfer settings, with the exception
of restaurant to attraction, we get a consistent increase in perfor-
mance when applying policy gradient fine-tuning, compared to the
zero-shot transfer baselines. In some instances we also see an increase
in performance from further fine-tuning a model after turn-level su-
pervision convergence using only the dialogue-level reward feedback.
In the case of attraction, we are even able to increase the accuracy
by a large margin using in-domain policy gradient fine-tuning. On
average, we see relative improvements of the accuracy, ranging from
0.03 to 0.2, when applying our proposed method of fine-tuning for
DST domain transfer.

2.6 analysis

In order to illustrate the effectiveness of doing PG fine-tuning com-
pared to doing zero-shot domain transfer, we plot in Figure 2a the
results of training a model on the source domain hotel while eval-
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uating, on the development set, its zero-shot accuracy on the target
domain taxi, until convergence on the source domain. After conver-
gence we show how the PG fine-tuning uses the pre-trained model as
a starting point to further improve the accuracy on the target domain
using only the dialog-level feedback. Figure 2a also illustrates the im-
portance of the hill climbing technique we employ. When the perfor-
mance starts to deteriorate, it manages to revert back to a reasonable
baseline and improve performance from there instead. From the blue
baseline curve, we also observe that even though the accuracy con-
tinuously improves on the source domain, this is not necessarily an
indication of the performance on the target domain. On the contrary,
performance suddenly starts to deteriorate for the latter when the
model overfits to the source domain.

2.6.1 Error Analysis

In general we observe lower scores for both the baseline models and
in-domain fine-tuning on the attraction domain. We believe this
can be attributed to the fact that it only contains 150 dialogues, leav-
ing very little data for the development and test splits. Coupled with
the fact that it has 2 slots and 180 values, the risk of encountering
unseen slot-value pairs increases significantly.

In Table 13 (see Appendix) we present a couple of example turns
from the test set of the restaurant domain, with the system utter-
ance, user utterance and the predicted slot-value pairs for both the
baseline model, which has been trained on the hotel domain, and
the PG fine-tuned model. The slot-value pairs in green show correct
predictions, whereas pairs in red show incorrect predictions. From
the predicted slot-value pairs, we can for example see how the fine-
tuned model to a better extent is able to utilize the user and system
utterances to correctly predict what price range the user is looking
for, even though the baseline correctly predicts the slot presence.

2.6.2 Comparisons to Weak Supervision

We also pose the question of how many annotated dialogues in the
target domain are needed before policy gradient fine-tuning with
dialogue-level rewards is no longer beneficial, compared to fine-tuning
a model trained with turn-level cross entropy. In order to further in-
vestigate this, we use our pre-trained model in the taxi domain and
further finetune with varying amounts of dialogues i.e. s ∈ [10, 20, 30, 40, 50]
using turn level supervision for the restaurant domain. We then
fine-tuned each of the models on the restaurant domain using the
dialogue-level reward only. The results for these experiments are shown
in Figure 2b. Overall, we find that when we annotate just 10 complete
dialogues and then fine-tune our model using reinforcement learning
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(a) The performance of the supervised model trained on the hotel do-
main while evaluated on the development set of the taxi domain af-
ter each epoch until convergence on hotel versus the improvements
we get from the policy gradient fine-tuning using the supervised
model as starting point.

(b) The turn level accuracy of our weakly supervised fine-tuning com-
pared to fine-tuning using PG. Performance plateaus after about 50

samples for both methods.
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we still see an increase in performance. We observe that as we increase
the sample size s for our weakly supervised models, fine-tuning us-
ing policy gradient comes with diminishing returns. At around 50

samples, the performance of the weakly supervised baseline reaches
the performance of our system, and improvements from reinforce-
ment learning, if any, become significantly smaller.

2.7 related work

dst architectures The goal of Dialogue State Tracking is to
predict the user intent or belief state at each turn of the conversation.
The range of user goals or, slots and value pairs, that can possibly
be recognized by the system are contained in the domain ontology.
DST has for long been a part of spoken dialogue systems, however,
before the Dialogue State Tracking challenges (Henderson, Thomson,
and Williams, 2014; Williams et al., 2013) many of the early archi-
tectures relied on hand crafted rules (Sun et al., 2014, 2016; Wang
and Lemon, 2013). Later research has proposed RNN models that ex-
ploit delexicalized features (Henderson, Thomson, and Young, 2014;
Mrkšić et al., 2015; Rastogi, Hakkani-Tür, and Heck, 2017) in order
to allow the model to perform better and achieve generalization by
reducing the amount of labels. Delexicalization requires that all pos-
sible mentions of a slot and value are contained in a lexicon which
does not become scalable in larger domains. To address this, Mrkšić
et al. (2017a) proposed a neural belief tracker which uses pre-trained
word embeddings to represent user utterances, system acts and cur-
rent candidate slot-value pairs and utilizes these as inputs into a
neural network. Recent approaches have proposed sharing parame-
ters across estimators for the slot-value pairs (Nouri and Hosseini-
Asl, 2018; Ramadan, Budzianowski, and Gasic, 2018; Ren et al., 2018;
Zhong, Xiong, and Socher, 2018). Although not extensively investi-
gated, this would make the model more scalable as the amount of
parameters would not increase while the ontology size grows. In our
experiments, we adopt the model by Ren et al. (2018) as our super-
vised baseline.

domain transfer A key issue that remains unexplored by many
of the existing methods within DST is domain adaptation. Williams
(2013) presented some of the earliest work dealing with multi-domain
dialogue state tracking, investigating domain transfer in two dimen-
sions: 1) sharing parameters across slots, 2) sharing parameters across
single domain systems. Later research further expanded by using
disparate data sources in order to train a general multi-domain be-
lief tracker (Mrkšić et al., 2015). The tracker is then fine-tuned to a
single domain to create a specialized system that has background
knowledge across various domains. Furthermore, Rastogi, Hakkani-
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Tür, and Heck (2017) proposed a multi-domain dialogue state tracker
that uses a bidirectional GRU to encode utterances from user and sys-
tem which are then passed in combination with candidate slots and
values to a feed-forward network. Unlike our proposed method, they
rely on delexicalization of all values. In addition, their GRU shares pa-
rameters across domains. Ramadan, Budzianowski, and Gasic (2018)
introduced an approach which leverages the semantic similarities be-
tween the user utterances and the terms contained in the ontology.
In their proposed model, domain tracking is learned jointly with the
belief state following Mrkšić and Vulić (2018). We want to emphasize
that all previous models assume the existence of dialogue data anno-
tated at the turn level in the new domain. In our proposed method,
we model a more realistic scenario in which we only have a score of
how accurate the system was at the end of the dialogue given the
final user goal.

reinforcement learning in dialogue In task-oriented dia-
logues, the reinforcement learning framework has mostly been used
to tackle dialogue policy learning (Li, Williams, and Balakrishnan,
2009; Liu et al., 2018a; Singh et al., 2002; Williams and Young, 2007).
Gasic et al. (2013) proposed a method to expand a domain to include
previously unseen slots using Gaussian process POMDP optimiza-
tion. While they discuss the potential of their model in adapting to
new domains, their study does not present results in multi-domain di-
alogue management. Recent work has attempted to build end-to-end
systems that can learn both user states and dialogue policy using rein-
forcement learning. Zhao and Eskenazi (2016) propose an end-to-end
dialogue model that uses RL to jointly learn state tracking and dia-
logue policy. This model augments the output action space with pre-
defined API calls which modify a query hypothesis which can only
hold one slot value pair at a time. Dhingra et al. (2017) instead show
that providing the model with the posterior distribution of the user
goal over a knowledge base, and integrating that with RL, leads to
higher task success rate and reward. In contrast to our work, Gašić et
al. (2017) have tackled the problem of domain adaptation using RL to
learn generic policies and derive domain specific policies. In a similar
study, Chen et al. (2018) approach the problem of domain adaptation
by introducing slot-dependent and slot-independent agents. Our ap-
proach differs from the previously presented models in several ways:
a) we track the user state using RL, however, we do not learn generic
and specific policies ; b) we use RL to adapt models across many do-
mains and a large number of slot,value pairs; and c) we assume that a
reward is only known for target domain dialogues at the end of each
dialogue.
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2.8 conclusion

This paper tackles the challenge of transferring dialogue state track-
ing models across domains without having target-domain supervi-
sion at the turn level; that is, without manual annotations, which are
costly to obtain. Our setup is motivated by the fact that in a practi-
cal setting it is much more feasible to obtain dialogue level signals
such as user satisfaction. We introduce a transfer learning method to
address this, using supervised learning to learn a base model and
then using reinforcement learning for fine-tuning using our dialogue
level reward. Our results show consistent improvements over domain
transfer baselines without fine-tuning, at times showing similar per-
formance to in-domain models. This suggests that with our approach,
dialog-level feedback is almost as useful as turn-level labels. In addi-
tion, we show that using the dialogue-level reward signal for fine-
tuning can further improve supervised models in-domain.
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W H AT D O Y O U M E A N ‘ W H Y ? ’ : R E S O LV I N G
S L U I C E S I N C O N V E R S AT I O N S

abstract

In conversation, we often ask one-word questions such as ‘Why?’ or
‘Who?’. Such questions are typically easy for humans to answer, but
can be hard for computers, because their resolution requires retriev-
ing both the right semantic frames and the right arguments from
context. This paper introduces the novel ellipsis resolution task of re-
solving such one-word questions, referred to as sluices in linguistics.
We present a crowd-sourced dataset containing annotations of sluices
from over 4,000 dialogues collected from conversational QA datasets,
as well as a series of strong baseline architectures.

3.1 introduction

Stand-alone wh-word questions, such as When? in Figure 3, are easy
for us to understand, but in order to interpret them we need to re-
trieve implicit information from context. Learning to do so is an in-
stance of sluicing, an ellipsis phenomenon, defined by Ross (1969) as
‘the effect of deleting everything but the preposed constituent of an
embedded question, under the condition that the remainder of the
question is identical to some other part of the sentence, or a pre-
ceding sentence.’ In the context of conversations, one-word wh-word
questions are particularly frequent (Anand and Hardt, 2016; Rønning,
Hardt, and Søgaard, 2018), and because they are often hard to resolve,
they seem to be a frequent source of error in conversational question
answering (Choi et al., 2018; Reddy, Chen, and Manning, 2018) and
dialogue understanding (Vlachos and Clark, 2014). We refer to this
type of sluicing as conversational sluicing.

Unlike previous work where sluice resolution is treated as predict-
ing the span of the antecedent (Anand and Hardt, 2016; Rønning,
Hardt, and Søgaard, 2018), we frame conversational sluice resolution
as a Natural Language Generation (NLG) task, in which we seek to
automatically generate the full question, given a question-answer con-
text and a one-word question. To this end, we provide a novel corpus
of conversational sluice annotations and explore a series of strong
baselines and their performance on this dataset.

contributions In this paper we introduce the task of resolv-
ing conversational sluicing, a pervasive and challenging ellipsis phe-

32
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Q1: Where was the bombing?

A1:
San Diego’s Edward J. Schwartz Federal
Courthouse.

Q2: When?

R1: When [was the bombing?]

R2: When [was the bombing of San Diego’s
Edward J. Schwartz Federal Courthouse]?

Figure 3: Example of conversational sluicing. Q1 and A1 provides a context
for the second question Q2 which has multiple correct resolutions,
denoted in brackets, such as R1 and R2.

nomenon. We crowd-source a new dataset containing over 4000 an-
notated sluices, gathered from existing conversational QA datasets.
We conduct a series of baseline experiments on this task, using both
encoder-decoder frameworks, as well as language modelling objec-
tives, and show through human evaluation of the predicted resolu-
tions that these baselines are quite strong and at times even rival the
quality of human annotators.

3.2 background

sluicing Ellipsis is the linguistic phenomenon that describes the
omission of one or more words from a phrase that can be retrieved
from a previous context. Sluicing is a case of ellipsis where content is
elided from a question, leaving behind only the wh-remnant. Anand
and Hardt (2016) and Rønning, Hardt, and Søgaard (2018) consider
two types of sluices, namely embedded sluices and root sluices, also
sometimes referred to as bare sluices.

(1) My neighbor said he would stop by, but I don’t know when [he
would stop by].

(2) a. My neighbor is stopping by.
b. When [is the stopping by]?

In Example (1), we see an instance of embedded sluicing where the
question is a part of a larger structure, and (2) is an example of a
root sluice where the wh-fronted ellipsis is an utterance in itself, i.e.
in a root environment. Anand and Hardt (2016) note that sluicing in
dialogue often differs from sluicing in single-authored text, with root
sluices being more prevalent in dialogue. In dialogue, using sluices
– and ellipsis in general – requires a level of mutual understanding.
Colman, Eshghi, and Healey (2008) therefore use ellipsis in dialogue
as a means of quantifying mutual understanding in conversations.

Fernández, Ginzburg, and Lappin (2007) focus on the task of clas-
sifying occurrences of single-word sluices in conversations and call
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these bare sluices. They categorize such sluices into distinct categories;
(i) direct, which is the case where the sluice queries for additional in-
formation that was quantified, either explicitly or implicitly, in the
previous utterance; (ii) reprise, where the speaker is unable to under-
stand an aspect of the previous utterance, which the initial speaker
assumed as presupposed; (iii) clarification, where the speaker uses the
sluice to ask for clarification of the entire preceding utterance; (iv)
Wh-anaphor, where the antecedent is a wh-phrase; and (v) unclear, the
case where it is difficult understand what the sluice conveys, usually
because of a lack of proper context. Note that the direct, reprise and
clarification sluices are relatively easier to resolve, since their answer
can always be retrieved from the previous sentence. Our corpus there-
fore ignores the first three types of conversational sluices and focuses
on (bare or stand-alone) wh-anaphors; in our annotation experiments
below, we also allow annotators to skip unclear instances. Similarly,
Baird, Hamza, and Hardt (2018) presented classification experiments
learning to distinguish between different types of sluices in dialogue.

Conversational sluices usually depend on their question-answer
context, and can span both the previous utterances, i.e. the answer,
as well as the previous question, whereas direct/reprise/clarification
sluices only requires retrieval of context from the previous utterance.
Consider the multi-turn example:

A: Did Ned have family?

B: Yes.

A: Who [was Ned’s family]?

Resolving this sluice, depends on both the question initially asked
by speaker A in addition to the outcome of the answer from speaker
B. Looking only at the previous utterance, in this case, would not
provide sufficient context, as the Yes/No utterance of speaker B deter-
mines what information from speaker A is relevant for the resolution.

The first efforts to resolve (non-conversational, standard) sluices, by
identifying the antecedent of the wh-remnant, is due to Anand and
McCloskey (2015), who describe a linguistically-informed annotation
scheme for resolving sluices. They present a dataset of 3.100 anno-
tated examples of sluices extracted from the New York Times section
of the English Gigaword corpus. Anand and Hardt (2016) presented
the first sluice resolution system, achieving decent performance, but
Rønning, Hardt, and Søgaard (2018) subsequently presented a neural
multi-task architecture outperforming their original model by some
margin.

A few researchers have explored ellipsis resolution in dialogue:
Kazuhide and Eiichiro (1998) discussed the importance of being able
to resolve sluices to understand dialogue. They showed that for cer-
tain types of conversational ellipsis, it is possible to achieve good re-
sults with simple classification algorithms. Their results are not com-
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parable to other results in the literature, because they focus on a small
subset of phenomena, rely on linguistic preprocessing, and consider
ellipsis phenomena in Japanese. Rønning, Hardt, and Søgaard (2018)
also evaluates on conversational data from English Open Subtitles.
Their results suggest that resolving sluices in dialogue is harder than
domains such as newswire, with F1 resolution scores dropping from
> 0.7 in newswire to around 0.5 for conversations. As stated, these
previous approaches to sluice resolution differs from ours, as we seek
to generate a reconstruction of the sluice, not predict the span of the
antecedent. Due to the fact that in a conversational context, the an-
tecedent is conditioned on the response to the initial question in our
question-answer context, it often results in disjoint antecedent spans,
which cannot be represented in the architecture proposed by Rønning,
Hardt, and Søgaard (2018). The advantage of resolving the sluice us-
ing NLG approaches is that for most downstream purposes, a fluent
paraphrase of the wh-word and the antecedents is preferred and not
only an antecedent span, that as stated above, can be non-coherent.

question generation Researchers have worked on question
generation from text paragraphs (Zhao et al., 2018c), relative clauses
(Khullar et al., 2018), SQL queries (Guo et al., 2018), knowledge bases
(Serban et al., 2016), etc. Khullar et al. (2018), which is probably the
problem set-up most similar to ours, albeit much simpler, consider rel-
ative clauses such as in I am giving fur balls to John who likes cats. Their
simple observation is that relative clauses translate almost straight-
forwardly into questions, e.g., Who likes cats?. Using a small set of
heuristic rules, they extract relative clauses and use them to generate
training data for machine comprehension. Our task is considerably
harder, since we deal with an ellipsis phenomenon that requires us
to find antecedents in the previous dialogue turns. Our approach is
also very different. While Khullar et al. (2018) can solve their problem
with simple rules, we cannot, and we therefore present neural base-
line architectures originally developed for language modeling and
transduction tasks.

3.3 a conversational sluicing dataset

In this work, we present a crowd-sourced annotated sluicing dataset.
The dataset consists of sluice occurrences in conversational question
answering contexts. The conversations are teacher-student dialogues,
where the teacher asks questions about a background text passage,
and the student has to answer the teacher’s questions. Sluices, and
ellipsis in general, are frequent in the data. Each datapoint consists
of (i) an initial question, Q1, (ii) an answer to Q1, A1, together form-
ing the QA context (Q1,A1), (iii) a one word follow-up wh-question,
Q2, (iv) a gold annotated resolution, R, to the sluice in (iii), written
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in free-text. The resolutions are what we crowd-source to construct
the new conversational sluicing dataset. Given question-answer con-
text pairs (Q1,A1) and one-word follow-up questions Q2, we seek
to resolve conversational sluices by generating the full questions R
by explicitly generating the elided context, therefore framing it like a
NLG task, rather than an antecedent selection task as done by Røn-
ning, Hardt, and Søgaard (2018) and Anand and Hardt (2016). This
also dramatically simplifies the annotation process as we only seek a
resolved sluice in the form of R instead of the annotation scheme used
by Anand and McCloskey (2015) and Rønning, Hardt, and Søgaard
(2018), i.e. explicitly annotating the antecedent, sluiced expression,
main predicate of the antecedent clause as well as potential correlates
in addition to annotations for the auxiliary tasks.

This section describes the process of collecting and cleaning the
annotations, and presents a quantitative and qualitative analysis of
the dataset.

data collection methodology In order to obtain our conver-
sational sluicing dataset, we crawl existing conversational QA datasets,
namely QuAC1 and CoQA2 (Choi et al., 2018; Reddy, Chen, and Man-
ning, 2018), for question-answer contexts with one-word follow-up
questions. Specifically, we identify all occurrences of five one-word
questions: Why?, What?, Where?, Who? and When?. For each such
question, we construct a tuple of the previous QA context and the
follow-up question. This process results in roughly 4200 examples of
conversational sluices.

We then proceeded to ask Amazon Mechanical Turkers (AMT) to
fill out the remainder of the question as asked by the interrogator
based on the the question-answer context pair. In order to not impose
too many restrictions on the annotators, we left it up to the AMT
workers to decide how much of the elided information they wanted
to include in their answer, as a conversational sluice can often be
solved in multiple ways. For example, in Figure 3 we consider both
R1 and R2 as correct resolutions to the conversational sluice, even
if R1 did not specify the PPN San Diego’s Edward J. Schwartz Federal
Courthouse as the location of the bombing. In general, annotations of-
ten differed in whether modifiers and relative clauses were included,
whether or not previous anaphora was resolved, etc. If the previous
question and answer did not provide enough context to fill out the
elided information, the workers were informed to simply skip it and
move on to the next example. We collected a single annotation for
each sluice in the training and test splits, and three annotations for
each sluice in the test set. For the test set, we use each unique anno-
tation as a separate datapoint. We allocated 1 minute per annotation

1 https://quac.ai/

2 https://stanfordnlp.github.io/coqa/
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and paid the workers $0.13 for each accepted annotation. The average
time spent per assignment was around 20 seconds, which resulted in
an hourly rate of $23.4. The total cost of the crowd-sourcing process
was $797.

For our final corpus, we filter out the examples skipped by the
annotators, in addition to the conversational sluices whose Q1 con-
text is less than 3 words, as these showed empirically to not contain
enough information, usually due to Q1 being a sluice itself. Consider,
for example:

Q1: By who?

A1: Unknown assailants.

Q2: Where?

Without first resolving the sluice By who?, we are unable to properly
identify the antecedent, as it is unclear whether or not Q2 refers to
the current location of the assailant or the location of the actual as-
sault. These are also the sluices categorized as Unclear by Fernández,
Ginzburg, and Lappin (2007). After cleaning, we reduced the initial
size from 4980 to 4175 datapoints.

corpus statistics In Table 3, we show the distribution of the
different wh-questions across the various splits in our corpus. The
dataset contains both instances of conversational sluices as well as
reprise/direct/clarification sluices. We release the raw annotated ver-
sion of the conversational sluicing corpus, as well as our cleaned ver-
sion which we report our results on, including the splits used.3

Split Why Where Who What When Total

train 851 714 513 302 702 3082

val 84 71 54 39 52 300

test 229 183 97 83 201 793

Total 1164 968 664 424 955 4175

Table 3: Statistics of the wh-word distribution across the different splits for
our conversational sluicing dataset.

Empirically, we did not observe many long distance dependencies
between the sluice and corresponding antecedent, as it was found
within a three-turn window a majority of the time (around 95%). Røn-
ning, Hardt, and Søgaard (2018) similarly reports that long term de-
pendencies (3 or more sentences between sluice and antecedent) are

3 https://github.com/vpetren/conv_sluice_resolution
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very rare (around 1%). Solving these rare dependencies would also
be an interesting task, but is however outside the scope of this work.
This dataset provides a reasonable limitation for a stab at an already
challenging phenomenon.

performance metrics Natural language generation systems are
often evaluated in terms of BLEU scores (Papineni et al., 2002) and
on subsamples of standard corpora. Neither are likely to be optimal.
Finding an appropriate performance metric that correlates with hu-
man judgments of resolution quality, is crucial to ensure progress
on conversational sluicing resolution; and evaluating across different
samples is equally important to avoid community-wide over-fitting
to one particular sample. We hope to be able to contribute to improv-
ing both performance metrics and the data situation, but for now
we also report the performance of our baseline systems in terms of
BLEU scores on a random subsample. In order to combat the bias in-
troduced by BLEU, we supplement the scores with alternative perfor-
mance metrics, as well as with human judgments from professional
annotators. BLEU originally was intended for corpus-level evalua-
tion and has several limitations when applied at the sentence-level
(Rapp, 2009). We therefore also include the GLEU metric, as proposed
by (Wu et al., 2016), which according to their experiments, is better
suited for sentence-level evaluation, while still correlating well with
BLEU on the corpus-level.4 In addition to BLEU and GLEU we also
measure the the character n-gram F-score (chrF) (Popović, 2015), as
well as the precision (chrP) and recall (chrR). We use β = 3, i.e.
assigning a higher weight to recall, as it has been shown to corre-
late better with human judgements than other popular automatic ma-
chine translation metrics, such as BLEU and ROGUE-L. For n we use
4-grams.

Given the shortcomings of automatic evaluation metrics, we also
include a human evaluation study. We sample n contexts along with
the gold sluice resolution and the resolutions generated by our base-
line models from the test set and ask human evaluators to rank them
according to relative quality. We obtained judgments of 100 document
instances and report on these experiments in §3.5.

annotation quality In the last row of Table 4, Ann Agree, we
report the inter-annotator agreement scores of the test set. For each of
the 3 collected annotation per conversational sluice instance, we sam-
ple 2 of them and calculate BLEU, GLEU, chrF, chrP and chrR scores
between them as a measurement of annotator agreement. As different
annotations can be considered correct sluice resolutions, we use this
measurement as a means to set an expectation for the performance

4 We use the sentence-level GLEU and BLEU implementations provided by NLTK
with the smoothing function introduced by Lin and Och (2004)
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Model GLEU BLEU chrF chrP chrR

C&E Q1 0.035 0.043 0.114 0.034 0.166

C&E A 0.010 0.016 0.034 0.011 0.048

LSTM-seq2seq 0.232 0.304 0.276 0.311 0.274

Transformer 0.337 0.391 0.443 0.461 0.442

GPT-2 0.067 0.117 0.138 0.109 0.167

GPT-2 (FT) 0.348 0.391 0.467 0.499 0.470

Ann Agree 0.570 0.589 0.712 0.704 0.720

Table 4: Results on our conversational sluicing dataset for a series of baseline
architectures. We measure the performance using BLEU, GLEU and
character n-gram F-score, precision and recall on the test split. In
the last row, Ann Agree denotes the inter-annotator agreement as
the average between two randomly sampled gold annotations from
each data point of the test set.

ceiling of our models. In general we observe that there seems to be
reasonably high annotator agreement scores compared to the best
performing models, but still indicates that the sluices can be solved
in multiple correct ways.

3.4 experiments

In our experiments, we use the splits outlined in Table 3 (also made
publicly available). We preprocess our data by appending the QA con-
text and one-word question together, converting the input sequence
into the format <s> Q1 <del> A1 <del> Q2 </s> and the target se-
quence we seek to generate as <s> R </s>. Here <del> is a special
delimiter token, and <s> and </s>, denote the beginning and end
of the sequence. In addition to this, we only preprocess the data by
performing lower-casing and tokenization.

3.4.1 Baseline models

In this section, we present a number of different baseline architectures
and heuristics for the task of conversational sluice resolution.

copy & edit heuristics Seeing as the structure of the resolved
sluice in some cases takes on the form of either Q1, especially in the
cases where a yes/no answer precedes it, or A, as seen in Figure 3,
we propose two simple copy and edit heuristics. (i) Given the QA-
context and our conversational sluice Q2, we simply replace the wh-
question word in Q1 with Q2 and use this augmented question as the



40 what do you mean ‘why?’: resolving sluices in conversations

Model MRR r1

LSTM-seq2seq 0.295 0.005

Transformer 0.381 0.030

GPT-2 (FT) 0.529 0.190

Gold 0.879 0.775

Table 5: The results of the human judgement experiment. To obtain human
judgments, we asked three annotators to rank the output of three
systems and the crowd-sourced gold annotations. MRR is the mean
reciprocal ranking, and r1 refers to the fraction of presented exam-
ples where the model was ranked as number 1. Our results show
that the fine-tuned GPT-2 model produces favorable resolutions,
both in terms of automatic as well as human evaluation and 1/5

instances better than gold annotations.

resolution to our sluice. We refer to this as C&E Q1. (ii) Similarly, we
can copy the answer from A and prepend the Q2 sluice to it. We refer
to this as C&E A.

lstm-seq2seq Sequence-to-sequence models (Sutskever, Vinyals,
and Le, 2014), or seq2seq, have previously been successfully applied
to conversational modelling tasks (Vinyals and Le, 2015). They use the
encoder-decoder framework, where an input context is encoded by
an encoder-module, usually a variant of Recurrent Neural Networks
(RNNs), and decoded by a decoder-module, into the target sequence.
For both the encoder and decoder, we use a standard two-layer LSTM
(Hochreiter and Schmidhuber, 1997), with a hidden state size of 512,
and regularized using a dropout rate of 0.5. We initialize the embed-
ding matrix with 300 dimensional GloVe (Pennington, Socher, and
Manning, 2014), which remains fixed during training. We optimize
the end-to-end network using Adam (Kingma and Ba, 2015), with the
default learning rate of 0.001.5

transformer The transformer architecture (Vaswani et al., 2017)
is now the de facto standard architecture in machine translation and
has paved the way for state-of-the-art pre-trained contextual language
encoders such as BERT (Devlin et al., 2019) and the OpenAI GPT-2
(Radford et al., 2019). While still adopting the encoder-decoder frame-
work, instead of processing the source and target sequences sequen-
tially, it relies on a multi-headed self-attention mechanism, attend-
ing over the entire sequence at same time, allowing for greater par-
allelization and a positional encoding of the sequence, ensures that
contextual information is maintained. As our conversational sluicing
resolution corpus is small in comparison to the corpora used in the

5 Implementation is based on https://github.com/bentrevett/pytorch-seq2seq.
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experiments by Vaswani et al. (2017), we limit ourselves to three en-
coder/decoder layers to 3 (compared to 6 in their work), after ob-
serving improvements on our validation data.6 As with the LSTM-
seq2seq model, we initialize the embedding matrix with 300 dimen-
sional GloVe embeddings, but otherwise we use the defualt hyperpa-
rameters.

gpt-2 The generative pre-trained transformer (GPT-2) (Radford et
al., 2019), trained to simply predict the next word in 40GB of Inter-
net text, has since its introduction been used to generate state-of-the-
art performance on multiple language modelling datasets. The GPT-2
architecture, as mentioned above, is based on the transformer archi-
tecture. In our experiments, we use the small pre-trained model re-
leased by OpenAI (117M parameters). We experiment both with the
pre-trained GPT-2 model as is, as well as with fine-tuning it on our
sluicing corpus. When fine-tuning the model, we simply concatenate
the input and output sequences together and input them to the lan-
guage model. Unlike the LSTM-seq2seq and Transformer, we do not
fine-tune the GPT-2 model until convergence, but instead we ran it for
18 hours on an Nvidia TitanX GPU. We also report the performance
of the GPT-2 model on our task when no fine-tuning has taken place.

other baselines considered Inspired by Hill, Cho, and Ko-
rhonen (2016) and Lample et al. (2018), we also experimented with
pre-training the Seq2Seq-LSTM and Transformer architectures with
sequential de-noising autoencoder objectives. We collected a dataset
consisting of 350.000 questions from CoQA, QuAC and SQuAD 2.0,
making sure not to include cases of sluices, hypothesizing that this
would allow the encoder and decoder to learn the internal structure
and representation of questions. After pre-training, we fine-tune the
architectures on our conversational sluicing data. These experiments
did, however, not lead to any improvements in the performance when
using automatic metrics. A manual inspection of the generated reso-
lutions did not reveal any noticeable improvements over their non
pre-trained counterparts, so we do not report the results below.

Again, we stress that due to the reasons listed above, i.e. incom-
patible annotation schemes between our work and that of Rønning,
Hardt, and Søgaard (2018) as well as the lack of flexibility that a span-
prediction model provides, we do not use their work as a baseline. We
hypothesize that our heuristics, C&E Q1 and C&E A, will serve as an
indication as to what we can expect from these types of models.

6 Implementation is based on https://github.com/jadore801120/attention-is-

all-you-need-pytorch/
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3.4.2 Results

Table 4 summarizes the results from our baseline models on our con-
versational sluicing corpus, using standard automatic performance
metrics. The results suggest that the fine-tuned GPT-2 architecture
is superior to all other baselines across the board, achieving scores
closest to the inter-annotator ceiling, with the Transformer model
rivalling it on the BLEU score. Although the C&E Q1 and C&E A
heuristics could seem like strong baselines, as some of the examples
in Table 6 and Figure 3 might suggest, our results tells a different
story. Again, this illustrates the flexibility that is required to resolve
these conversational sluices, which a non-disjoint antecedent span
fails to capture. We can observe that without the task-specific fine-
tuning, the GPT-2 model falls short, as it ultimately just proceeds to
generate what comes after the sluice, not resolving it. However, this
extensive pre-training does shine through compared to the Trans-
former model, when fine-tuned on our dataset as we also can see
from our human evaluation (illustrated in Table 5), which we discuss
in the next section.
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Figure 4: Illustration of the attention weights from all the 8 attention heads
in the final decoder layer of the Transformer network. The x-axis
corresponds to the position in the input sequence, whereas the
y-axis corresponds to the output sequence.
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Figure 5: Illustration of the attention weights from a single attention head
in the 3-layer Transformer network, during decoding. The x-axis
corresponds to the position in the input sequence, whereas the
y-axis corresponds to the output sequence.
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Context LSTM-s2s Transformer GPT-2 Gold

Q1 : What did Susie do?
A1 : Woke up.
Q2 : When?

When did they
go??

When did Susie
woke up?

When did Susie
wake up?

When did Susie
wake up?

Q1 :
Did the island ever
change its form of
government?

A1 : Yes.
Q2 : When?

When did the ob-
jective of the??
Scotland?

When did the is-
land change its
form of govern-
ment?

When did the is-
land form?

When did the is-
land change its
form of govern-
ment?

Q1 :
Is there any
mysterious character?

A1 : Yes.
Q2 : Who?

Who is the
other??

Who are the char-
acter in?

Who was the fa-
mous person that
was added to the
story?

Who is the myste-
rious character?

Q1 :
Did he say anything
before leaving?

A1 : Yes.
Q2 : What?

What did he do ? What did he say? What did he say
before he left?

What did he say?

Table 6: Generated output from our series of baselines, given a question-
answer context, (Q1, A1) and follow-up one-word question. Exam-
ples are taken from the test split.

3.5 analysis

human judgment of generated resolutions Knowing that
our automatic evaluation metrics can be biased when applied at the
sentence-level, we also include a human evaluation study on a ran-
dom sample of 100 instances of sluices. We asked human evaluators
to rank the resolutions generated by our best performing models, i.e.
the LSTM-seq2seq architecture, the Transformer architecture, our
fine-tuned GPT-2 model, as well as the human annotators’ resolu-
tions, by their quality and relevance in a QA context. We presented
the four resolutions in random order and asked subjects to place
them, from best to worst. If they deemed two or more candidates
to be equally good or bad, we instructed them to simply order these
randomly. We report performance using the Mean Reciprocal Rank
(MRR), and what we refer to as r1, which denotes the fraction of
presented examples where the model was ranked as number 1. Our
evaluation, shown in Table 5, reveals that the human judges tend
to favour the resolutions provided by GPT-2 (FT) over the ones pro-
duced by the Transformer architecture. In fact, the GPT-2 resolu-
tions are chosen over all other resolutions, including our gold stan-
dard, in 1/5 instances. Generally we see the same trend in the human
evaluation experiment as with the automatic metrics, except that the
GPT-2 model now significantly outperforms the other baselines. We
believe this can be attributed to the fact that our human judges may
be biased toward selecting well-formed resolutions, and the GPT-2
language model may simply be better at generating fluent language.

To illustrate an instance where GPT-2 can generate a more expres-
sive resolution than our gold standard, consider the example in Fig-
ure 6. Here, the fine-tuned OpenAI GPT-2 model generates a resolu-
tion that the judges found to be better than the gold standard, not
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because the gold-standard was wrong, but because the automatic res-
olution was more informative, easing interpretation.

Q1: Is anyone who works with them mentioned?

A1: Yes.

Q2: Who?

RGPT2: Who [else is mentioned]?

RGold: Who [is mentioned]?

Figure 6: Conversational sluice resolution by the fine-tuned GPT-2 model
that is judged better than the gold standard by our annotators.

visualization of attention weights An advantage of the
attention mechanism, is that it allows for high interpretability, when
it comes to the showing where in the input sequence the model is at-
tending at a given time-step. To get a better understanding of where
the Transformer attends during decoding, we visualize the internal
attention mechanisms of the model trained on our conversational
sluicing corpus. Figure 5 shows the attention matrix heatmaps of a
single attention-head in each layer and Figure 4 shows the attention
matrix heatmaps for each of the 8 attention-heads in the last layer of
the Transformer. When looking at Figure 5, we see that the various
layers encode different levels of information, with the attention-head
of the last layer seemingly being the most structured. From Figure 4,
we can observe that the various attention-heads mostly present the
same pattern. When generating the first word of the resolution, the
attention is at the end of the input sequence, i.e. on the wh-fronted el-
lipsis. Generating the subsequent tokens then shifts the attention back
to the beginning of the input sequence and learns to integrate the
information of the question-answer context, as the resolution of the
conversational sluice tends to repeat the structure of the antecedent
of both the question and answer.

inspection of model output Table 6 present examples of con-
versational sluices from the test set along with the resolutions gener-
ated by our baselines as well as a gold annotated resolution. From
the examples, we can observe that the LSTM-seq2seq often produces
more nonsensical and less grammatically correct sentences, e.g. overus-
ing question marks and inserting them in the middle of the sentences
and it generally performs best when the input context and resolu-
tions are short.The output of the Transformer does improve upon
the results of the LSTM-seq2seq, producing more correct and coher-
ent sentences, however, the lack of pre-training compared to GPT-2,
still results in less expressive sentences. Most impressive are the re-
sults from the fine-tuned GPT-2 model. From its r1 value we can see
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that almost 20% of the instances, it actually generates a sluice resolu-
tion that our human judges ranked higher than the gold resolution.
E.g., in the last sample generated by the GPT-2 model, demonstrates
how it is able to incorporate all the information of the initial question
Q1, to a much higher degree than the what the annotator noted. The
extensive pre-training does however allow the generated output to
deviate a bit too much from the objective, as seen in the 3rd row.

applying sluice resolutions in qa systems As mentioned
in §3.1, the ability to resolve occurrences of ellipsis, either implicitly
or explicitly, is important for question-answering system. With our
gold annotated sluice resolutions, we replace instances of conversa-
tional sluices in the CoQA development set with their resolved coun-
terparts, and evaluate the quality of the answers their baseline model
provides.7 In Figure 7, we see how the resolution of the conversa-
tional sluice leads to a much better answer, Ano−sluice, compared to
the case where the model has to automatically draw the connection
between ‘Why?’ and the context inQ1 and A1. Of course injecting our

Q1: What did Valetta think Mysie mustn’t do?

A1: Stay out after dark.

Q2:
Why [does Valetta think that Mysie
shouldn’t stay out after dark]?

Ano−sluice: For fear she should cough.

Asluice: no.

Agold: Fear she should cough.

Figure 7: A case where resolving the sluice in the an instance of the CoQA
dataset improves the performance of QA system. Ano−sluice is
the answer generated when information contained in the bracket
is included.

annotations into the input at test time also biases the input data, mak-
ing it less similar to the training data, and for this reason resolving
sluices this way did not lead to significant improvements on average.

3.6 conclusion

This paper addresses the challenge of resolving occurrences of con-
versational sluices; that is, correctly identifying the antecedent of a
bare wh-fronted ellipsis in a dialogue setting. We frame the task as
a language generation task, where we seek to generate the elided
material. To this end, we crowd-sourced a new dataset of conversa-
tional sluices. We evaluate the performance of encoder-decoder ar-

7 Code for the pre-trained CoQA baseline model is provided by https://github.com/

stanfordnlp/coqa-baselines
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chitectures and language models on this data and show that human
judges favour the resolutions generated by GPT-2, fine-tuned on our
crowd-sourced annotations. Interestingly, resolutions rival the quality
of human annotations.
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G U I D E L I N E B I A S I N W I Z A R D - O F - O Z D I A L O G U E S

abstract

NLP models struggle with generalization due to sampling and an-
notator bias. This paper focuses on a different kind of bias that has
received very little attention: guideline bias, i.e., the bias introduced
by how our annotator guidelines are formulated. We examine two re-
cently introduced dialogue datasets, CCPE-M and Taskmaster-1, both
collected by trained assistants in a Wizard-of-Oz set-up. For CCPE-M,
we show how a simple lexical bias for the word like in the guidelines
biases the data collection. This bias, in effect, leads to poor perfor-
mance on data without this bias: a preference elicitation architecture
based on BERT suffers a 5.3% absolute drop in performance, when
like is replaced with a synonymous phrase, and a 13.2% drop in per-
formance when evaluated on out-of-sample data. For Taskmaster-1,
we show how the order in which instructions are presented, biases
the data collection.

4.1 introduction

Sample bias is a well-known problem in NLP – discussed from Mar-
cus (1982) to Barrett et al. (2019) – and annotator bias has been dis-
cussed as far back as Ratnaparkhi (1996). This paper focuses on a
different kind of bias that has received very little attention: guideline
bias, i.e., the bias introduced by how our annotator guidelines are
formulated.

Annotation guidelines are used to train annotators, and guidelines
are therefore in some sense intended to and designed to prime an-
notators. What we will refer to in our discussion of guideline bias,
is rather the unintended biases that result from how guidelines are
formulated, and the examples used in those guidelines. If a treebank
annotation guideline focuses overly on parasitic gap constructions,
for example, inter-annotator agreement may be higher on those, and
annotators may be biased to annotate similar phenomena by analogy
with parasitic gaps.

We focus on two recently introduced datasets, the Coached Con-
versational Preference Elicitation corpus (CCPE-M) from Radlinski
et al. (2019), related to the task of conversational recommendation
(Christakopoulou, Radlinski, and Hofmann, 2016; Li et al., 2018), and
Taskmaster-1 (Byrne et al., 2019), which is a multi-purpose, multi-
domain dialogue dataset. CCPE-M consists of conversations about

47
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Guidelines
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8: The percentage of sentences with the word like in the CCPE-M
annotation guidelines (Guidelines), the suggested questions to ask
users, in the guidelines (Suggestions), the actual first turns by the
assistants (1st turn), and the actual replies by the users (2nd turn).
In all cases, more than half of the sentences contain the word like.

movie preferences, and the part of Taskmaster-1, we focus on here,
conversations about theatre ticket reservations. Both corpora were col-
lected by having a team of assistants interact with users in a Wizard-
of-Oz (WoZ) set-up, i.e. a human plays the role of a digital assistant
which engages a user in a conversation about their movie preferences.
The assistants were given a set of guidelines in advance, as part of
their training, and it is these guidelines that induce biases. In CCPE-
M, it is the overwhelming use of the verb like (see Figure 19 in the
Appendix) and its trickle-down effects, we focus on; in Taskmaster-1,
the order of the instructions. In fact, the CCPE-M guidelines consist
of 324 words, of which 20 (6%) are inflections or derivations of the
lemma like: As shown in Figure 19 in the Appendix, more than 50% of
the sentences in the guidelines include forms of like! This very strong
bias in the guidelines has a clear downstream effect on the assistants
that are collecting the data. In their first dialogue turn, the assistants
use the word like in 72% of the dialogues. This again biases the users
responding to the assistants in the WoZ set-up: In 58% of their first
turns, given that the assistant uses a form of the word like, they also
use the verb like. We show that this bias leads to overly optimistic
estimates of performance. Additionally, we also demonstrate how the
guideline affects the user responses through a controlled priming ex-
periment. For Taskmaster-1, we show a similar effect of the guidelines
on the collected dialogues.
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contributions We introduce the notion of guideline bias and present
a detailed analysis of guideline bias in two recently introduced dia-
logue corpora (CCPE-M and Taskmaster-1). Our main experiments
focus on CCPE-M: We show how a simple bias toward the verb like
easily leads us to overestimate performance in the wild by showing
performance drops on semantically innocent perturbations of the test
data, as well as on a new sample of movie preference elicitations
that we collected from Reddit for the purpose of this paper. We also
show that debiasing the data, improves performance. The CCPE-M
provides a very clear example of guideline bias, but other examples
can be found, e.g., in Taskmaster-1, which we discuss in §4.3. We dis-
cuss more examples in §4.4.

4.2 bias in ccpe-m

We first examine the CCPE-M dataset of spoken dialogues about
movie preferences. The dialogues in CCPE-M are generated in a Wizard-
of-Oz set-up, where the assistants type their input, which is then
translated into speech using text-to-speech technologies, at which
point users respond by speech. The dialogues were transcribed and
annotated by the authors of Radlinski et al. (2019).

sentence classification We frame the CCPE-M movie pref-
erence detection problem as a sentence-level classification task. If a
sentence contains a labeled span, we let this label percolate to the
sentence level and be a label of the entire sentence. If a sentence con-
tains multiple unique label spans the sentence is assigned the leftmost
label. A sentence-level label should therefore be interpreted as saying
in this sentence, the user elicits a movie or genre preference. Our resulting
sentence classification dataset contains five different preference labels,
including a NONE label. We shuffle the data at the dialogue-level and
divide the dialogues into training/development/test splits using a
80/10/10 ratio, ensuring sentences from the same dialogue will not
end up in both training and test data. As the assistants utterances
rarely express any preferences, we only include the user utterances
to balance the number of negative labels. See Table 8 for statistics
regarding the label distribution.

perturbations of test data In order to analyse the effects of
guideline bias in the CCPE-M dataset, we introduce perturbations of
the instances in the test set where like occurs, replacing like with a
synonymous word, e.g. love, or paraphrase, e.g. holds dearly. We ex-
periment with four different replacements for like: (i) love, (ii) was in-
credibly affected by, (iii) have as my all time favorite movie and (iv) am out
of this world passionate about. See Figure 9 for an example sentence and
its perturbed variants. The perturbations occasionally, but rarely, lead
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to grammatically incorrect input.1 We emphasize that even though we
increase the length of the sentence, the phrases we replace like with
should signal an even stronger statement of preference, which mod-
els should be able to pick up on. Since our data consists of informal
speech it includes adverbial uses of like; we only replace verb occur-
rences, relying on SpaCy’s POS tagger.2 We replace 219 instances of
the verb like throughout the test set.

Testing on (↓)/Training on (→) CCPE-M CCPE-Mthesaurus

BiLSTM BERT BiLSTM BERT

CCPE-M 74.79 79.07 75.16 78.73

CCPE-Mlove 74.39 78.82 75.43 78.87

CCPE-Mwas incredibly affected by 70.32 75.03 73.36 77.42

CCPE-Mhave as my all time favorite movie 70.75 74.37 67.85 76.93

CCPE-Mam out of this world passionate about 70.70 73.76 72.84 78.24

Reddit 44.55 65.86 46.48 67.45

Table 7: Comparison of in-sample F1 performance, performance on the same
data with like replaced with phrases with similar meaning, and per-
formance on Reddit data. Results are reported for training models
on biased CCPE-M as well as a debiased CCPE-Mthesaurus which im-
proves model performance in almost all cases.

I [like] Terminator 2

I [love] Terminator 2

I [was incredibly affected by] Terminator 2

I [have as my all �me favorite movie] Terminator 2

I [am out of this world passionate about] Terminator 2

Original

Perturbed

Figure 9: Example of test sentence permutations.

perturbations of train data We also augment the training
data to create a less biased resource. Here we adopt a slightly differ-
ent strategy, also to evaluate a model trained on the debiased train-
ing data to the above perturbed test data: We use six paraphrases of
the verb like listed in a publicly available thesaurus,3 none of which
overlap with the words used to perturb the test data, and randomly

1 Our models are generally robust to such variation, and, as we will see in our ex-
periments below, the perturbations are less harmful than collecting a new sample of
evaluation data and evaluating your model on this sample.

2 https://spacy.io/

3 http://thesaurus.com. The paraphrases consists of: (1) derive pleasure from, (2) get a
kick out of, (3) appreciate, (4) take an interest in, (5) cherish, (6) find appealing.
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Label train dev test Reddit

NONE 4508 535 545 60

MOVIE_OR_SERIES 2736 346 313 119

MOVIE_GENRE_OR_CATEGORY 1274 169 166 20

PERSON 66 6 9 11

SOMETHING_ELSE 21 0 0 1

total 8605 1056 1033 211

Table 8: CCPE-M and Reddit sentence-level statistics

replace verbal like with a probability of 20%. The paraphrases are sam-
pled from a uniform distribution. A total of 401 instances are replaced
in the training data using this approach. This is not intended as a so-
lution to guideline bias, but in our experiments below, we show that
a model trained on this simple, debiased dataset generalizes better to
out of sample data, showing that the bias toward like was in fact one
of the reasons that our baseline classifier performed poorly in this
domain.

reddit movie preference dataset In addition to the perturbed
CCPE-M dataset, we also collect and annotate a challenge dataset
from Reddit threads discussing movies for the purpose of preference
elicitation. The comments are scraped from Reddit threads with ti-
tles such as ‘Here’s A Simple Question. What’s Your Favorite Movie Genre
And Why?’ or ‘What’s a movie that you love that everyone else hates?’ and
mostly consist of top-level comments. These top-level comments typi-
cally respond directly the question posed by the thread, and explicitly
state preferences. We also include some random samples from discus-
sion trees that contain no preferences, to balance the label distribution
slightly. In this data, we observe the word like, but less frequently: The
verb like occurred in 15/211 examples. The data is annotated at the
sentence level, as described previously, and we follow the method-
ology described by Radlinski et al. (2019) and identify anchor items
such as names of movies or series, genres or categories and then la-
bel each sentence according to the preference statements describing
said item, if any. The dataset contains roughly 100 comments, that
when divided into individual sentences resulting in 211 datapoints.
The statistics can be found in the final column of Table 8. We make
the data publicly available.4

results We evaluate the performance on two different models on
the original and perturbed CCPE-M, as well as on our Reddit data:
(i) a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) sentence

4 https://github.com/vpetren/guideline_bias
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classifier, trained only on CCPE-M, including the embeddings, and (ii)
a fine-tuned BERT sentence classification model (Devlin et al., 2019).
For (i), we use two BiLSTM layers (d = 128), randomly initialized
embeddings (d = 64), and a dropout rate of 0.5. The model is trained
for 45 epochs. For (ii), we use the base, uncased BERT model with the
default parameters and finetune for 3 epochs. Model selection is con-
ducted based on performance on the development set. Performance
is measured using class-weighted F1 score. We report results in Ta-
ble 7 on the various perturbation test sets as well as the Reddit data,
when (i) the models are trained on the unchanged CCPE-M data, and
(ii) the models are trained on the debiased version CCPE-Mthesaurus.

On the original dataset, BERT performs slightly better than the BiL-
STM architecture, but the differences are relatively small. Both BiL-
STM and BERT suffer a drop in performance, when examples are
perturbed and the word like is replaced with synonymous words or
phrases. Note how longer substitutions result in a larger drop in per-
formance, e.g. love vs. am out of this world passionate about. We see the
drops follow the same pattern for both architectures, while BiLSTM
seems a bit more sensitive to our test permutations. Both models do
even worse on our newly collected Reddit data. Here, we clearly see
the sensitivity of the BiLSTM architecture, which suffers a 30% abso-
lute drop in F1; but even BERT suffers a bit performance drop of more
than 13%, when evaluated on a new sample of data. When training
on CCPE-Mthesaurus, both models become more invariant to our per-
turbations,with up to 4.5 F1 improvements for BERT model and 3 F1
improvements for the BiLSTM, without any loss of performance on
the original test set. We also observe improvements on our collected
Reddit data, suggesting that the initial drop in performance can be par-
tially explained by guideline bias and not only domain differences.

controlled priming experiment To establish the priming ef-
fect of guidelines in a more controlled setting, we set up a small
crowdsourced experiment. We asked turkers to respond to a hypo-
thetical question about movie preferences. For example, turkers were
asked to imagine they are in a situation in which they ’are asked what
movies’ they ’like’, and that they like a specific movie, say Harry Pot-
ter. The turker may then respond: I’ve always liked Harry Potter. We
collected 40 user responses for each of the priming verbs like, love
and prefer, 120 total, and for each of the verbs used to prime the turk-
ers, we compute a probability distribution over most of the verbs in
the response vocabulary that are likely to be used to describe a gen-
eral preference towards something. Figure 10 shows the results of
the crowdsourced priming experiments. We can observe that when
a specific priming word, such as like, is used, there is a significantly
higher probability that the response from the user will contain that
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same word, illustrating that when keywords in guidelines are heavily
over-represented, the collected data will also reflect this bias.

0.0

0.2

0.4

0.6
love

0.0

0.2

0.4

0.6
like

love like enjoy prefer pick choose adore
0.0

0.2

0.4

0.6
prefer

Probablity of verb mention given priming word:

Figure 10: Probability that a verb that describes a preference towards a
movie is mentioned, given a priming word by the annotator is
mentioned.

4.3 bias in taskmaster-1

The order in which the goals of the conversation is described to anno-
tators in the guidelines can also bias the order in which these goals
are pursued in conversation. Taskmaster-1 contains conversations be-
tween a user and an agent where the user seeks to accomplish a goal
by, e.g., booking tickets to a movie, which is the domain we focus on.
When booking tickets to go see a movie, we can specify the movie
title before the theatre, or vice versa, but models may not become
robust to such variation if exposed to very biased examples.

Unlike CCPE-M, the Taskmaster-1 dataset was (wisely) collected
using two different sets of guidelines to reduce bias, and we can there-
fore investigate the downstream effects of of the bias induced by the
two sets of guidelines. To quantify the guideline bias, we compute
the probability that a goal x1 is mentioned before another one x2 in
an dialogue, given that x1 precedes x2 in the guidelines. We only con-
sider dialogues where all goals are mentioned at least once, i.e., ∼ 900
in total; the conversations are then divided into two, based on the
guideline that was used. Figure 11 shows the heat map of these rel-
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ative probabilities. The guidelines have a clear influence on the final
structure of the conversation, i.e. if the movie title (x1) is mentioned
before the city (x2) in the guideline, there is a high probability (0.75)
that the same is true in the dialogues. If they are not, the probability
is much lower (0.57).

4.4 related work

Plank, Hovy, and Søgaard (2014) present an approach to correcting
for adjudicator biases. Bender and Friedman (2018) raise the possibil-
ity of (demographic) bias in annotation guidelines, but do not provide
a means for detecting such biases or show any existing datasets to be
biased in this way. Amidei, Piwek, and Willis (2018) also discuss the
possibility, but in a footnote. Geva, Goldberg, and Berant (2019) inves-
tigates how crowdsourcing practices can introduce annotator biases
in NLU datasets and therefore result in models overestimating confi-
dence on samples from annotators that have contributed to both the
training and test sets. Liu et al. (2018b), on the other hand, discuss a
case in which annotation guidelines are biased by being developed for
a particular domain and not easily applicable to another. Cohn and
Specia (2013) explores how models can learn from annotator bias in a
somewhat opposite scenario from ours, e.g. when annotators deviate
from annotation guidelines and inject their own bias into the data,
and by using multi-task learning to train annotator specific models,
they improve performance by leveraging annotation (dis)agreements.
There are, to the best of our knowledge, relatively few examples of
researchers identifying concrete guideline-related bias in benchmark
datasets: Dickinson and Meurers (2003) suggest that POS annotation
in the English Penn Treebank is biased by the vagueness of the an-
notation guidelines in some respects. Friedrich et al. (2015) report a
similar guideline-induced bias in the ACE datasets. Dandapat et al.
(2009) discuss an interesting bias in a Bangla/Hindi POS-annotated
corpus arising from a decision in the annotation guidelines to include
two labels for when annotators were uncertain, but not specifying in
detail how these labels were to be used. Goldberg and Elhadad (2010)
define structural bias for dependency parsing and how it can be at-
tributed to bias in individual datasets, among other factors, originat-
ing from their annotation schemes. Valverde Ibañez and Ohtani (2014)
report a similar case, where ambiguity in how special categories were
defined, led to bias in a corpus of Spanish learner errors.

In the social sciences, this is a phenomenon which has been stud-
ies for decades in relation to survey design (Fisher, 2009; Schuman
and Presser, 1977). For example, Smith (1987) observe how survey re-
spondents are affected by seemingly minor word alterations, that still
maintain the same intent, can skew the response distribution drasti-
cally.
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4.5 discussion & conclusion

In this work, we examined guideline bias in two newly presented WoZ
style dialogue corpora: We showed how a lexical bias for the word
like in the annotation guidelines of CCPE-M, through a controlled
priming experiment leads to a bias for this word in the dialogues,
and that models trained on this corpus are sensitive to the absence
of this verb. We provided a new test dataset for this task, collected
from Reddit, and show how a debiased model performs better on
this dataset, suggesting the 13% drop is in part the result of guideline
bias. We showed a similar bias in Taskmaster-1.



56 guideline bias in wizard-of-oz dialogues

Movie name City Theater name
x2

Mov
ie 

na
me

City

Th
ea

ter
 na

me

x 1

0 0.75 0.88

0.25 0 0.9

0.12 0.099 0

Guideline 1 (Agent)

Theater name City Movie name
x2

Th
ea

ter
 na

me

City

Mov
ie 

na
me

x 1

0 0.079 0.14

0.92 0 0.43

0.86 0.57 0

Guideline 2 (Agent)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Figure 11: Probability that a guideline goal x1 is mentioned before another
one x2 in an actual dialogue, given that x1 comes before x2 in the
agent’s guideline.



Part III

E X A M I N I N G FA I R N E S S I N N AT U R A L
L A N G U A G E P R O C E S S I N G





5
I S T H E L O T T E RY FA I R ? E VA L U AT I N G W I N N I N G
T I C K E T S A C R O S S D E M O G R A P H I C S

abstract

Recent studies have suggested that weight pruning, e.g. using lot-
tery ticket extraction techniques (Frankle and Carbin, 2019), comes
at the risk of compromising the group fairness of machine learning
models (Hooker et al., 2019, 2020; Paganini, 2020), but to the best
of our knowledge, no one has empirically evaluated this hypothesis
at scale in the context of natural language processing. We present
experiments with two text classification datasets annotated with de-
mographic information: the Trustpilot Corpus (sentiment) and Civil-
Comments (toxicity). We evaluate the fairness of lottery ticket extrac-
tion through layer-wise and global weight pruning across three lan-
guages and two tasks. Our results suggest that there is a small in-
crease in group disparity, which is most pronounced at high pruning
rates and correlates with instability. The fairness of models trained
with distributionally robust optimization objectives is sometimes less
sensitive to pruning, but results are not consistent. The code for our
experiments is available at https://github.com/vpetren/fairness_
lottery.

5.1 introduction

Heavily pruning deep neural network models is a way of reducing in-
ference cost for resource-constrained environments, but does weight-
pruning of deep neural networks increase their unfairness? Several
recent papers suggest this (Hooker et al., 2019; Paganini, 2020), based
on experiments from face and digit recognition, but does this also
hold for natural language processing (NLP) models? Systematic bi-
ases may easily be exacerbated by pruning interventions in high-
dimensional problems because of feature swamping effects (Sutton,
Sindelar, and McCallum, 2006). Overparameterized deep neural net-
works generalize well, in part because they can hedge their bets and
rely on multitudes of weak evidence rather than the most prominent
independent variables. Sparse models do not have that luxury and
are therefore more sensitive to shifts (Globerson and Roweis, 2006;
Søgaard, 2013).

We introduce a fairness sensitivity to pruning metric that measures
how Rawlsian min-max fairness across demographic groups changes
with weight pruning. We estimate this sensitivity by taking the gradi-
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Figure 12: Fairness Sensitivity to Pruning (FSP): the gradient of the linear
fit of (the logarithm of) the pruning ratio to min-max group-
level disparity. We use this to quantify the sensitivity of Rawlsian
min-max fairness to weight pruning across architectures, pruning
strategies and datasets.

ent of the linear fit of the logarithm of the pruning ratio to min-max
group-level disparity. We show that across four datasets, fairness sen-
sitivity to pruning is similar for layer-wise and global pruning strate-
gies (Frankle and Carbin, 2019), as well as for text classifiers based on
feed-forward and recurrent neural networks. Subsequently, we con-
sider the impact of a popular robust optimization strategy designed
to improve the fairness of classification models (Hashimoto et al.,
2018; Sagawa et al., 2020b), on the fairness sensitivity of feed-forward
networks.

contributions We are, to the best of our knowledge, the first
to study the impact of weight pruning on fairness in NLP at scale.
We introduce a fairness sensitivity to pruning (FSP) metric that mea-
sures how Rawlsian min-max fairness across demographic groups
decreases with weight pruning. We evaluate FSP across two archi-
tectures, two pruning strategies and two datasets, including multilin-
gual sentiment classification and English toxicity classification. Our
results suggest that pruning increases group-level performance dis-
parities, but mostly at high pruning rates and with some variance
across architectures and pruning strategies. Group-level disparities
seem to be in part a result of the instability of weight pruning. We
compare FSP between our baseline empirical risk models and ro-
bust models induced with Distributional Robust Optimization (DRO)
(Hashimoto et al., 2018; Sagawa et al., 2020b). Our results show that
weight pruning in combination with DRO can sometimes (8/16 cases
here) be used to induce fairer, sparse classifiers, but the effect is not
significant (p ∼ 0.18) across our experiments.
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Figure 13: Macro-averaged performance of our feed-forward networks as
a function of pruning ratio. Fairness Sensitivity to Pruning (FSP)
correspond to the gradient of the linear fit to the min-max dif-
ferences across individual runs. Results are for CivilComments.
The hard line represents the average demographic score over 5

individual runs and the shaded area represents the standard de-
viation. See the Appendix for similar plots for the Trustpilot Cor-
pus.

5.2 related work

pruning neural networks The literature on pruning neural
networks is decades old (Cun, Denker, and Solla, 1990; Hassibi and
Stork, 1993; Mozer and Smolensky, 1989), but has recently seen a
resurgence with the all-encompassing success of neural networks and
the need for small and fast on-device model inference (Frankle and
Carbin, 2019; Frankle et al., 2020; Han et al., 2015; Sze et al., 2017).
In NLP, specifically, pruning methods have been applied to recurrent
neural networks (Desai, Zhan, and Aly, 2019; Yu et al., 2020), as well
as transformers (Brix, Bahar, and Ney, 2020; Chen et al., 2020; Gordon,
Duh, and Andrews, 2020; Prasanna, Rogers, and Rumshisky, 2020;
Sanh, Wolf, and Rush, 2020).

fairness in pruned models Measuring fairness in pruned mod-
els is an unexplored area. However, Paganini (2020) evaluates the
fairness, i.e., the difference between the best- and worst-case groups,
of lottery ticket-style weight pruning for digit recognition problems:
Specifically, they retrain models for a fixed number of iterations us-
ing global unstructured pruning. In addition, they present a meta-
regression study suggesting that underrepresented and more com-
plex classes are most severely affected by pruning procedures. See
Hooker et al. (2019) for related work and similar results in face recog-
nition.1

1 Bartoldson et al. (2020) arguably present results from object recognition that show
the opposite trend: Generalization increases with (layer-wise) pruning. This seems
to be a side effect of overparameterization; interestingly, we see the opposite trend
for feed-forward networks and layer-wise pruning.
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improving fairness Fairness of overparameterized models can
be improved by distributionally robust optimization (DRO) (Hashimoto
et al., 2018; Levy et al., 2020), or to some extent by simpler post-hoc
correction methods such as classifier retraining or group-specific clas-
sification thresholds (Menon, Rawat, and Kumar, 2021). DRO mini-
mizes the worst-case expected loss over an uncertainty set of distri-
butions. The uncertainty set represents the distributions we want our
model to perform well on. In Sagawa et al. (2020a), the uncertainty set
is all possible mixtures of a known set of groups, a variant referred to
as Group DRO. Sagawa et al. (2020b) find that subsampling the ma-
jority groups can be a way for overparameterized models to achieve
both low minority test error as well as low average test error.

5.3 pruning methodology

We extract winning lottery tickets from our network according to the
iterative procedure outlined in Frankle and Carbin (2019): Given a
model f(x; θ) with initial network parameters θ0 and mask m0, for
each pruning iteration i, we start by initializing a model f(x; θ) with
initial parameter θ0 and train it for N epochs, resulting in f(x; θN).
After training, we prune a fixed fraction p ∈ [0, 1] from the remain-
ing parameters in θN to obtain the mask mi. The pruned weights
are chosen using the L1 norm, meaning the neurons with the lowest
magnitude are masked out. Pruning can either be done w.r.t. individ-
ual layers or all of them combined, also referred to as layer-wise and
global pruning. mi is then carried over to the subsequent pruning it-
eration i+ 1 with the model f(x,mi � θ0) and retrained once again.
At iteration i, the fraction of weights pruned is therefore 1− (1− p)i.

5.4 experiments

5.4.1 Data

datasets We examine fairness among heavily pruned models us-
ing two text classification datasets: i) The multilingual Trustpilot Cor-
pus (Hovy, Johannsen, and Søgaard, 2015),2 which contains user re-
views from the Trustpilot website of various companies and services
in five different countries (Germany, Denmark, France, United King-
dom and United States). The reviews are based on a one to five star
rating scale and some are accompanied by demographic attributes
about the author, such as gender, age and location. 2) The CivilCom-
ments dataset (Borkan et al., 2019),3 which contains comments anno-
tated for toxicity, for the purpose of hate speech detection. A subset

2 https://bitbucket.org/lowlands/release/src/master/WWW2015/data/

3 https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-

classification/data
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of the comments are also annotated for the protected attributes they
address, including gender, race, and religion.

preprocessing For the Trustpilot Corpus, we divide the data
into demographics based on a combination of gender (male/female),
age (young/old) and location (NUTS regions). For age, young is de-
fined as being 35 or less. We exclude the French and American parts
of the datasets as they do not have properly annotated NUTS regions.
For UK and Germany, we use NUTS-1 regions, and for Denmark,
where more data is available, we use NUTS-2 regions. We convert the
5-star ratings to binary sentiment labels, grouping 4 and 5 stars as
positive, and 1 and 2 as negative. Neutral reviews (three stars) are dis-
carded.4 Likewise for CivilComments, we threshold comments with
a toxicity rating > 0.5 as toxic, and otherwise label them as a non-
toxic. This is similar to the binarization performed in Koh et al. (2021).
Comments can for each demographic sub-attribute contain multiple
partial values (e.g. asian = 0.3, black = 0.4 for the race attribute), so
for each annotated attribute we assign it the sub-attribute with the
largest value. In our experiments we consider demographics based
on combinations of the race and gender attributes. For each language
and dataset we randomly sample 100, 200 or 500 of each demographic
as test sets, based on the the amount of annotated datapoints in the
dataset, and use a 80-20 split of the remaining data for training and
validation. If a demographic contains less than the specified number
of datapoints, we disregard it. Due to high class imbalance, the major-
ity class for our train-val data is downsampled to match the minority
class. Table 9 shows the statistics for the respective datasets we train
and evaluate on.

Dataset Train Val N S

Trustpilot-DK 222229 55557 20 500

Trustpilot-DE 26146 6536 42 100

Trustpilot-UK 127965 31991 50 200

CivilComments 357602 89400 7 100

Table 9: Detailed dataset statistics. N refers to the number of discrete demo-
graphics in the dataset and S is the size of each demographic test
set.

4 This binarization scheme is standard; see, e.g., Gupta, Thadani, and O’Hare (2020)
and Desai, Zhan, and Aly (2019)
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FFNN

Dataset Edim hdim B N

Trustpilot-DK 128 256 15 32

Trustpilot-DE 128 256 15 8

Trustpilot-UK 128 256 15 16

CivilComments 128 256 15 32

LSTM

Dataset Edim hdim B N

Trustpilot-DK 128 256 10 64

Trustpilot-DE 128 256 15 16

Trustpilot-UK 128 256 10 32

CivilComments 128 256 10 64

Table 10: FFNN and LSTM hyperparameters. Edim is embedding layer size,
hdim is hidden layer size, B is batch size and N is number of
epochs. Both the layer-wise and global pruning structures use the
same set of hyperparameters.

5.4.2 Models

We consider simple FFNN (Rumelhart, Hinton, and Williams, 1986)
and LSTM (Hochreiter and Schmidhuber, 1997) neural networks for
text classification.

ffnn The FFNN consists of the following: The embedding layer,
which maps every token id in the text to a fixed size vector as a
bag-of-embeddings and sums them together, resulting in a single rep-
resentation e ∈ R|Edim|, followed by 3 fully connected layers of size
R|Edim×h|, R|h×h| and R|h×2| respectively. We use the hyperbolic tan-
gent activation between layers and each linear layer is initialized us-
ing He initialization (He et al., 2015a).

lstm The LSTM network is a 2-layer bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) which encodes our input text, followed
by a fully connected layer for classification. The weights are initialized
using U(−

√
k,
√
k) where k = 1

hidden_size and the final fully connected
layer uses He initialization. See all model hyperparameters used in
Table 10.

Both the FFNN and LSTM models are trained using the Adam op-
timizer (Kingma and Ba, 2015) with a learning rate of 1e− 3 and a
weight decay of 1e− 4.
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distributionally robust optimization loss Additionally,
we also train our models with DRO loss (Levy et al., 2020). We use the
implementation provided by Levy et al. (2020) 5. For our experiments,
a χ2 uncertainty set of size 1 is used.

For all of our experiments, we extract our winning tickets over 20
pruning iterations and use a pruning rate of p = 0.35. We run a total
of 5 independent runs for each model-dataset combination.

5.4.3 Measuring group disparity

At each pruning step we measure the group disparity D, from a set
of demographics D, between repeated runs R, by computing the max-
imum difference of F1 scores as follows:6

D = max
dm∈D

max
dn 6=m∈D

max
ri∈R

max
rj6=i∈R

|F1ridm − F1rjdn | (4)

Intuitively, this corresponds to the difference between the highest
scoring run for the highest scoring demographic and the lowest coun-
terpart across all repeated runs. We compute FSP by taking the gradi-
ent of the linear fit of D over a P pruning steps multiplied by 100.

Trustpilot CC Avg

da de en en

FFNN lw −0.183 0.281 −0.230 0.497 0.091

gl 0.227 1.375 1.054 0.339 0.749

FFNN-DRO lw −0.044 0.321 0.143 0.089 0.127

gl 0.351 0.875 −0.040 0.368 0.388

LSTM lw 0.221 0.411 0.206 0.823 0.415

gl 1.099 0.198 0.352 0.252 0.475

LSTM-DRO lw 0.263 −0.282 −0.082 1.335 0.309

gl 0.262 −0.609 0.544 0.006 0.051

Table 11: FSP values across architectures, layer-wise (lw) and global (gl)
pruning, and the four datasets. Our main observation is that FSP
values are almost consistently positive, and slightly higher for
global pruning. DRO does not consistently reduce FSP; we high-
light cases where it does.

5.5 results

main experiments Our first set of results evaluate FSP across
architectures, datasets, and pruning techniques. In 14/16 combina-
tions of FFNN and LSTM neural networks, the Trustpilot Corpus and

5 https://github.com/daniellevy/fast-dro/

6 Maximum discrepancy has also been used as a measure of fairness in Alabi, Immor-
lica, and Kalai (2018) and Calmon et al. (2017). See Williamson and Menon (2019) for
discussion.
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CivilComments, layer-wise and global pruning, we see positive FSP
values. In other words, weight pruning leads to higher group-level
performance disparities, i.e., less fairness. Comparing layer-wise and
global pruning, we note that group disparity is generally higher for
global pruning. In Figure 13, we present two plots - for layer-wise
and global pruning of a feed-forward network trained on CivilCom-
ments. The remaining plots are presented in Appendix A.3. The FSP
values are listed in Table 11. FFNNs exhibit very high FSP values
with global pruning, but while global pruning increases unfairness,
layer-wise pruning does not. For LSTMs, the effects of the two prun-
ing strategies are similar: Both lead to moderate increases in group
disparities.7 In a couple of instances we witnessed model degenera-
tion due to heavy pruning resulting in single-class prediction before
20 pruning iterations. The plots and FSP values exclude these data-
points as they are not relevant for our analysis.
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Figure 14: FSP for Distributional Robust Optimization

distributionally robust optimization We ran comparable
experiments using DRO loss (Hashimoto et al., 2018) to see whether
the adverse effects of weight pruning on min-max fairness could be
reduced by training with a more robust objective. This seems to hold
true in some instances. We present a single plot for DRO in Figure 14,
for feed-forward networks, layer-wise pruning on CivilComments;

7 While fairness correlates with stability, the difference between FFNNs and LSTMs is
not explained by stability differences (see plots in the Appendix), but should proba-
bly be attributed to the general performance differences between FFNNs and LSTMs,
as well as relative overparameterization in FFNNs (see Footnote 1).
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see the Appendix for more plots. Comparing with Figure 13 (left)
the FSP metric is considerably lower than for baseline empirical risk
minimization (0.089 vs. 0.497) while maintaining equal, or even better,
performance at high pruning rates; but note from the red numbers in
Table 11, that we only see this type of reduction in FSP in 3/8 cases
for FFNNs, but DRO does reduce the average FSP for global pruning.
In 5/8 cases for the LSTM, however, DRO does improves fairness,
reducing the average FSP with both layer-wise and global pruning.

5.6 conclusion

In this work, we take a first step in examining group disparity among
heavily pruned models, using lottery ticket extraction, in NLP. We
measure group disparity, using fairness sensitivity to pruning, on the
Trustpilot Corpus, a sentiment classification dataset covering 3 lan-
guages, as well as CivilComments, a toxicity classification dataset, for
both feed-forward and recurrent neural networks. We find that mod-
els subject to heavy pruning are more susceptible to higher levels of
group disparity, but that this effect can to some degree be mitigated
using distributionally robust optimization objectives.
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T H E I M PA C T O F D I F F E R E N T I A L P R I VA C Y O N
G R O U P D I S PA R I T Y M I T I G AT I O N

abstract

The performance cost of differential privacy has, for some applica-
tions, been shown to be higher for minority groups; fairness, con-
versely, has been shown to disproportionally compromise the privacy
of members of such groups. Most work in this area has been restricted
to computer vision and risk assessment. In this paper, we evaluate the
impact of differential privacy on fairness across four tasks, focusing
on how attempts to mitigate privacy violations and between-group
performance differences interact: Does privacy inhibit attempts to en-
sure fairness? To this end, we train (ε, δ)-differentially private models
with empirical risk minimization and group distributionally robust
training objectives. Consistent with previous findings, we find that
differential privacy increases between-group performance differences
in the baseline setting; but more interestingly, differential privacy re-
duces between-group performance differences in the robust setting.
We explain this by reinterpreting differential privacy as regulariza-
tion.

6.1 introduction

Classification tasks in computer vision and natural language process-
ing face the challenge of balancing performance with the need to pre-
vent discrimination against protected demographic subgroups, satis-
fying fairness principles. In some tasks, we train our classifiers on
private data and therefore also need our models to satisfy privacy
guarantees.

Privacy-preserving algorithms, however, tend to disproportionally
affect members of minority classes (Farrand et al., 2020). Bagdasaryan,
Poursaeed, and Shmatikov (2019), for example, show the performance
cost of differential privacy (Dwork et al., 2006) in face recognition is
higher for minority groups, suggesting that privacy and fairness are
fundamentally at odds (Agarwal, 2021; Chang and Shokri, 2021).

In this paper, we evaluate two hypotheses at scale: (a) that the per-
formance cost of differential privacy is unevenly distributed across
demographic groups (Bagdasaryan, Poursaeed, and Shmatikov, 2019;
Cummings et al., 2019; Ekstrand, Joshaghani, and Mehrpouyan, 2018;
Farrand et al., 2020), and (b) that such effects can in part be mitigated

68
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by more robust learning objectives (Pezeshki et al., 2020; Sagawa et
al., 2020a).

contributions We build upon previous work suggesting that
differential privacy and fairness are at odds: Differential privacy hurts
minority groups the most, and reducing the fairness gap by focusing
on minority groups during training typically puts their privacy at
risk. We evaluate this hypothesis at scale by measuring the impact of
differential privacy in terms of fairness across (1) a baseline empirical
risk minimization and (2) under a group distributionally robust opti-
mization. We conduct our experiments across four tasks of different
modalities, assuming the group membership information is available
at training time, but not at test time: face recognition (CelebA), topic
classification, volatility forecasting based on earning calls, and senti-
ment analysis of product reviews. Our results confirm that differen-
tial privacy compromises fairness in the baseline setting; however, we
demonstrate that differential privacy not only mitigates the decrease
but also improves fairness compared to non-private experiments for
4/5 tasks in the distributionally robust setting. We explain this by
reinterpreting differential privacy as an approximation of Gaussian
noise injection, which is equivalent to strategies previously shown to
determine the efficacy of group-robust learning.

6.2 fairness and privacy

Fair machine learning aims to ensure that induced models do not dis-
criminate against individuals with specific values in their protected
attributes (e.g., race, gender). We represent each data point as z =

(x,g,y) ∈ X× G× Y, with g ∈ G encoding its protected attribute(s).1

Let Dgy denote the distribution of data with protected attribute g and
label y.

Several definitions of group fairness exist in the literature (Williamson
and Menon, 2019), but here we focus on a generalization of approxi-
mately constant conditional (equalized) risk (Donini et al., 2018):2

Definition 1 (∆-Fairness). Let `gi(θ) = E[`(θ(x),y)|g = gi] be the risk
of the samples in the group defined by gi, and ∆ ∈ [0, 1]. We say
that a model θ is ∆-fair if for any two values of g, say gi and gj,
|`gi(θ) − `gj(θ)| < ∆.

Note that if ` coincides with the performance metric of a task, and
δ = 0, this is identical to performance or classification parity (Yuan

1 In practice our protected attributes in § 6.3 will be age and gender. Both are protected
under the Equality Act 2010.

2 In the fairness literature, approximate fairness is referred to as δ-fairness, but below
we will use lower case δ to refer to (ε, δ)-differential privacy, and we refer to ∆-
fairness to avoid confusion.
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et al., 2021).3 Such a notion of fairness can be derived from John
Rawls’ theory on distributive justice and stability, treating model per-
formance as a resource to be allocated. Rawls’ difference principle, max-
imizing the welfare of the worst-off group, is argued to lead to stabil-
ity and mobility in society at large (Rawls, 1971). ∆ directly measures
what is sometimes called Rawlsian min-max fairness (Bertsimas, Farias,
and Trichakis, 2011). In our experiments, we measure ∆-fairness as
the absolute difference between performance of the worst-off and
best-off subgroups.

Recall the standard definition of (ε, δ)-privacy is as follows:

Definition 2. θ is (ε, δ)-private iff Pr[θ(X)] 6 exp(ε)× Pr[θ(X ′)] + δ
for any two distributions, X and X ′, different at most in one row.

Differential privacy thereby ensures that an algorithm will generate
similar outputs on similar data sets. Note the multiplicative bound
exp(ε) and the additive bound δ serve different roles: The δ term
represents the possibility that a few data points are not governed by
the multiplicative bound, which controls the level of privacy (rather
than its scope). Note that it also follows directly that if ε = 0 and
δ = 0, absolute privacy is required, leading θ to be independent of
the data.

Several authors have shown that differential privacy comes at dif-
ferent costs for minority subgroups (Bagdasaryan, Poursaeed, and
Shmatikov, 2019; Cummings et al., 2019; Ekstrand, Joshaghani, and
Mehrpouyan, 2018; Farrand et al., 2020). The more private the model
is required to be, the larger group disparities it will exhibit.4 This hap-
pens because differential privacy distributes noise where it is needed
to reduce the influence of individual examples. Since outlier exam-
ples are likely to have disproportional influence on output distribu-
tions (Campbell, 1978; Chernick and Murthy, 1983), they are also dis-
proportionally affected by noise injection in differential privacy.

Agarwal (2021) show that, in fact, a (ε, 0)-private and fully fair
model – using equalized odds as the definition of fairness – will be
unable to learn anything. To see this, remember that a fully private
model is independent of the data and unable to learn from correla-
tions between input and output. If θ is, in addition, required to be fair,
it is thereby required to be fair for all distributions, which prevents θ
from encoding any prior beliefs about the output distribution. Note
this finding generalizes straight-forwardly to equalized risk, and even

3 Performance or classification parity has been argued to suffer from statistical limi-
tations in (Corbett-Davies and Goel, 2018), which remind us that when risk distri-
butions differ, standard error metrics are poor proxies of individual equity. This is
known as the problem of infra-marginality. Note, however, that this argument does
not apply to binary classification problems.

4 Note this is a different trade-off than the fairness-privacy trade-off which results
from the need for collecting sensitive data to learn fair models; the latter is discussed
at length in Veale and Binns (2017).



6.3 experiments 71

Text: Potter's class this morning went well.
Working on a bowl that is going to have a leaf
design on it. Clay really dries your hands out.
*Reaches for vitamin E cream*[...]
Topic: Arts

Text: As you can probably tell I'm a Linux nut.
Lately I've noticed more commercial software 
being ported to or made for Linux [...]
Topic: Technology

Text: I'm trying to work out how blog skins work
so my web log will look really cute and contain
all those embedded pop culture photographs
I've seen on so many others[...]
Topic: Technology

Text: So much cool stuff was on display that I
started to get worried. Why? A few simple
reasons. Too much stuff is exactly what crushed
Apple in the John Scully days[...]
Topic: Technology

Blonde

Non-
blonde

CelebA

Young

Old

Blog Authorship Corpus
Woman Man

Woman Man

Figure 15: Examples of the different subgroups that appear in a subset of
the datasets we train on. CelebA (left) contains images of celebri-
ties, using hair-color as our target variable and gender as our
protected attribute. Blog Authorship Corpus (right) contains text-
based blogposts on two topics {Technology, Arts} our targets, us-
ing G : {Man, Woman}× {Young, Old} as our protected subgroups.

to approximate fairness (since even for finite distributions, we can de-
fine a ∆ > 0, such that preserving absolute privacy would lead to a
constant θ).

Theorem 1. For sufficiently small values of ∆, a fully (ε, 0)-private model
θ that is also ∆-fair, will have trivial performance.

Proof. This follows directly from the above.

While we do not strictly require an absolute privacy in our experi-
ments (setting δ = 10−5), intuitively, privacy compromises fairness by
adding more noise to data points of minority group members than to
those of majority groups. Fairness, on the other hand, leads to over-
sampling or over-attending to data points of minority group mem-
bers, more likely compromising their privacy.

Pannekoek and Spigler (2021) show, however, that it is possible to
learn somewhat private and somewhat fair classifiers. They combine dif-
ferential privacy with reject option classification. Their results never-
theless confirm that privacy and fairness objectives are fundamentally
at odds, as fairness decreases with the introduction of differential pri-
vacy.

6.3 experiments

This section describes the algorithms and datasets involved in our
experiments, and presents the results of these.

6.3.1 Algorithms

empirical risk minimization For a model parameterized by
θ, in our baseline Empirical Risk Minimization (ERM) setting, we
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minimize the expected loss E[`(θ(x),y)] with data (x,g,y) ∈ X×G×Y

drawn from a dataset D:

θ̂ERM = argmin
θ

ED̂[`(θ(x),y)] (5)

Here D̂ denotes the empirical training distribution. Note that we dis-
regard any group information in our data. In an overparameterized
setting, ERM is prone to overfitting spurious correlations, which are
more likely to hurt performance on minority groups (Sagawa et al.,
2020b).

distributionally robust optimization Several authors have
suggested to mitigate the effects of such overfitting by explicitly opti-
mizing for out-of-distribution mixtures of sub-populations (Hu et al.,
2018; Oren et al., 2019; Sagawa et al., 2020a). In this work we focus
on Group-aware Distributionally Robust Optimization (Group DRO)
(Sagawa et al., 2020a).

Under the assumption that the training distribution D is a mixture
of a discrete number of groups, Dg for g ∈ G, we define the worst-case
loss as the maximum of the group-specific expected losses:

`(θ)worst = max
g∈G

ED̂g
[`(θ(x),y)] (6)

In Group DRO – in contrast with ERM – we exploit our knowledge
of the group membership of data points (x,g,y). The overall objective
is for minimizing the empirical worst-case loss is therefore:

θ̂DRO = argmin
θ

[
ˆ`(θ)worst := max

g∈G
ED̂g

[`(θ(x),y)]
]

(7)

Note, again, that the knowledge of group membership g is only avail-
able at training time, not at test time. Unlike Sagawa et al. (2020a), we
do not employ heavy `2 regularization during our experiments, but
rather use it with the same parameters as Koh et al. (2021).

differentially private stochastic gradient descent (dp-sgd)
We implement differential privacy (Dwork et al., 2006) using DP-SGD,
as presented in Abadi et al. (2016). DP-SGD limits the influence of
training samples by (i) clipping the per-batch gradient where its norm
exceeds a pre-determined clipping bound C, and by (ii) adding Gaus-
sian noise N characterized by a noise scale σ to the aggregated per-
sample gradients. We control this influence with a privacy budget
ε, where lower values for ε indicates a more strict level of privacy.
DP-SGD has remained popular, among other things because it gen-
eralizes to iterative training procedures (McMahan et al., 2018), and
supports tighter bounds using the Rényi method (Mironov, 2017).

Differential privacy generally comes at a performance cost, leading
to privacy-preserving models performing worse compared to their
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non-private counterparts (Alvim et al., 2011). However, we follow Ker-
rigan, Slack, and Tuyls (2020) and finetune the private models, which
are first pre-trained (without differential privacy) on a large public
dataset. This protocol generally seems to provide a better trade-off be-
tween accuracy and privacy (Kerrigan, Slack, and Tuyls, 2020), lead-
ing to better-performing, yet private models. The only exception to
this setup is the volatility forecasting task, where our models were
trained from scratch, as those rely on PRAAT audio features.

6.3.2 Tasks and architectures

To study the impact of differential privacy on fairness, in ERM and
Group DRO, we evaluate increasing levels of differential privacy across
five datasets that span four tasks and three different modalities: speech,
text and vision.

facial attribute detection We study facial attribute recog-
nition with the CelebFaces Attributes Dataset (CelebA) (Liu et al.,
2015) 5. It contains faces of celebrities annotated with attributes, such
as hair color, gender and other facial features. Following Sagawa et
al. (2020a), we use the hair color as our target variable, with gender
being the demographic attribute (see Figure 15 (left)). The dataset
contains ∼ 163K datapoints, where the smallest group (blond males)
only counts 1387. We finetune a publicly pre-trained ResNet50, a stan-
dard model for image classification tasks,6 on the CelebA dataset and
evaluate model performances as accuracies over 3 individual seeds.

topic classification For topic classification, we use the Blog
Authorship Corpus (Schler et al., 2006).78 The Blog Authorship Cor-
pus contains weblogs written on 19 different topics, collected from the
Internet before August 2004. The dataset contains self-reported demo-
graphic information about the gender and age of the authors. Gender
information is binary, and we binarize age, distinguishing between
young (=< 35) and older (> 35) authors9, resulting in four different
group combinations (see Figure 15 (right)). We chose two topics of
roughly equal size (Technology and Arts), reducing the topic classi-
fication task to a binary classification task. For our experiments, we
finetune a pre-trained English DistilBERT model (Sanh et al., 2019).10

To reduce the overall added computational cost of DP-SGD, we freeze

5 The CelebA dataset is available for non-commercial research purposes only.
6 ResNet50 is a variant of the ResNet model (He et al., 2015b), which has 48 convolu-

tion layers along with 1 max pooling and 1 average pooling layer. It has 3.8 x 109

floating points operations.
7 https://www.kaggle.com/rtatman/blog-authorship-corpus

8 The Blog Authorship Corpus is available for non-commercial research purposes only.
9 Older authors tend to be underrepresented in web data (Nguyen et al., 2014)

10 DistilBERT is a small Transformer model trained by distilling BERT (Devlin et al.,
2019) (bert-base-uncased). It has 3/5th of the parameters of bert-base-uncased, runs
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Performance at ε-Privacy

No DP ε1 ε2 ε3

Score ε Score ε Score ε Score ε

C
e

l
e

b

ERM 0.954± 0.000 - 0.943± 0.001 9.50 0.940± 0.002 5.17 0.932± 0.001 0.99

DRO 0.953± 0.001 - 0.899± 0.006 9.50 0.891± 0.014 5.17 0.873± 0.007 0.99
Bl

o
g

ERM 0.699± 0.002 - 0.661± 0.003 9.25 0.661± 0.003 5.03 0.648± 0.005 1.02

DRO 0.692± 0.001 - 0.651± 0.001 9.25 0.650± 0.005 5.03 0.630± 0.003 1.02

Vo
l
.

ERM 0.756± 0.036 - 0.778± 0.073 9.32 0.794± 0.046 6.42 0.778± 0.039 0.96

DRO 0.814± 0.061 - 0.798± 0.042 9.32 0.815± 0.056 6.42 0.833± 0.093 0.96

T-
U

K ERM 0.933± 0.008 - 0.919± 0.002 9.39 0.916± 0.001 4.94 0.889± 0.009 1.02

DRO 0.931± 0.004 - 0.893± 0.006 9.39 0.873± 0.015 4.94 0.820± 0.015 1.02

T-
U

S ERM 0.894± 0.007 - 0.817± 0.014 10.71 0.812± 0.009 5.10 0.666± 0.019 1.01

DRO 0.899± 0.009 - 0.569± 0.132 10.71 0.437± 0.112 5.10 0.342± 0.012 1.01

Group-disparity at ε-Privacy

No DP ε1 ε2 ε3

GD ε GD ε GD ε GD ε

C
e

l
e

b

ERM 0.556± 0.021 - 0.746± 0.032 9.50 0.734± 0.025 5.17 0.770± 0.013 0.99

DRO 0.514± 0.042 - 0.039± 0.018 9.50 0.080± 0.031 5.17 0.056± 0.027 0.99

Bl
o

g

ERM 0.108± 0.013 - 0.149± 0.006 9.25 0.140± 0.004 5.17 0.136± 0.011 0.99

DRO 0.078± 0.009 - 0.056± 0.020 9.25 0.070± 0.013 5.17 0.077± 0.027 0.99

Vo
l
.

ERM 0.302± 0.042 - 0.328± 0.067 9.32 0.557± 0.050 6.42 0.573± 0.050 0.96

DRO 0.221± 0.062 - 0.320± 0.085 9.32 0.371± 0.058 6.42 0.421± 0.083 0.96

T-
U

K
.

ERM 0.018± 0.005 - 0.022± 0.006 9.39 0.020± 0.014 4.94 0.037± 0.006 1.02

DRO 0.030± 0.008 - 0.030± 0.004 9.39 0.039± 0.023 4.94 0.025± 0.010 1.02

T-
U

S ERM 0.055± 0.006 - 0.048± 0.019 10.71 0.054± 0.015 5.10 0.109± 0.017 1.01

DRO 0.036± 0.007 - 0.118± 0.040 10.71 0.078± 0.030 5.10 0.021± 0.030 1.01

Table 12: Performance (top) and ∆-Fairness (bottom) of ERM and Group
DRO across different degrees of differential privacy (ε). ε1, ε2 and
ε3 corresponds to ε-values of roughly 10, 5 and 1 respectively (see
table for exact values). We report F1 scores for sentiment and topic
classification, accuracy for face recognition and MSE for volatil-
ity forecasting. Group disparity (GD) is measured by the absolute
difference between the best and worst performing sub-group (∆-
Fairness; see Definition 2.1). The performance and corresponding
uncertainties are based on several individual runs of each config-
uration, see § A.4 in the Appendix for further details. Differential
privacy consistently hurts fairness for ERM. For Group DRO, we
bold-face numbers where strict differential privacy (ε3) increases
fairness; this happens in 4/5 datasets. We see large increases for
face recognition and small increases for topic classification and
sentiment analysis.
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our model, except for the outer-most Transformer (Vaswani et al.,
2017) encoder layer as well as the classification layer. We report model
performances as F1 scores over 3 individual seeds.

volatility forecasting For the stock volatility forecasting task,
we use the Earnings Conference Calls dataset by Qin and Yang (2019).
This consists of 559 public earnings calls audio recordings for 277

companies in the S&P 500 index, spanning over a year of earnings
calls. We obtain the self-reported gender of the CEOs from Reuters,11

Crunchbase,12 and the WikiData API.13 Gender information is binary,
with 12.3% of speakers being female and 87.7% of speakers being
male, a highly skewed distribution. Since our primary focus with
this task is to explore the impact of differential privacy on speech,
we use only audio features without the call transcripts. For each au-
dio recording A of a given earning call E, the goal is to predict the
company’s stock volatility as a regression task. Following Kogan et al.
(2009) and Qin and Yang (2019), we calculate the average log volatility
τ days (temporal window) following the day of the earnings call. For
each audio clip belonging to a given call, we extract 26-dimensional
features with PRAAT (Boersma and Van Heuven, 2001). Each audio
embedding of the call is fed sequentially to a bi-directional long short
term memory network (Hochreiter and Schmidhuber, 1997; Schus-
ter and Paliwal, 1997), followed by an attention layer and two fully-
connected layers. The model is trained by optimizing the Mean Square
Error (MSE) between the predicted and true stock volatility. For all re-
sults, we report MSE on the test set for a 70:10:20 temporal split of
the data (Qin and Yang, 2019). The results are averaged over 5 seeds.

sentiment analysis For our sentiment analysis task, we use the
Trustpilot Corpus (Hovy, Johannsen, and Søgaard, 2015)14. It consists
of text-based user reviews from the Trustpilot website, rating compa-
nies and services on a 1 to 5 star scale. The reviews spans 5 different
countries; Germany, Denmark, France, United Kingdom and USA,
however, we only consider the English reviews, i.e. UK and US. The
Trustpilot contains demographic information about the gender, age
and geographic location of the users, but as with the topic classifica-
tion task, we only concern ourselves with the gender and age of the
users. As with the topic classification task, we finetune DistilBERT on
the UK and US English parts of the Trustpilot Corpus, freezing all pa-
rameters but the final encoder layer, as well as the classification layer.

60% faster, while preserving over 95% of the performance of bert-base-uncased, as
measured on the GLUE language understanding benchmark (Wang et al., 2019).

11 https://www.thomsonreuters.com/en/profiles.html

12 https://www.crunchbase.com/discover/people

13 https://query.wikidata.org/

14 The Trustpilot Corpus is available from https://bitbucket.org/lowlands/release/

src/master/WWW2015/data/ for non-commercial research purposes only.
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Classification performance is measured as F1 scores and the results
are averaged over 3 seeds.

Our implementation is a PyTorch extension of the WILDS reposi-
tory15 (Koh et al., 2021) using the DP-SGD implementation provided
by the Opacus Differential Privacy framework16. For further details
about data and training, see §A.4.2 in the Appendix.
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Figure 16: Face Attribute Detection: Performance of individual groups of
increasing levels of ε. Comparing baseline ERM to Group DRO,
we find that Group DRO performance on the minority group
(blond males) perform much better under privacy constraints; we
return to this in § 6.3.4.
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Figure 17: Topic Classification: Performance of individual groups of in-
creasing levels of ε. Group DRO, compared to baseline ERM, re-
sults in a more balanced performance across all groups, even on
a low privacy budget.

6.3.3 Results

Our results are presented in Table 12. The top half of the table presents
standard (average) performance numbers across multiple runs of ERM
and Group DRO at different privacy levels. Recall that performance
for sentiment analysis as well as topic classification is measured in F1,
volatility forecasting is measured in MSE and face recognition is mea-

15 https://github.com/p-lambda/wilds/

16 https://opacus.ai/
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sured in accuracy. The accuracy of our ERM face attribute detection
classifier is 0.954 in the non-private setting, for example.

Our first observation is that, as hypothesized earlier, differential
privacy hurts model performance. For our smallest text-based dataset
(T-US), performance becomes very poor at the strictest privacy level.
This is however associated with a high amount of variance between
seeds, see Figure 24 in the Appendix. The above face attribute de-
tection classifier, which had an accuracy of 0.954 in the non-private
setting, has a performance of 0.932 at this level.

differential privacy hurts fairness in erm The effect of
differential privacy on fairness (bottom half of Table 12) is also quite
consistent. The gap between the majority group and the minority
group (or, more precisely, the best-performing and the worst-performing
demographic subgroup) widens with increased privacy. In face recog-
nition, for example, the accuracy gap between the two groups is 0.556

without differential privacy, but 0.770 at the strictest privacy level.

differential privacy increases fairness in group dro For
Group DRO, we see the opposite effect. For 4/5 datasets, we see that
differential privacy leads to an increase in fairness. For face recogni-
tion, for example, the gap goes from 0.514 in the non-private setting
to 0.056 in the strictest, basically disappearing. This is also illustrated
in the bar plots in Figure 16. See Figure 17 for similar bar plots of the
topic classification results; we include similar plots for other tasks in
the Appendix. We do also observe that this increase in privacy can be
expensive in terms of overall performance (e.g. Trustpilot-US). Note
that the increase in fairness at higher privacy levels is seemingly at
odds with previous results suggesting that privacy and fairness con-
flict, e.g., Agarwal (2021). We return to this question in § 6.3.4.

Note also that the only exception to the latter trend is for volatility
forecasting, where differential privacy hurts fairness both in ERM
and Group DRO (though Group DRO mitigates the disparity). This
speech-based prediction is the only regression task, and the only task
for which we do not rely on pre-trained models trained on public
data.

For this task, we further analyze group disparity for varying tem-
poral windows (τ) used to calculate target volatility values, along
with increasingly strict privacy budgets (ε) in Figure 18. The dispar-
ity between subgroups widens with stricter privacy guarantees (Bag-
dasaryan, Poursaeed, and Shmatikov, 2019). This gap is significant for
lower values of τ, strengthening the hypothesis that short-term volatil-
ity forecasting is much harder than long-term (Qin and Yang, 2019),
especially for minority classes due to the disproportionate impact of
noise. Comparing ERM and Group DRO, we find Group DRO miti-
gates this disparity gap. We observe disparity reduces with increasing
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temporal window, since stock prices over a larger time frame are com-
paratively more stable (Qin and Yang, 2019). As a consequence, the
influence of Group DRO for higher τ (6, 7) is reduced, despite facil-
itating faster convergence. Most importantly, we observe the power
of Group DRO in mitigating the disparity caused by strict privacy
safeguards (ε = 0.96) for crucial short term prediction (τ = 3) tasks.
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Figure 18: Volatility Forecasting: A comparison of group-disparity between
subgroups for increasing temporal volatility windows (τ) and pri-
vacy budgets (ε), over 5 independent runs.

6.3.4 Discussion

It is well-known that differential privacy comes with a performance
cost (Bassily, Smith, and Thakurta, 2014; Shokri and Shmatikov, 2015).17

However, recent work has additionally shown that differential pri-
vacy is at odds with most, if not all, definitions of fairness, including
equalized risk (Bagdasaryan, Poursaeed, and Shmatikov, 2019; Cum-
mings et al., 2019; Ekstrand, Joshaghani, and Mehrpouyan, 2018; Far-
rand et al., 2020). Our work makes two important contributions: (a)
We evaluate and confirm this hypothesis at a larger scale than pre-
vious studies for standard empirical risk minimization; and (b) we
point out that the opposite holds true in the context of Group Dis-
tributionally Robust Optimization: Here, adding differential privacy
improves fairness (equalized risk).

17 A multitude of algorithmic improvements have been proposed to mitigate the over-
all accuracy drop caused by the increased privacy protection -– including private
sampling from hyperbolic word representation spaces (Feyisetan, Diethe, and Drake,
2019), auto-encoder-based transformation (Krishna, Gupta, and Dupuy, 2021), Gaus-
sian f-differential privacy (Bu et al. 2020), and gradient denoising (Nasr et al., 2020).
It is yet to be examined, if the empirical application of such utility preservation
techniques affects the disparate impact issue.
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While (b) at first seems to contradict the very hypothesis that (a)
confirms – namely that privacy is at odds with fairness – we believe
the explanation is quite simple, namely that we are observing two
opposite trends (at the same time): On one hand, differential privacy
adds disproportionate noise to minority group examples; but on the
other hand, it adds Gaussian noise which acts as a regularizer to
improve robust optimization.

In their evaluation of Group Distributionally Robust Optimization,
Sagawa et al. (2020a) observe that robustness is only achieved in the
context of heavy regulation; specifically, they show fairness improve-
ments when they add `2 regularization or early stopping. The `2 reg-
ularization and early stopping did not increase fairness under ERM,
but seemed to ’activate’ Group DRO. This makes intuitive sense: Since
regularized models cannot perfectly fit the training data, heavily reg-
ularized Group DRO sacrifices average performance for worst-case
performance and obtain better generalization. In the absence of regu-
larization, however, Group DRO is less effective.

In our experiments (§ 6.3), we add minimal regularization to Group
DRO, following the implementation in Koh et al. (2021), but differen-
tial privacy, we argue, provides that additional regularization. To see
this, remember that DP-SGD works by Gaussian noise injection. Gaus-
sian noise injection is known to be near-equivalent to `2-regularization
and early stopping (Bishop, 1995). DP-SGD simply makes the trade-
off more urgent.

6.4 related work

fair machine learning Early work on mitigating group-level
disparities included oversampling (Guo and Viktor, 2004; Shen, Lin,
and Huang, 2016) and undersampling (Barandela et al., 2003; Drum-
nond, 2003), as well as instance weighting (Shimodaira, 2000). Other
proposals modify existing training algorithms or cost functions to ob-
tain fairness (Chung, Lin, and Yang, 2015; Havaei et al., 2017; Khan
et al., 2017). In the context of large-scale deep neural networks, Group
DRO is a particularly interesting approach to mitigating group-level
disparities (Creager, Jacobsen, and Zemel, 2021; Michel, Hashimoto,
and Neubig, 2021). See Williamson and Menon (2019) and Corbett-
Davies and Goel (2018) for interesting discussions of how fairness
has been measured. More recent alternatives to Group DRO include
Invariant Risk Minimization (Arjovsky et al., 2020), Spectral Decou-
pling (Pezeshki et al., 2020) and Adaptive Risk Minimization (Zhang
et al., 2021). We ran experiments with both Invariant Risk Minimiza-
tion and Spectral Decoupling, but they performed much worse than
Group DRO.
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fairness and privacy Recent studies suggest that privacy-preserving
methods such as differential privacy tend to disproportionately af-
fect minority class samples (Bagdasaryan, Poursaeed, and Shmatikov,
2019; Cummings et al., 2019; Ekstrand, Joshaghani, and Mehrpouyan,
2018; Farrand et al., 2020). Pannekoek and Spigler (2021) show that
it is possible to learn somewhat private and somewhat fair classifiers,
in their case by combining differential privacy and reject option clas-
sification. Jagielski et al. (2019) introduced the so-called DP-oracle-
learner, derived from an oracle-efficient algorithm (Agarwal et al., 2018),
which satisfies equalized odds, an alternative notion of fairness (Williamson
and Menon, 2019). Lyu et al. (2020) introduced Differentially Private
GANs (DPGANs), while Tran, Fioretto, and Van Hentenryck (2021)
utilize Lagrangian duality to integrate fairness constraints to pro-
tected attributes. Group DRO has, to the best of our knowledge, not
been studied under differential privacy before.

6.5 ethics statement

Training fair machine learning models often relies on training data
with private demographic information, and while techniques have
been introduced to minimize the risk of leakage (Hu et al., 2019),
this is a valid concern. Veale and Binns (2017) discuss this problem
at length in the context of businesses with commercial interests in
model predictions, and present three proposals for mitigating the risk
of leakage, including using third parties to store data and incorpo-
rate fairness constraints into model-building in a privacy-preserving
manner, using collaborative online platforms to share knowledge and
to promote transparency and fairness in machine learning systems,
and to consider unsupervised learning of fairness (Hashimoto et al.,
2018). The protected attributes that we rely on in the above experi-
ments were all self-reported, in a manner detailed in the correspond-
ing publications, and they are insufficient to identify people. We hope
the above findings can contribute to the development of methods for
scenarios in which both privacy and fairness are required.

6.6 conclusions

In § 6.2, we summarized previous work suggesting that differential
privacy and fairness are at odds. In §6.3, we then confirmed this hy-
pothesis at scale, across five datasets, spanning four tasks and three
modalities, showing that for Empirical Risk Minimization, stricter
levels of privacy consistently hurt fairness. This holds true even af-
ter pre-training on large-scale public datasets (Kerrigan, Slack, and
Tuyls, 2020). In the context of Group-aware Distributionally Robust
Optimization (Group DRO) (Sagawa et al., 2020a), however, which is
designed to mitigate group-level performance disparities (optimizing
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for equalized risk), we saw the opposite effect: Strict levels of differ-
ential privacy were associated with an increase in fairness. In § 6.3.4,
we discuss how this aligns well with the observation that Group DRO
works best in the context of heavy `2 regularization, keeping in mind
that Gaussian noise injection is near-equivalent to `2 regularization
(Bishop, 1995).
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7
D I S C U S S I O N A N D C O N C L U S I O N

The previous chapters of this thesis present new work in the fields
of dialogue systems and fairness in NLP. In Part ii, we looked into
several challenges that current dialogue systems face, such as domain
adaptation, retrieving semantic frames from a conversational context
and how potential biases might arise in the data collection process. To
this end, we revisit the initial research questions posed initially, the
first being:

How do we leverage user feedback to more efficiently improve the
generalization capabilities of our dialogue systems?

Collecting highly annotated conversational corpora for data-hungry
dialogue systems is an involved and costly process. In Chapter 2 we
investigated how to adapt task-oriented dialogue systems to new do-
mains, motivated by user feedback in a real-world setting. By lever-
aging reward signals collected at the end of a dialogue, as opposed
to every turn, we showed how reinforcement learning can be used
to transfer knowledge of already trained models efficiently to new
domains and even further improve in-domain performance.

The next challenge we addressed concerned how conversational
QA systems sometimes fails to capture challenging aspects of dia-
logue, such as elliptical constructions. We approach this from the
viewpoint of our next research question:

How can we resolve implicit content from a conversational context to
improve the quality of our dialogue systems?

In Chapter 3, we studied the task of resolving conversational sluices,
i.e. identifying the elided material of one-word questions from a con-
versational context. We introduced a new resource of annotated con-
versational sluices and presented a series of baselines using heuris-
tics, encoder-decoder frameworks and pre-trained LMs. Our results
show that framing the task as a language generation task allows
transformer-based models to produce high-quality sluice resolutions.
A human evaluation study revealed that resolutions generated by
a fine-tuned GPT-2 model sometimes rival human-generated resolu-
tions.

Dialogue systems are heavily dependent on the labelled dataset
that we manually annotate. When we train our models on such datasets,
we implicitly assume that the annotators are without bias. This as-
sumption leads us to our next research question:

To what extent does the formulation of conversational data collection
guidelines influence the resulting corpora?

84
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In Chapter 4 we introduced the concept of guideline bias. We stud-
ied the downstream effect that unintended priming of annotators
through guidelines has on our models when trained on such biased
resources. Using two recent datasets curated using the Wizard-of-Oz
setup, we showed two things: First, how a lexical bias in the guide-
lines, which we confirm through a controlled priming experiment,
can lead to overestimated model performance and how we can mit-
igate it. Second, how the order of the described conversation goals
can lead to a bias in the order in which the annotators pursue them
in the dialogue. Due to the rising number of new datasets released
every year, it is increasingly important to know how the data we base
our models on is curated. Integrating a check for guideline bias in
frameworks such as datasheets (Gebru et al., 2018) or data statements
(Bender and Friedman, 2018) could be a reasonable step to create
more awareness around this issue.

Another type of bias we examined in this thesis was demographic
bias, i.e. when the models induced from the data learn spurious cor-
relations based on the protected demographics. In Part iii, we exam-
ined model fairness in NLP under different settings. The first was
motivated by the deployment of models in a resource-constrained en-
vironment, e.g. mobile devices, where parameter pruning methods
are often used for reduced inference and storage cost. Our research
question here was:

How well does our NLP models satisfy fairness principles when subject to
compression techniques?

In Chapter 5, we analyzed the lottery ticket extraction from the an-
gle of algorithmic fairness in NLP. We hypothesized that systematic
biases are exacerbated when models are forced not to rely on weak
evidence, which pruned models to a greater extent are unable to. We
introduced a new metric that measures Rawlsian min-max group dis-
parity across demographics as a function of pruning level. We showed
that heavily pruned models are associated with higher levels of group
performance disparity. Additionally, we show that robust optimiza-
tion techniques can at times increase model fairness among winning
tickets. Somewhat contrary to our findings, recent work by Diffend-
erfer et al. (2021) argues that compressed models can be robust to dis-
tributional shifts when using rewind-based pruning techniques, such
as lottery ticket extraction. However, their experiments only analyse
robustness across surface-level corruptions in image recognition sys-
tems and at less extreme pruning levels. This indicates that this area
of research still needs to be explored further to fully understand how
different compression methods affect fairness.

Our last research question pertains to another aspect of fairness,
namely how model privacy guarantees complies with popular group
disparity mitigation methods:
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How is fairness affected by group robust objectives when under the
influence of privacy preserving methods?

In Chapter 6 we tackled this question by evaluating model fair-
ness on a set of different tasks, spanning NLP, facial recognition, and
speech, in both a baseline Empirical Risk Minimization (ERM) set-
ting as well as a Group-aware Distributionally Robust Optimization
(Group DRO) setting. Like in Chapter 5, our notion of fairness was
derived from a Rawlsian min-max perspective. In line with previous
work, we found that strict levels of privacy hurt fairness; however,
we also observe that differentially private models trained with Group
DRO reduces group disparity, sometimes even to a great extent. As
heavy regularization is essential for reducing worst-group error rates
with Group DRO, we hypothesized that DP can be interpreted as
regularization.

An issue we face in our studies of Chapter 5 and 6 is the need
for annotated demographics for every data point. This is a severely
limiting factor when it comes to mitigating bias as many techniques
directly rely on these annotations (Sagawa et al., 2020a), but it is also
a problem when it comes to just identifying the underlying issue in
the first place. Hooker et al. (2020) also highlights the issue of limited
access to demographic information and proposes a method for surfac-
ing demographic groups that models find challenging, using model
compression. They do so by measuring where performance diverges
between full and compressed networks. These data points can then
be submitted to domain experts for further annotation as a human-in-
the-loop auditing tool. This type of human-in-the-loop auditing tool
would not only be beneficial for mitigating bias in conversational sys-
tems but also ML in general. Examining how differentially private
models could also be used in the same manner, or in combination
with compressed models, to screen our datasets for potential biases
is a direction that warrants further attention.
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S U P P L E M E N TA RY M AT E R I A L F O R I N D I V I D U A L
S T U D I E S

a.1 chapter 2

System utterance User utterance Baseline prediction PG fine-tune prediction

N/A
I’m looking for a cheap
place to dine, preferably

in the centre of town.

inform(area=center)
inform(pricerange=expensive)

inform(area=center)
inform(pricerange=cheap)

Yes, I have 4 results matching
your request, is there a price

range you’re looking for?

I would like moderate
price range please. inform(pricerange=expensive) inform(pricerange=moderate)

There are a number of options
for Indian restaurants in the

centre of town.What
price range would you like ?

I would prefer cheap
restaurants. inform(pricerange=expensive) inform(pricerange=cheap)

Table 13: Comparison of example turn predictions from the MultiWOZ
dataset between the baseline model trained on the hotel domains,
and the policy gradient fine-tuned model. Green indicates a correct
prediction whereas red indicates a wrong prediction.

89



90 supplementary material for individual studies

a.2 chapter 4

general instructions The goal of this
type of dialogue is for you to get the users to explain
their movie preferences: The KIND of movies they like
and dislike and WHY. We really want to end up find-
ing out WHY they like what they like movie AND why
the DON’T like what they don’t like. We want them to
take lots of turns to explain these things to you.
important We want users to discuss likes and
dislikes for kinds of movies rather than just about spe-
cific movies. (But we trigger these more general pref-
erences based on remembering certain titles.) You may
bring up particular movie titles in order to get them
thinking about why they like or dislike that kind of
thing. Do not bring up particular directors, actors, or
genres. For each session do the following steps:

1. Start with a normal introduction: Hello. I’d like
to discuss your movie preferences.

2. Ask them what kind of movies they like and
why they generally like that kind of movie.

3. Ask them for a particular movie name they
liked.

4. Ask them what about that KIND of movie they
liked. (get a couple of reasons at least – let them
go on if they choose)

5. Ask them to name a particular movie they did
not like.

6. Ask them what about that movie they did not
like. (get a couple of reasons at least or let them
go on if they choose)

7. Now choose a movies using the movie gener-
ator link below. Ask them if they liked that
movie (if they haven’t seen it: (a) ask if they
have heard of it. If so, ask if they would see it (b)
then choose another that they have seen to ask
about). Once you find a movie from the list they
have seen, ask them why they liked or disliked
that kind of movie (get a couple of reasons).

8. Finally, end the conversation gracefully

Figure 19: CCPE-M Guidelines to Assistants

a.3 chapter 5
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Figure 20: Macro-averaged performance of our feed-forward networks as a
function of pruning ratio. The hard line represents the average
demographic score over 5 individual runs and the shaded area
represents the standard deviation. Fairness Sensitivity as Pruning
(FSP) correspond to the gradient of the linear fit to the min-max
differences across individual runs.
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Figure 21: Macro-averaged performance of our LSTMs as a function of prun-
ing ratio. The hard line represents the average demographic score
over 5 individual runs and the shaded area represents the stan-
dard deviation. Fairness Sensitivity as Pruning (FSP) correspond
to the gradient of the linear fit to the min-max differences across
individual runs.
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Figure 22: Macro-averaged performance of our layer-wise and globally
pruned feed-forward networks trained with DRO as a function of
pruning ratio. The hard line represents the average demographic
score over 5 individual runs and the shaded area represents the
standard deviation. Fairness Sensitivity as Pruning (FSP) corre-
spond to the gradient of the linear fit to the min-max differences
across individual runs.
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Figure 23: Macro-averaged performance of our layer-wise and globally
pruned LSTM networks trained with DRO as a function of prun-
ing ratio. The hard line represents the average demographic score
over 5 individual runs and the shaded area represents the stan-
dard deviation. Fairness Sensitivity as Pruning (FSP) correspond
to the gradient of the linear fit to the min-max differences across
individual runs.
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a.4 chapter 6

a.4.1 Additional Figures

This section contains group-specific bar-plots for the performance on
individual groups in the Trustpilot Corpus. For barplots on CelebA
and Blog Authorship, see Figure 16 and 17.
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Figure 24: Performance of individual groups of increasing levels of ε for the
Trustpilot-US corpus. Error bars show standard deviation over 3

individual seeds.
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Figure 25: Performance of individual groups of increasing levels of ε for the
Trustpilot-UK corpus. Error bars show standard deviation over 3

individual seeds.

a.4.2 Experimental Details

This section contains additional details surrounding the experiments
described in § 6.3.

celeba We use the same processed version of the CelebA dataset
as Sagawa et al. (2020a) and Koh et al. (2021), that is, we use the same
train/val/test splits as Liu et al. (2015) with the Blond Hair attribute
as the target with the Male attribute being the spuriously correlated
variable. See group distribution in the training data in Table 14.
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Group Non-Blond, Man Blond, Man Non-Blond, Woman Blond, Woman

Count 66874 1387 71629 22880

Table 14: Group distribution in the training set of CelebA

blog authorship corpus In addition to the preprocessing de-
scribed in § 6.3, we split the data into a 60/20/20 train/val/test split
(you can find the exact seed that generates the splits in our code). See
group distribution in the training data in Table 15.

Group Young, Man Old, Man Young, Woman Old, Woman

Count 27222 2295 12750 2435

Table 15: Group distribution in the training set of Blog Authorship corpus

earnings conference calls Out of the 559 calls, we only in-
clude 535 datapoints that contain self-reported demographic attributes
about gender. See Table 16 for group distributions for the training
data. The target stock volatility variable is calculated following Ko-
gan et al., 2009; Qin and Yang, 2019, defined by:

v[t−τ,t] = ln
(√∑τ

i=0(rt−i − r̄)
2

τ

)
(8)

Here rt is the return price at day t and r̄ the mean of return prices
over the period of t− τ to t. We refer to τ as the temporal volatility
window in our experiments. The return price rt is defined as rt =
Pt
Pt−1

− 1 where Pt is the closing price on day t.

Group Man Woman

Count 333 42

Table 16: Group distribution in the training set of Earnings Conference Calls

trustpilot We only include the datapoints that contains com-
plete demographic attributes, i.e. the gender, age and location, but
as with our topic classification experiments, we only study the group
that we can define based on age and gender. All attributes are self-
reported. For training we divide the reviews into the four resulting
groups (Old-Man, Young-Woman, etc.) and downsample the largest
groups to match the size of the smallest group. For validation as well
as testing, we withhold 200 samples from each demographic with an
even distribution among the ratings (1 to 5). The review scores are
then binarized by grouping positive (4 and 5 stars) and negative (1
and 2 stars) and discarding neutral ones (3 stars). For a similar use
of this binarization scheme, see Gupta, Thadani, and O’Hare (2020)
and Desai, Zhan, and Aly (2019). See the group distributions for the
training data in Table 17 and 18 for the US and UK tasks respectively.
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Group Young, Man Old, Man Young, Woman Old, Woman

Count 7242 7210 7222 7255

Table 17: Group distribution in the training set of Trustpilot-US

Group Young, Man Old, Man Young, Woman Old, Woman

Count 18464 18693 18554 18693

Table 18: Group distribution in the training set of Trustpilot-UK

bilstm The BiLSTM model was trained using a Nvidia Tesla K80

GPU. We use a learning rate of 1e−2 and train using DP-SGD for 30

epochs using a virtual batch size of 32. The average sequence length
of the audio embeddings is 159. We set the maximum sequence length
to 150 as we did not observe a performance increase for higher values.
We run 5 individual seeds for each configuration.

In our differentially private experiments with the BiLSTM (i.e Earn-
ings Conference Calls), we fix the gradient clipping C to 0.8. By
specifying various approximate target levels of ε ∈ {1, 5, 10} a corre-
sponding noise multiplier σ is computed with the Opacus framework,
based on the batch size and number of training epochs.

distilbert We finetune DistilBERT on the Trustpilot corpus and
Blog Authorship corpus for 20 epochs each, using a batch size of 8,
accumulating gradient for a total virtual batch size of 16 using the
built in Opcaus functionality. We limit the number of tokens in a
sequence to 256 and use a learning rate of 5e−4 with the AdamW
optimizer in addition to a weight decay of 0.01. Otherwise we use the
default parameters defined in the Huggingface Transformers python
package (version 4.4.2). The models are trained using a single Nvidia
TitanRTX GPU and each configuration takes between 5 and 14 hours
to run, depending on the size of that dataset and if DP is used or not.
We run 3 individual seeds for each configuration.

In our differentially private experiments with DistilBERT (i.e. Blog
Authorship and Trustpilot), we fix the gradient clipping C to 1.2 and
by specifying various target levels of ε ∈ {1, 5, 10} a corresponding
noise multiplier σ is computed with the Opacus framework, based
on the batch size and number of training epochs.

resnet50 We finetune our Resnet50 model on the CelebA dataset
for 20 epochs using a batch size of 64. We optimize the model using
standard stochastic gradient descent (SGD) with a learning rate of
1e−3, momentum of 0.9 and no weight decay. We train our models
using a single Nvidia TitanRTX GPU and each configuration takes
between 6 and 8 hours to run, depending on if DP is used or not. We
run 3 individual seeds for each configuration.

As with the differentially private DistilBERT experiments, we also
here fix the gradient clipping C to 1.2 and by specifying various target
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levels of ε ∈ {1, 5, 10} a corresponding noise multiplier σ is computed
with the Opacus framework, based on the batch size and number of
training epochs.
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TH Wen, and S Young (2015). “Multi-domain dialog state track-
ing using recurrent neural networks.” In: ACL-IJCNLP 2015-53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Processing, Proceedings of
the Conference. Vol. 2, pp. 794–799.
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