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I’ve got it!
But it only works for spherical chickens in a vacuum.
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Prologue

Why would I start something as serious as my PhD thesis with the punch-
line from a joke. Well first because it succinctly describes one of the major
difficulties of physical modelling, the need for simplification. Secondly but
equally important because, as the danish poet Piet Hein put it:

Den, som kun tar spøg for spøg
og alvor kun alvorligt,
han og hun har faktisk fattet
begge dele dårligt.

Which can be translated as

Taking fun as simply fun
and earnestness in earnest
shows how thoroughly thou none
of the two discernest.

For me, what this means is that as important as it may be to acquire
new knowledge, the motivation and drive will always be the enjoyment of
the process. I am glad to say, that even though it may have been hard at
times, I have thoroughly enjoyed myself in the 3 years I have spent as a PhD
student at DIKU. The opportunity to pursue the goals that I set up myself is
something that makes me feel very privileged.
Returning to the Punchline, I managed to find the time to see several
episodes of the series Big bang theory which tells the story of a bunch
of friends who also happens to be scientists. One episode contains a joke,
told by one of the characters, about a farmer who has a problem with sick
chickens.
The Farmer asks a friend who is a physicist to help him and the friend starts
scribbling maniacally in his notebook until finally he exclaims "I’ve got it!
But it only works for spherical chickens in a vacuum."
This exemplifies the other part of the verse above. Even though something
is Funny it can contain valuable information. In this case, the people who
usually find this joke hilarious are people working in science, since they get
the more subtle implication that, when modelling real world phenomena
we are always forced to simplify, and the choice of simplification is a very
important one indeed. My work has been full of situations where, I have
had to choose which part of the real human motion I wanted to include in
my models, and which to exclude. In this process, the applicability of the
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end result has always been important to me. Whether I have had Graphics
applications or bio-mechanical models in mind.
Therefore I hope, when you have read this text, you will agree with me that
this work is not only suitable for Spherical chickens in a vacuum.

V



Acknowledgement

When I started at the university some years ago I came from a background
as an artisan, a goldsmith to be concise. My highschool math was all but
forgotten and my programming experience amounted to my experience as
a kid, copying basic programs from books unto my commodore 64. I owe
great thanks to the many people who, have helped me attain the knowl-
edge and skills, which made it possible for me to get this far. Also all the
people who have supported me on a more personal level.
I want to start by thanking my many mentors. Kenny Erleben, my primary
supervisor for always sharing the enthusiasm for my weird ideas and al-
ways beating me to it, with even wilder ideas. Always helping me when
the math made my head hurt, and making my head hurt with math when
it didn’t. Being not only a good supervisor but a good friend.
Kim Steenstrup Pedersen my co supervisor for teaching me that there are
other research fields and other ways of solving the problem, than the phys-
ically based simulations. Knud Henriksen for initially sparking my interest
for graphics, and Mathias Teschner for taking good care of me during my
stay in Freiburg.

I would also like to take the opportunity to thank all my colleagues at
the e-science institute. They are legion and I could not possibly mention
them all but I must mention at least Søren Hauberg and Sarah Niebe with
whom I have wasted more time than I care to think about, exchanging
irrelevant information or plain out gibberish. All my office mates have
partaken in this (whether they liked it or not) but none more than these
two.

During my studies I have used several open-source tools to help me
visualize my work. I would like to acknowledge the great work of the
teams behind: Gimp, Inkscape and most of all the Blender team. You are
doing a great job out there.

Even Though it may not always seem like it, there is a life outside the
PhD project. Without the love and support of my family and friends I would
have never had the energy to get through this process. In particular I want
to thank my wife and kids who bore the brunt of my absence and absent
mindedness, when the going got tough.

Finally I want to thank the committee for taking time from their busy
schedules to read and give feedback to my work

Thank you all!

VI



Notation

Here follows a short, incomplete list of the notation used in this Thesis.
Most of the notation is explained as it is introduced but I felt it was justi-
fied to mention some of the most common notations which may be used
differently elsewhere.

x is the vector x
M is the matrix M
|| ∗ || is the euclidean norm
∇ is used to denote the gradient usually in the form ∇f
L is the Lagrangian function
J denotes the Jacobian matrix
H denotes the Hessian matrix
ẋ In relation to governing equations of motion, we sometimes use the physi-
cist way of writing the time derivative.

A note on visual content

With a few exceptions all figures and 3d models are made by me in the
course of my studies. I have used Blender [1] for most of the 3d work and
inkscape and gimp for 2D images. This was done mainly to have access
to content without having to worry about licensing. I have however used
a few things that are not my own work. Of note, is the lizard used in the
spline activation (see Figure 27) which I found on the web. It is made by
Kevin Hayes and kindly released under a creative commons license . Also
the female in Figure 1 is a mesh from the Ogre framework [2] In relation
to my publications I have made media content in the form of videoclips.
Since My topic is Motion I think some of the arguments are best described
using these videos. They are available at http://iphys.wordpress.com/.
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Summary

This PhD thesis concerns itself with modelling and simulation of human
motion. The research subjects in this thesis has at least two things in com-
mon.

First they are concerned with Human Motion. Even though the models
may be used for other things as well, the main focus is on modelling the
human body.

Second they are all concerned with simulation as a tool to synthesize
motion and thus, get animations. This is an important point since it means
we are not only creating tools for animators to make fun and interesting an-
imations, but also models for simulation of realistic motion. As the project
progressed the focus has shifted from purely graphics oriented, to some-
thing which may be at least as interesting for the biomechanics community.

Scientific contributions

The main scientific contributions of this work are:

• An efficient method for solving interactive constrained inverse kine-
matics problems , using an optimization based approach. The method
is usable for motion planning of complex articulated mechanisms,
with a large degree of interdependency between different parts, such
as a human body.

• A general and fast joint constraint model. The joint constraint model
is well suited for modelling joints with highly non-convex limits and
multiple degrees of freedom. Even though this constraint model may
have many other uses we believe it is very well suited for the mod-
elling of human joints which exhibit both non-convexity and multiple
degrees of freedom

• A general and versatile model for activating soft bodies. The model
may be used as an animation tool but would be equally well suited for
simulation of human muscles since it adheres to basic physical prin-
ciples. Further, it can be used with any softbody simulation method
such as finite elements or mass spring systems.

• A control method for deformable bodies based on the space time op-
timization. the method may be used to control the contraction of
muscles in a muscle simulation.
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Dansk resumé

Denne ph.d.-afhandling beskæftiger sig med modellering og simulation af
menneskelig bevægelse. Emnerne i denne afhandling har mindst to ting til
fælles.

For det første beskæftiger de sig med menneskelig bevægelse. Selv om
de udviklede modeller også kan benyttes til andre ting,er det primære fokus
på at modellere den menneskelige krop.

For det andet, beskæftiger de sig alle med simulering som et redskab til
at syntetisere bevægelse og dermed skabe animationer. Dette er en vigtigt
pointe, da det betyder, at vi ikke kun skaber værktøjer til animatorer, som
de kan bruge til at lave sjove og spændende animationer, men også mod-
eller til simulering af realistiske bevægelser. I løbet af projektet er fokus
flyttet fra at være rent grafik orienteret , til noget som er mindst lige så
interessant for biomekanikere.

Videnskabelige bidrag

De vigtigste videnskabelige bidrag af dette arbejde er:

• En effektiv metode til at løse interaktive, inverse kinematik problemer
med ledbegrænsninger, ved hjælp af en optimerings tilgang. Metoden
er anvendelig til bevægelses planlægning for komplekse ledmekanis-
mer, med en høj grad af indbyrdes afhængighed mellem de forskellige
dele, såsom et menneskes krop.

• En generel og hurtig led-begrænsning model. Denne led-begrænsning
model er velegnet til modellering af led med særdeles ikke-konvekse
grænser og flere frihedsgrader. Selv om denne led-begrænsnings model
kan have mange andre anvendelser,mener vi, den er meget velegnet
til modellering af menneskers led, der udviser både ikke-konveksitet
og flere frihedsgrader

• En generel og alsidig model for aktivering af bløde legemer. Modellen
kan anvendes som et animations værktøj, men er lige så velegnet til
simulering af menneskelige muskler, da den opfylder de grundlæggende
fysiske principper. Endvidere kan den anvendes med enhver softbody
simuleringsmodel som finite elements eller mass spring systemer.

• En kontrol metode til deformerbare legemer baseret på rum tids opti-
mering. fremgangsmåden kan anvendes til at styre sammentrækning
af muskler i en muskel simulering.

IX



Contents

I Inverse Kinematics 6

1 Constrained Inverse Kinematics 7

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The Traditional Approach 12

3 A Non-Linear Optimization Approach 16

4 Projected Gradient 18

4.1 Computing the Gradient . . . . . . . . . . . . . . . . . . . . 18
4.2 Finding a Step-Length . . . . . . . . . . . . . . . . . . . . . 19
4.3 Projected Armijo Back-Tracking Line-Search . . . . . . . . . 20

5 A Geometric Approach to the Differential 21

5.1 A Ball and Socket Joint . . . . . . . . . . . . . . . . . . . . . 24

6 Performance of Projected Back-Tracking Line-Search 26

6.1 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Test Framework . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Visual Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Alternatives to Gradient descent 29

8 An Application in motion tracking 29

8.1 Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . 30

9 Visual Motion Estimation 31

9.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10 Discussion and Conclusion 33

II Joint Constraint Models 35

11 Joint constraints using signed distance fields 36

1



12 Introduction 36

13 Related Work 37

14 The Signed Distance-Field Model 41

14.1 Building the Signed Distance-Map . . . . . . . . . . . . . . . 41
14.2 Adaptive Sampling of Motion . . . . . . . . . . . . . . . . . 43
14.3 The Signed Distance Property . . . . . . . . . . . . . . . . . 43
14.4 Sculpted Signed Distance-Field Joint-Constraints . . . . . . 44
14.5 Applying Signed Distance-Field Joint-Constraints for Inverse

Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

15 Results and Discussion 46

15.1 Building the signed distance-maps . . . . . . . . . . . . . . 46
15.2 Parametrizing the Distance-Field Joint-Constraints . . . . . 46
15.3 Constant Time Performance . . . . . . . . . . . . . . . . . . 47
15.4 Increased Modelling Accuracy . . . . . . . . . . . . . . . . . 47

16 Conclusion 47

III Activation splines 50

17 Activation splines 51

18 Introduction 51

19 Related Work 52

20 The Activation Spline Method 56

20.1 Discretization of the Activation Spline . . . . . . . . . . . . 58
20.2 Embedding the Activation Spline . . . . . . . . . . . . . . . 58
20.3 Computation of Activation Spline Forces . . . . . . . . . . . 59
20.4 The Force Equivalence Principle . . . . . . . . . . . . . . . . 60
20.5 Contact Forces . . . . . . . . . . . . . . . . . . . . . . . . . 64

21 Validation 65

21.1 Performance measurements . . . . . . . . . . . . . . . . . . 67

22 Conclusion and Future Work 68

IV Optimal control using space time optimization 70

2



23 Introduction to Space Time Optimization 71

24 Previous Work 71

25 The Space Time Constraint Problem 72

25.1 The Adjoint Method . . . . . . . . . . . . . . . . . . . . . . 74
25.2 Computing the Gradient using the Adjoint Method . . . . . 75
25.3 Exploiting the Sparse Block Matrix Patterns . . . . . . . . . 76
25.4 Deformable Models . . . . . . . . . . . . . . . . . . . . . . . 78

26 A Simple 2D Particle Example 80

27 A 2 Particle Example in 2D 80

28 Results 82

29 Conclusion on space time optimization 83

V Concluding remarks 84

30 Conclusion 85

31 Future Work 85

32 Epilogue 87

3



Introduction

This Thesis describes the work I have done over the past 3 years on Mod-
elling and simulating human motion. With such a broad area it is necessary
to impose some restrictions on the subject. I have chosen to describe hu-
man motion as two steps, the planning phase and the execution phase.

In the planning phase, the wanted motion is chosen from the space
of possible motions. Essentially this means that a number of goals are
converted into a pose. A simple example is taking a step. If a person wants
to take a step, we can pose the problem as moving one foot from position
a to position b while clearing the ground

This way of deciding a motion based on position and/or orientation of a
subset of the joints is an intuitive and easy way of specifying motion which
appeals to the way humans think about motion. This can be seen by the
fact that this is the way animators and robot controllers work.

In the execution phase the actual forward dynamics simulation of the
planned motion should be performed. here I have chosen to focus on the
motor of human motion namely the Muscles. I have done this through the
development of a deformable spline activation model suitable for simula-
tion of simple muscles and with the added advantage of the passive de-
formable mesh which is of interest both from a visualization point of view
and for collision detection the strength of the method is its ability to be
combined with the deformable mesh of choice for a given simulation .

Finally I have recently started exploring the possibilities for using the
motion planning to control the simulation that is use the poses calculated
using the inverse kinematics and joint constraints to drive the motion of the
dynamically simulated mesh. This is still work in progress but I have chosen
to include it since it represents the connection between the two other parts
of the project and since it is also the most recent research activity I have
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undertaken.
The Research presented in this thesis is to a large extend identical to the

results presented in my published papers, but I have taken the opportunity
to elaborate on some of the subjects which had to be left out or shortened in
the publications due to page restrictions. I have rewritten and reformatted
the papers to fit into the context of this thesis.That is, I present the research
as one text combined from the papers, but as much as possible, I have kept
the original thoughts and arguments unchanged.

The Papers, on which this thesis is based, all have co-authors, and I felt
that it would be most honest to keep the plural form in this text.
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Part I

Inverse Kinematics

In the first part of my PhD project I worked with optimization methods in
inverse kinematics. This resulted in the following publications:

• ’A Projected Back-tracking Line-search for Constrained Interactive In-
verse Kinematics’ [3] .
Published in Computers and Graphics. Together with Kenny Erleben.

• ’Interactive inverse kinematics for human motion estimation’
published at Vriphys 09: 6th Workshop on Virtual reality Interactions
and Physical Simulations [4] .
This work was done together with Søren Hauberg ,Jerome Lapuyade
, Kenny Erleben and Kim Steenstrup Pedersen.

• Three Dimensional Monocular Human Motion Analysis in End-Effector
Space.
Published in Lecture Notes in Computer Science.
This work was done together with Søren Hauberg ,Jerome Lapuyade
, Kenny Erleben and Kim Steenstrup Pedersen.

The following is a description of this work, based on [3]. with a description
of the results of the application described in [4].
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Figure 1: Inverse kinematics solved figures, the method is general and
poses any conceivable figure. The developed method was integrated in
an Ogre demo.

1 Constrained Inverse Kinematics

Inverse kinematics is the problem of manipulating the pose of an artic-
ulated figure in order to achieve a desired goal disregarding inertia and
forces. One can approach the problem as a non-linear optimization prob-
lem or as non-linear equation solving. The former approach is superior in
its generality and ability to generate realistic poses, whereas the latter ap-
proach is recognized for its low iteration cost. Therefore, many prefer equa-
tion solving over optimization for interactive applications. In the following,
we present a projected gradient method for solving the inverse kinematics
problem interactively, which exhibit good performance and precision. The
method is compared to existing work in terms of visual quality and accu-
racy. Our method shows good convergence properties and deals with joint
constraints in a simple and elegant manner. Our main contribution lies in
the explicit incorporation of joint limits in an interactive solver. This makes
it possible to compute the pose in each frame without the discontinuities
exhibited by existing key frame animation techniques. In this section we
have limited ourselves to using a box-limit joint constraint model. This is
done because the focus in this section is the Inverse kinematics solver and
not the joint limits. The method works with any projection based joint limit
method as we will demonstrate later.

Inverse kinematics is used for a wide range of applications such as robot
simulation or motion planning, creation of digital content for movies or
commercials, or for synthesizing motion in interactive applications such
as computer games and other types of virtual worlds. In Figure 1 I have
illustrated animations created with our own interactive inverse kinematics
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method.
Inverse kinematics is a standard tool in many applications like Maya,

3D Studio Max [5] or Blender [1]. Recently inverse kinematics have been
employed as a dimensionality reduction tool in a tracker of human mo-
tion [6]. In short, it is a well-known and wide-spread technique, and better
numerical methods will therefore be valuable to a large community. A
generally applicable method should be easy to use and thus minimize the
number and complexity of user-defined parameters, while giving as realis-
tic a pose as possible. Furthermore speed is essential, whether the method
is used interactively to pose a figure, or to simulate movement in a vir-
tual world. Most applications have chosen one of two avenues. Either,
they are specialized closed form solutions for specific low-dimensional ma-
nipulators, the approach often taken in Robotics, or they are general type
methods. Even though inverse kinematics has been around for quite some
time, there seems to be very little work done in exploring methods which
can bridge the gap between the two extremes, perhaps because the ani-
mation industry has not felt the need for further improving their methods,
and the design of robots have followed the same line of thought. However,
with the development of more and more humanoid robots and the move
towards more physics based animations in media, the need for interactive
general purpose inverse kinematics methods is again topical. Our focus is
on the underlying method of solving the inverse kinematics problem. This
can be extended to handle more user control, but that is not our interest.

We focus on a general, interactive method which includes joint limits.
To state the problem more formally: Given a serial mechanism, we can set
up a coordinate transformation from one joint frame to the next. Thus, we
can find one transformation that takes a point specified in the frame of the
end-effector into the root frame of the mechanism. We write it in general
as

y = F(θ). (1)

We can change the values of the joint parameter θ and gain explicit control
over the position and orientation of the end-effector, y. This is commonly
known as forward kinematics. Given a desired goal position, g, one seeks
the value of θ such that

θ = F
−1(g). (2)

This is known as inverse kinematics and it is the problem we address in this
part of the thesis.
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1.1 Related Work

Inverse kinematics was introduced in robotics [7] and to the graphics com-
munity early on [8]. In robotics, the problem is usually phrased as a dy-
namic system which may lead to different schemes [9]. An overview of
numerical methods used in computer graphics can be found in [10].

Inverse Kinematics methods In [11] a new mathematical formalism is
presented for solving inverse kinematics as a constrained non-linear opti-
mization problem. This work allows for general types of constraints. In-
verse kinematics is known to suffer from problems with redundancies and
singularities [12]. In robotics, redundancy problems have been addressed
by adding more constraints [13]. In animation the redundancy is most
often handled by using the spatial temporal coherency of consecutive solu-
tions. Thus, the correct solution closest to the previous solution is chosen.
This is also true in our system (see e.g. Figure 2).

Figure 2: An example of a mathematically correct solution which deviates
from the reference due to redundancy. The Ghosted overlay with the grey
skeleton is the projected line-search inverse kinematics solution. Notice
the large difference on the wrist and elbow and the small but noticeable
difference on the shoulder joint. A positional goal was used in this example.

In [14], three methods are revisited and evaluated for computer game
usage: an algebraic method, Cyclic-Coordinate-Descent [15], and a Newton-
Raphson method inspired by [11]. The Newton-based method is used for
complex manipulation and claimed to give the most realistic looking poses,
but it is the slowest. However, joint limits were not dealt with in this work.
Other formulations have been investigated for instance in [16] the problem
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is solved using linear programming. In [17] a mesh based inverse kine-
matics method was presented. This relies on example poses to manipulate
the mesh directly and does not handle joint limits. Furthermore the mesh
based approach runs with only 1 frame per second for even moderately
sized meshes.

In robotics closed-form methods are popular [18]. Closed-form meth-
ods often result in algebraic systems that can be solved very fast and reli-
ably, but these methods are highly specialized for a specific low-dimensional
manipulator (up to 7 degrees of freedom).

In Computer Graphics which is our main focus in this work, even a sin-
gle arm will usually have more than 7 degrees of freedom. In the simplified
male human skeleton from Figure 1 and 3 this is 11. The shoulder has 5
degrees of freedom (2 in the collar bone 3 in the shoulder joint) 1 in the
elbow , 3 in the wrist and 2 in the hand. Thus, general purpose methods
capable of dealing with many degrees of freedom are desired.

Figure 3: A running animation made using the projected line-search opti-
mization approach. The presented method supports interactive editing of
animated characters.

In [19], inverse kinematics is combined with other techniques and a
sequential quadratic programming problem is solved. The running times
are in minutes which prohibits interactive usage. Motion synthesis using
space-time optimization and machine learning has also been tried [20, 21]
although running times are not yet within the grasp of the real-time do-
main. An example of a widely used general method is the Blender Soft-
ware [1] which uses a Jacobian Inverse scheme with the pseudo inverse
being computed using SVD. To sum up, there is still a need for fast general
purpose methods for posing characters with direct manipulation.

Joint Limits Often constraints such as joint limits are omitted [14] or
dealt with as a post-processing step [15]. The added value of handling joint
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limits are shown clearly in Figure 5. Several approaches for handling joint
limits has been proposed. Joint sinus curves was used in [22] to describe
the boundaries of the feasible motion space of the joints. If a joint exceeds
its boundary then it is projected back to the boundary and kept fixed at the
boundary until the goal position is changed. In [23], quaternion boundary
fields were created, and a bisection algorithm was used to back-project
infeasible joint positions onto the closest-point on the quaternion boundary
field. In [24] a back-projection is used after the joint-parameters have
been updated. In [25], joint reach cones are introduced and later refined
in [26] to handle moving center of rotations. Here back-projection of
infeasible joints is also used. In [11] they keep track of currently active
joint limits and modify their scheme in such way that joint limits will not be
violated. An example of a method currently used in Commodity software,
is the Jacobian Inverse method used in the Blender software, which uses
a projection to move the solution unto a feasible region. This projection
is performed as a separate step after an unconstrained solution has been
found. It has not been possible to get information regarding the methods
used in other major 3D systems, but their performance and quality are
comparable. Thus, Blender has been chosen for the explicit comparisons in
this work.

1.2 Contribution

Figure 4: The Inverse kinematics system in Maya exhibiting the typical
flipping behavior of systems which project the joint limits after solving the
system. The skeleton has 16 degrees of freedom in total and 2 positional
end effector goals. Joint limits are shown as green cones. One goal (shown
by yellow arrow) was moved vertically to force the system to move along
the joint limits. The flip is clearly seen from the third to the fourth picture.

In previous work, limits are dealt with as a post-processing step that
simply back-projects infeasible iterates to a feasible iterate or an active set
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approach is used. These approaches either disregard a sufficient improve-
ment in the solution or result in computationally expensive book-keeping.
Our major contribution is a line-search method that guarantees an improve-
ment of the solution, and robust handling of joint limits.

Our experience and the literature seem to indicate that constrained non-
linear optimization is not the favourite choice for interactive applications.
This is a shame since such a formalism offers more realistic motion and gen-
eral constraints. This has motivated our work. We believe the task lies in
creating a simple and elegant numerical method well suited for the purpose
of inverse kinematics and which is easily implemented by programmers in
industry.

In this work, we will present and evaluate a numerical approach for
solving the interactive inverse kinematics problem as a constrained non-
linear optimization problem. We will demonstrate how our numerical ap-
proach can be used interactively and can deal with joint limits. Our method
does not exhibit the flipping behavior of methods which solve the uncon-
strained inverse kinematics problem before projecting the solution unto the
feasible set. It avoids this without having to resort to such pre or post pro-
cessing as e.g. the preferred pose of Maya. in fig 4 an example of the
unwanted flipping behavior exhibited in Maya for a constrained solution
with two positional goals and joint limits are shown.
Our focus has not been on developing a finished interactive animation suite
but rather to present a method which can be used by others in their sys-
tems. We have done this by making all code available in the OpenTissue
library [27]. From this the implementation details can be seen and the
method may be included in any project.

Explicit comparison is performed with the inverse kinematics solver
found in the Blender software package. Blender has been chosen because it
is fully comparable in functionality with the major 3D animation softwares
Maya and 3D Max. Furthermore, Blender is open–source. Thus, we could
compare the timings of the IK-solvers directly without e.g. render-time dis-
turbing the measurements.

2 The Traditional Approach

In the following we will describe the traditional approach for solving the
inverse kinematics problem.

In the context of human modelling, a skeleton is often modelled as a
collection of rigid bodies connected by rotational joints of 1–3 degrees of
freedom. An example is shown in Figure 6. All joints are constrained in
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Figure 5: Joint limits shown by posing a leg in its extreme positions using
positional goals. The goal position of the end-effector is shown as a small
orange ball. Notice in pose 3 that the goal would be reachable if no joint
limits were present, and that both pose 4 and 5 would be different without
joint limits.

Figure 6: An illustration of the kinematic model. End–effector positions are
shown as green dots, while the desired positions (goals) are shown as red
dots.

their rotation, as exemplified by joint i in Figure 6 with li and ui showing
the limits of the angle θi.

To compute the position and orientation of a joint in space, we perform
a transformation of the bone relative to its parent joint. The transformation
consists of a rotation and a translation corresponding to the shape and
orientation of the joint, relative to its parent. These transformations are
then nested to create chains of joints. Each chain ends in an end–effector,
which can be regarded as the handle for controlling the chain. Thus, the full
transformation of a joint from local space to global space can be performed.

Initially, we know the value of the joint parameters, θk, and a desired
goal state for the end-effector, g. The corresponding initial state of the
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end-effector is given by
y
k = F(θk). (3)

Writing
θ = θk +∆θk, (4)

where ∆θk is the change in joint parameter values. Our task is now to
compute ∆θk such that

g = F(θk +∆θk). (5)

We perform a Taylor series expansion of the right-hand side

g = F(θk) +
∂F(θk)

∂θ
∆θk +O(� ∆θk �2). (6)

We introduce the notation

J(θk) =
∂F(θk)

∂θ
. (7)

and call the matrix J the Jacobian. Next, we ignore the remainder term of
the Taylor series expansion, to obtain the approximation

g ≈ F(θk) + J(θk)∆θk. (8)

Recall that y = F(θk) and for the moment assume that J(θk) is invertible.
Then we can isolate the unknowns of our problem

∆θk = J(θk)−1(g − y
k). (9)

This is a linear model for taking us as close to g as possible with a linear
step. Thus, we may not get to g in one step. To solve this we will keep
on taking more steps until we get sufficiently close. That is, we compute
θk+1 = θk +∆θk and repeat the above steps with k replaced by k + 1. This
results in a non-linear Newton method. The important thing to notice is
that the method only needs to know how to evaluate the function-value,
F(θ), and the Jacobian J(θ).

From [28] we know that if F is continuously differentiable and the
Newton sub-system is solved with sufficient accuracy then the non-linear
Newton method will have quadratic convergence. We also know, that we
are guaranteed to find a solution to the vector equation g = F(θ) given the
initial iterate θ1 is sufficiently close to the solution. If the initial iterate is
not sufficiently close then we may only get linear convergence.

In practice, J is rarely invertible. To overcome these problems one may
use the Moore–Penrose pseudo inverse in which case the method is known
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as the Jacobian Inverse method [8]. The pseudo inverse update is the solu-
tion of the least squares problem of minimizing 1

2 � J∆θk − (g − F(θk)) �2.
The residual function, r, can be written as

r(∆θ) = y
k+1

− g = F(θk +∆θ)− g. (10)

Taking a first-order approximation yields

r(∆θ) ≈ J∆θ − (g − F(θk)). (11)

Using this linear residual model we wish to minimize � J∆θ − (g − F(θk)) �
or equivalently

f(∆θ) =
1

2
� J∆θ − (g − F(θk)) �2 . (12)

From the first-order optimality conditions we have the minimizer

∇f(∆θ∗) = J
T
J∆θ∗ − J

T (g − F(θk)) = 0. (13)

Setting ∆θk to be the minimizer and re-arranging terms while assuming
full column-rank of J, we have

∆θk = (JT
J)−1

J
T (g − y

k). (14)

Thus, the pseudo-inverse is a Gauss-Newton type of method that yield the
solution of a least square problem.

A major draw-back of the pseudo-inverse method is the discontinu-
ity of the pseudo-inverse near a singularity [12]. A damped least square
(Levenberg-Marquardt) type method can be used to overcome this prob-
lem. That is, one seek to minimize 1

2 � J∆θ − (g − F(θk)) �2 +λ2 � ∆θ �2,
where λ > 0 is a regularization/damping parameter. Performing a similar
derivation as above results in the update formula,

∆θk = (JT
J+ λ2

I)−1
J
T (g − y

k). (15)

However, one must deal with the problem of selecting a regularization
value. Actually, Levenberg-Marquardt is using J

T
J as the Hessian approx-

imation and can be understood as a modified Newton method combined
with a trust region [28]. Notice that in most work on inverse kinematics
only a single Gauss-Newton or Levenberg-Marquardt iteration is taken to
solve the Newton sub-system.

In some cases, the inverse Jacobian can be approximated by the trans-
pose, J−1 ≈ J

T , this variant of the method is known as the Jacobian Trans-
pose [15]. The Jacobian Transpose method has linear convergence to the
unconstrained minimizer.
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Figure 7: Example of the visual quality showing 11 key-frames in an anima-
tion of a jump. The animation was edited manually using a simple editing
suite made in connection with this work.

One may also use singular value decomposition to obtain a minimum
norm solution. Singular value decomposition has the benefit that one can
deal with the singularities and ill-conditioning arising from the loss of free-
dom [12], while it retains the ability to handle secondary goals.

The open source software package Blender [1] uses a singular value de-
composition based Jacobian Inverse method, which deals with joint limits
by projection of the final solution unto the feasible region.

If one uses a matrix splitting method [29] for solving the Newton equa-
tion then one would obtain the equivalent of the Cyclic-Coordinate-Descent
method [15]. The iteration cost of this method is very low. However, it has
poor convergence rate.

All of the above variants suffer from the following two drawbacks. First
their extension to deal with joint limits is not an explicit part of the math-
ematical model and can be described as applying a back-projection of non-
feasible iterates disregarding the optimality of the projected iterate. Sec-
ond, the Newton sub-system is not well-posed and approximate solutions
are needed in one way or the other. This often results in poor convergence
rates and maybe even divergence.

Taking a non-linear optimization approach to the inverse kinematics
problems allows one to model joint limits in the underlying mathematical
model of the problem, and the numerical problem of singularities of the
Jacobian is avoided.

3 A Non-Linear Optimization Approach

We use a squared weighted norm formulation measuring the distance be-
tween the goal positions and the end-effector positions. This formulation
is similar to [11], and like them we can support numerous goal types in-
cluding both position and orientation goals. The main difference being that
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we have agglomerated all goals and introduced a general weighting matrix
instead of dealing with K square weighted summation terms. This formu-
lation is well suited for calculation of the solution to a global kinematics
problem with multiple end-effectors, because it takes into account the in-
terdependency between various branches. The Jumping motion in Figure 7
is an example of such an animation with multiple dependencies.

Given a branched mechanism containing K kinematic chains, where
each chain has exactly one end-effector. We agglomerate the K end-effector
functions into one function

y =





y1
...
yj
...

yK




=





F1(θ)
...

Fj(θ)
...

FK(θ)




= F(θ), (16)

where yj is the world coordinate position of the jth end-effector, and Fj(θ)
is the end-effector function corresponding to the jth kinematic chain. Using
the agglomerated end-effector function, we create the objective function

f(θ) = (g − F(θ))TW(g − F(θ)), (17)

where W is a symmetric positive definite and possible diagonal matrix and
g =

�
g
T
1 · · · g

T
K

�T is the agglomerated vector of end-effector goals. The
optimization problem is

θ∗ = min
θ

f(θ) (18)

subject to the linear box-constraints

θ ≥ l (19a)
θ ≤ u, (19b)

which models the minimum and maximum joint parameter values. Here
l is a vector containing the minimum joint limits and u is a vector of the
maximum joints limits. This implies l ≤ u at all times.

If F is sufficiently smooth and θk → θ∗ as k → ∞ then F behaves al-
most as a quadratic function at θ∗. This intuition suggest that when we
get close to a solution the formulation behaves as a convex quadratic min-
imization problem. Further, by design all constraints are linear functions
defining a convex feasible region. Thus, a simple constraint qualification
for the first-order necessary Karush-Kuhn-Tucker optimality conditions is

17



always fulfilled [28]. This would imply that a Newton method would be
the method best suited for solving this problem.

Unfortunately this approach is infeasible, since the interactivity require-
ments of the system prohibits the costly computation of a Hessian, and
even Quasi-Newton methods such as the Broyden - Fletcher - Goldfarb -
Shanno (BFGS) method [28] would still be costly compared to methods
relying solely on the first order information. Originally, [11] combined a
Quasi-Newton method with the active set idea used in the projected gradi-
ent method of [30, 31]. The idea can be stated as modifying the Newton
direction by applying a modification to the current Hessian approximation
such that the resulting Newton search direction obtained from the New-
ton sub-system is kept inside the feasible region. Of course then one must
search for blocking constraints when performing a line-search, and fur-
thermore, one must update the set of active constraints and conduct the
corresponding projections on the Hessian approximation.

The approach of Zhao et al. does not exploit the fact that the above for-
mulation has a convex feasible region. In fact the feasible region is a boxed
feasible region. This suggest that all the book-keeping and modifications
of the Hessian matrix can be omitted if the active set idea is replaced by
a projected line-search. Unfortunately preliminary testing showed us that
projection of a Quasi-Newton direction was not a feasible approach, since
the projected direction can no longer be guaranteed to give a reduction in
the objective function. To be able to guarantee this reduction a method
which is more perpendicular to the iso-contour of the objective function
must be chosen.

4 Projected Gradient

The simplest idea for a projected line-search method is to use the gradi-
ent descent as a basis. This method is called Gradient projection or the
projected gradient method. It is very well suited for nonlinear optimiza-
tion with box constraints and is robust. In fact, it is not even necessary
to assume feasibility of the previous iterate to ensure feasibility of the cur-
rent iterate, since the method relies on projection. The unprojected search
direction of the gradient descent is orthogonal to the iso-contour of the ob-
jective function. Thus, we can guarantee that the projected search direction
will always be a descent direction for a sufficiently small step-length.
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4.1 Computing the Gradient

From (17) we have

f(θ) = (g − F(θ))TW(g − F(θ)). (20)

The differential can be computed as follows

df = d(g − F(θ))TW(g − F(θ)) + (g − F(θ))TWd(g − F(θ)), (21)

which reduces to

df = 2(g − F(θ))TWd(g − F(θ)), (22)

where

d(g − F(θ)) = −
∂F(θ)

∂θ
dθ, (23a)

= −Jdθ. (23b)

Which means
df = −2(g − F(θ))TWJdθ. (24)

From this we have
df

dθ
= −2(g − F(θ))TWJ, (25)

and the gradient can now be written

∇f =
df

dθ

T

= −2JT
W(g − F(θ)). (26)

How to compute the Jacobian is treated in 5.

4.2 Finding a Step-Length

Given this search direction we can update our parameter vector θ by

θk+1 = θk − τ∇f, (27)

where τ is some scalar. If τ is a constant or given by a formula this is equiv-
alent to solving the Jacobian Transpose method as can be seen from (26).

Several values of τ have been tried for the Jacobian Transpose method.
In [10], they compute the step-length according to,

τ =
e
T
z

zTz
where e =

�
g − y

k
�

and z = JJ
T
e. (28)
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Whereas in [32] they compute the step-length such that

�
�
I− JJ

+τe
�
�≤ ε (29)

where ε > 0 is a user-specified constant. The rationale behind both ap-
proaches is to measure the deviation from the linear approximation. If the
deviation is too big then the step-length is reduced. In Robotics, rate con-
trol is used [33, 9] in which � ∆θ � is clamped to a specified maximum, and
only a single iteration is used. Others [34] clamp the goal displacement if it
exceeds a threshold. Due to linearity down-scaling, the goal-displacement
is equivalent to using a smaller step-length.

A non linear optimization method uses some dynamic scheme to find a
suitable step-length in each iteration. Usually, a simple inexact line-search
is used, such as the Armijo back-tracking. As our approach needs to satisfy
the constraints we need a modification of this approach as we will describe
next.

4.3 Projected Armijo Back-Tracking Line-Search

An important part of a projected method is the projected line-search since it
is here that the actual projection and thus the constraining of the solution is
done. Numerous ways of performing inexact line-searches exist and most
of them could be combined with projection. We have chosen the Armijo
back-tracking approach because of its beneficial properties with regard to
speed and robustness, and because it guarantees good improvements in the
objective function when such is possible.

We can think of f(θ) as being a function of the step-length parameter,
τ , thus we may write

f(τ) = f(θ + τ∆θ) (30)

A first order Taylor approximation around τ = 0 yields

f(τ) ≈ f(0) + f �(0)τ (31)

The sufficient decrease condition, the Armijo condition [28], is

f(τ) < f(0) + αf �(0)τ (32)

for some α ∈ [0..1]. Observe that

f � =
d

dτ
f(θ + τ∆θ) = ∇f(θ)T∆θ (33)
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This is nothing more than the directional derivative of f taken at θ and in
the direction of ∆θ. The idea is now to perform an iterative step reduction
by setting τ 1 = 1 and verify the above test. If the test fails one updates the
step-length as

τ k+1 = βτ k (34)

where α ≤ β < 1 is the step-reduction parameter. Performing back-tracking
ensures the longest possible step is taken. Therefore there is no need for
a curvature condition to avoid unnecessarily small steps. We can now
rephrase the test as follows

f(θ + τ k∆θ) < f(θ) +
�
α∇f(θ)T∆θ

�
τ k (35)

This is the Armijo test used in an un-projected line-search. If a projected
line-search is done, then we can think of θ as a function of τ k so we write

θ̂(τ k) = θ +∆θτ k, (36)

moving some terms around results in

∆θτ k = θ̂(τ k)− θ. (37)

Using this in the original Armijo condition we have

f(θ̂(τ k)) < f(θ) + α∇f(θ)T (θ̂(τ k)− θ) (38)

Next we will keep θ̂(τ k) feasible by doing a projection onto the feasible
region

f(P (θ̂(τ k))) < f(θ) + α∇f(θ)T (P (θ̂(τ k))− θ) (39)

where P is a projection operator, for instance it could be

P (θ̂(τ k)) = max(min(θ̂(τ k),u), l) (40)

where the comparison are element–wise. The vectors l and u would be
constant lower and upper bounds for θ. This ensures that even if a previous
iterate was infeasible then the current iterate will be feasible. Given this
projected line-search it is possible to perform a fast and robust computation
of the pose.

5 A Geometric Approach to the Differential

To give the reader a more full picture of the method we have included
details of the Jacobian computation. The derivations in this section are
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based on previous work such as [11], but describes this in more detail for
the multiple end-effector case.

Without loss of generality, we will choose homogeneous coordinates to
develop the theory in the following. Given a chain with n links, we have
0
T1, . . . , n−1

Tn homogeneous coordinate matrices. We will assume that the
ith joint depends on the parameters θi. That is i−1

Ti can be thought of as
a function of θi. We will specify the tool held by the end-effector and the
goal placement of the tool by the agglomerated vectors

[y]n =




p

î
ĵ





n

, [g]0 =




pgoal

îgoal

ĵgoal





0

∈ R3
× S2

× S2 (41)

where p is the position while î and ĵ are unit vectors specifying the ori-
entation. The bracket notation [·]i is used to make it explicit that vectors
are expressed in the coordinates of the ith joint frame. Using homogeneous
coordinates we can write the instantaneous position of the tool as

y =




p

î
ĵ





0

=




0
Tn 0 0

0
0
Tn 0

0 0 0
Tn








p

î
ĵ





n

= F(θ), (42)

where 0
Tn = 0

T1 · · ·
n−1

Tn. Often one would use the practical choices

[p]n =





0
0
0
1



 , [̂i]n =





1
0
0
0



 , and [ĵ]n =





0
1
0
0



 (43)

which could greatly simplify all expressions. However, in the following
we will keep things general. Let us investigate the differential of the end-
effector function,

dF =
∂F(θ)

∂θ� �� �
J

dθ =
�
J1 · · · Ji · · ·Jn

�





dθ1
...
dθi
...

dθn




(44)

where J is the Jacobian. The above equation tell us what the differential
change of the end-effector would be if we induced some differential change
in the joint parameters. This opens up for an intuitive way of computing J.
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We observe that Jidθi describes how the end-effector position is influenced
by a change in θi. Without loss of generality, we will only focus on the
position term. The remaining terms follows in a similar fashion. We have

∂

∂θi

�
p

1

�

0

dθi =
0
T1 · · ·

i−2
Ti−1� �� �

0Ti−1

∂(i−1
Ti)

∂θi
i
Ti+1 · · ·

n−1
Tn� �� �

iTn

�
p

1

�

n

dθi (45a)

= 0
Ti−1

∂(i−1
Ti)

∂θi

�
p

1

�

i

dθi, (45b)

Assume that the ith joint is a revolute joint with the unit joint axis [ui]i−1 =�
xi yi zi

�T specified as a constant vector in the i− 1th frame. One can
show

∂(i−1
Ti)

∂θi
=

�
U

×
i Ri 0

0
T 0

�
(46)

where Ri is the 3-by-3 upper part of i−1
Ti

i−1
Ti =

�
Ri ti

0
T 1

�
(47)

where ti is the translational part and

U
×
i =




0 yi −zi

−yi 0 xi

zi −xi 0



 (48)

is the skew-symmetric cross-product matrix. That is [ui]i−1 × p = U
×
i p for

some p-vector. This means we have

∂

∂θi

�
p

1

�

0

dθi =
0
Ti−1

�
U

×
i Ri 0

0
T 0

� �
p

1

�

i

dθi, (49a)

= 0
Ti−1

�
U

×
i Ri[p]i
0

�
dθi, (49b)

Notice that Ri[p]i = [p]i−1 − [ti]i−1, so

∂

∂θi

�
p

1

�

0

dθi =
0
Ti−1

�
[ui]i−1 × ([p]i−1 − [ti]i−1)

0

�
dθi, (50a)

=

�
[ui]0 × ([p]0 − [ti]0)

0

�
dθi, (50b)
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Using similar derivations for i and j terms allow us to conclude that we can
obtain the ith column of the Jacobian corresponding to a revolute joint by

Ji =




[ui]0 × ([p]0 − [ti]0)

[ui]0 × [̂i]0
[ui]0 × [ĵ]0



 (51)

If the ith joint was a prismatic joint with sliding along the joint axis given
by the unit vector [ui]i−1 then one would have

∂(i−1
Ti)

∂θi
=

�
0 [ui]i−1

0
T 0

�
(52)

from this we have

∂

∂θi

�
p

1

�

0

dθi =
0
Ti−1

�
0 [ui]i−1

0
T 0

�
i
Tn

�
p

1

�

n

dθi, (53a)

= 0
Ti−1

�
ui

0

�

i−1

dθi, (53b)

=

�
ui

0

�

0

dθi, (53c)

Note that the sub-parts corresponding to orientation, î and ĵ, are zero.

∂

∂θi

�
î
0

�

0

= 0
Ti−1

�
0 [ui]i−1

0
T 0

�
i
Tn

�
î
0

�

n

dθi, (54a)

= 0
Ti−1

�
0 [ui]i−1

0
T 0

� �
î
0

�

i

dθi (54b)

= 0 (54c)

similar for the ĵ-term. Thus for the case of the prismatic joint we have

Ji =




[ui]0
0

0



 (55)

The extension to more than one translation axis is trivial.
As seen from all the above derivations the “effect” of the tool is com-

puted from the geometry expressed in the world coordinate system, and
we can conclude that the computation of the Jacobian is totally indepen-
dent of what type of coordinate representation one uses. We exploit this
to use a quaternion representation rather than a homogeneous coordinate
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representation. Since spherical linear interpolation quaternions are better
suited for interpolation of the in-between key-frames and superior skinning
techniques exist based on quaternions as well [35]. Thus, one can avoid
conversion between quaternions and matrices completely. Further the com-
putational effort in computing the absolute transformations of each joint is
less expensive using a quaternion representation than using a matrix rep-
resentation.

5.1 A Ball and Socket Joint

In the above, we only dealt with having one rotation axis and multiple
translation axes. Thus, a natural question is what to do with multiple ro-
tation axes? Traditionally, this has been handled by creating imaginary
multiple joints. Thus a joint with rotation around three axes can be mod-
eled as three revolute joints placed on top of each other. In the following,
we will derive equations for dealing with such a joint in a canonical way.

Euler angles are a popular choice as parameterization in motion capture
and animation formats, therefore we will use an Euler angle parameteriza-
tion of a ball and socket joint. Inspired by the robotics community [7, 36],
we will adopt the ZY Z Euler angle convention. This means that if the ith

joint is a ball-and-socket joint then it will be parametrized by the angles θi,
φi, and ψi. Further, the relative transformation is given as

i−1
Ti =

�
RZ(φi)RY (ψi)RZ(θi) ti

0
T 0

�
, (56)

where RZ and RY are rotations around the z and y axes of the (i − 1)th

joint frame. Trivially we have

∂(i−1
Ti)

∂φi
=

�
(Z×

RZ(φi))RY (ψi)RZ(θi) 0

0
T 0

�
(57a)

∂(i−1
Ti)

∂ψi
=

�
RZ(φi) (Y×

RY (ψi))RZ(θi) 0

0
T 0

�
(57b)

∂(i−1
Ti)

∂θi
=

�
RZ(φi)RY (ψi) (Z×

RZ(θi)) 0

0
T 0

�
(57c)

where

Y
×
p =




0
1
0



× p and Z
×
p =




0
0
1



× p (58)
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for some vector p. Next we define the three vectors

[ui]i−1 =




0
0
1





i−1

(59a)

[vi]i−1 = RZ(φi)




0
1
0





i−1

(59b)

[wi]i−1 = RZ(φi)RY (ψi)




0
0
1





i−1

(59c)

and by straightforward computation we have,

∂[p]0
∂φi

dφi =
�
0
Ti−1[ui]i−1

�
× ([p]0 − [ti]0) dφi, (60a)

∂[p]0
∂ψi

dψi =
�
0
Ti−1[vi]i−1

�
× ([p]0 − [ti]0) dψi, (60b)

∂[p]0
∂θi

dθi =
�
0
Ti−1[wi]i−1

�
× ([p]0 − [ti]0) dθi, (60c)

now renaming the vector ([p]0 − [ti]0)

r0 = ([p]0 − [ti]0) (61)

we get the Jacobian entry

Ji =




[ui]0 × r0 [vi]0 × r0 [wi]0 × r0
[ui]0 × [̂i]0 [vi]0 × [̂i]0 [wi]0 × [̂i]0
[ui]0 × [ĵ]0 [vi]0 × [ĵ]0 [wi]0 × [ĵ]0



 (62)

6 Performance of Projected Back-Tracking Line-

Search

The projected line-search developed in this work has been tested with two
different methods: the Jacobian Transpose method, which is the same as
a Steepest Descent method using a fixed step-length, and a projected line-
search method with the projected Armijo back-tracking line-search we de-
scribed in Section 4.3. We have compared our results with the results from
the SVD based Jacobian Inverse method used in the Blender Software pack-
age.
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Figure 8: An example of what may happen if the step-length of the Jacobian
Transpose method is chosen too high. The motion flips between the green
and the red pose, superimposed on the desired result. Step-length in this
example was set at 0.05. This example used 5 positional goals and joint
limits.

6.1 Comparisons

Blender was chosen as an example of a widely used software package
which lives up to current performance and quality demands. The reason
for choosing Blender instead of e.g. Maya or 3D Max was, that it is possible
to perform actual measurements on Blender due to it being open source.
Since the functionality, quality and performance of Blenders inverse kine-
matics system is very similar to the other solutions (see e.g. Figure 4 or the
so called cg survey by [37]), we chose only this one.

Our reference implementation of the Jacobian Transpose method corre-
sponds to the one used by [15] where a fixed sufficiently small step-length
is used. Experiments were done with the Jacobian Transpose method vary-
ing the fixed step-length. These experiments showed that a step-length of
more than 0.005 would make the Jacobian Transpose method diverge even
if the method were given an initial iterate comparatively close to a solution.
Step-length below this limit slowed down the method without discernible
improvement to the quality. Therefore, in all our results we used Jacobian
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Transpose method with a fixed step-length of 0.005. An example of the
divergence exhibited with too large step-length is shown in Figure 8.

(a) Animation using 28 frames per
cycle

(b) Animation using 7 frames per
cycle

(c) Animation using 5 frames per
cycle

Figure 9: The difference between the three sampling settings of motion
capture data. Notice that spatial-temporal coherence is decreased from a
to c.

6.2 Test Framework

The methods were tested by running a number of repeated tests under
different conditions. The test scenario comprised a fixed setup using a
motion captured animation of a person doing a gymnastics exercise. A
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time lapse of the animation showing the exercise can be seen in Figure 13.
The positions of the hands, feet, pelvis and head of the motion capture
animation were used as goals for the inverse kinematics skeleton. The
orientation of the goals was not used in these tests. The goals were updated
each frame. The skeleton consists of 71 degrees of freedom, and joint limit
constraints on all joints, giving a total of 142 constraints (71 upper and 71
lower).

Since interactive performance was a major factor in the evaluation we
chose to compare the quality of the method with a fixed time slot at their
disposal giving each a maximum number of iterations which would make it
converge in approximately 0.015 seconds or less, corresponding to approx-
imately 66 frames / seconds.

We varied how far the goal-positions were placed from the end-effector
positions. This was done by sampling the motion captured data with vary-
ing intervals. The settings used were 0.05, 0.7, and 1.0 seconds. Figure 9
shows three consecutive frames of the reference animation, using the three
settings.

The test cases were run on an Intel®dual core 1.66 GHz architecture
with 1 GB memory utilizing only one core.

An absolute tolerance of 0.05 units was set. The tolerance was chosen
to be small enough not to interfere with the visual quality of the anima-
tion. 0.05 units is approximately 1 centimeter if the skeleton corresponds
to a person that is approximately 1.80 meters high. The function value in
Figure 10, 11, and 12 are the sums of all end-effector squared errors.

6.3 Visual Quality

The visual quality is graded by the closeness to the reference animation as
well as the smoothness of the animation. In both cases the gradient pro-
jection gives superior results to what is being computed by the SVD based
Jacobian Inverse method. This can be seen from the plots in Figure 10,
11 and 12.The figures show the Median value as a red line. The edges of
the blue boxes denote the 25th and 75th percentiles, the whiskers denote
the boundary of the inliers of the data set. Outliers are shown individually
as red crosses. The smoothness of the animation and the handling of joint
limits and orientation/position of intermediate joints can be seen from the
frames in Figure 13 notice frames 7 and 9 where the animation made by
the reference method clearly jitters.
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Figure 10: Plot of the distribution corresponding to the animation shown
in Figure 9(a). Red crosses denote outliers in the data set. Notice that the
Projected line-search has much lower Median as well as a more compact
distribution.

Figure 11: Plot of the distribution corresponding to the animation shown
in Figure 9(b). Red crosses denote outliers in the data set.
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Figure 12: Plot of the distribution corresponding to the animation shown
in Figure 9(c). Notice that the Jacobian Transpose method is beginning
to have problems in this case due to the lack of coherence. Some signifi-
cant outliers with values of around 80 has been omitted from the Jacobian
Transpose method plot to make comparison possible.

6.4 Robustness

Since the method guarantees a reduction in the objective function, the
method is very robust. No restrictions on previous poses are necessary.
The robustness can be seen from the tight distributions of the values in
Figure 10, 11 and 12.

6.5 Generality

The method can be used with any conceivable skeleton. Examples of skele-
tons we have tested are shown in Figure 1. The method is easily integrable
in other systems. The method is implemented in the free open-source meta-
library OpenTissue [27], and can be included in any source code under the
Zlib license [38]. As shown in Figure 1 the method has been included in
an ogre demo by a third party.

7 Alternatives to Gradient descent

Gradient descent is not the best performer in the family of optimization
methods. For general constrained problems a quasi-newton approach is
usually a much better choice. Even with the higher iteration cost and the
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Figure 13: Selected frames from the animation used in testing the methods,
each frame shows from left to right: the Blender version, the Motion Cap-
ture reference, the Projected line-search method. Notice that the Blender
method jitters from frame to frame and that it differs significantly from the
reference (notice especially frame 7 and 9).

necessity to keep track of the active set of constraints, better performance
can usually be achieved. For the Inverse kinematics problem in an interac-
tive setting it is often not as important to get an exact solution and when we
add to this that the projection operation cannot be combined with the quasi
newton update step, it becomes infeasible to use the active set method. In
this PhD project we experimented with several method and as it can be
seen from our earlier work [39] the projection operator can be combined
with a conjugate gradient method, with good results. The projection op-
erator was also combined with a dogleg method in [40] The performance
of these alternatives are not handled in this work. The interested reader is
refered to these texts.
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8 An Application in motion tracking

In the following I will describe an application of the Inverse kinematics
system. The system was used as a dimensionality reduction in a particle
filter tracker developed by Søren Hauberg in conjunction with his Phd work
[41]. The description here is an extract of the one presented in [4] here I
have concentrated on presenting the results.

8.1 Motion Estimation

as a dimensionality reduction for monocular human motion estimation.
The inverse kinematics solver deals efficiently and robustly with box con-
straints and does not suffer from shaking artifacts. The presented motion
estimation system uses a single camera to estimate the motion of a human.
The results show that inverse kinematics can significantly speed up the esti-
mation process, while retaining a quality comparable to a full pose motion
estimation system. Our novelty lies primarily in use of inverse kinematics
to significantly speed up the particle filtering. It should be stressed that
the observation part of the system has not been our focus, and as such is
described only from a sense of completeness.

With our approach it is possible to construct a robust and computation-
ally efficient system for human motion estimation.

Inverse kinematics has found widespread use as an intuitive posing sys-
tem for articulated figures in Computer Graphics [14] and for motion plan-
ning in Robotics [42]. We propose a novel use of inverse kinematics as a
means to reduce the dimensionality of a particle filter based tracking algo-
rithm. Preliminary results show that this approach significantly reduces the
time demands compared to existing approaches with comparable results.
The method may make it possible to perform visual tracking of general
human motion in an interactive way.

Three dimensional human motion analysis is the process of estimating
the configuration of body parts over time from sensor input [43]. Tradi-
tionally motion capture equipment has been used to track this motion. In
motion capture, markers are attached to the body and then tracked in 3 di-
mensions. Usually this requires multiple tracking devices so motion capture
is most often performed in pre–calibrated laboratory settings.

Our long term goal is to use human motion analysis as part of a physio-
therapeutic rehabilitation system. In the system, the motion of a patient is
tracked and analyzed during exercise sessions performed both at the clinic
and at the patient’s home. This application rules out the traditional mo-
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tion capture approach, and results in the need for a simpler system with
fewer cameras. These limitations make it necessary to formulate a better
model to compensate for the lack of information from the image data. Our
approach is to use inverse kinematics as a way to impose this information.

Our approach utilizes the fact that the pose of a skeleton can be de-
duced from the end–effector positions. While a full human skeleton may
have more than 100 degrees of freedom, the end–effectors space of the
same articulated figure can have e.g. only 15 degrees of freedom (posi-
tional parameters of head, hands and feet). This dimensionality reduction
accounts for a significant speedup in the computational demands of the
system, compared to analyzing the motion in the full pose configuration
space of the skeleton.

Estimation of human motion is an inherently high dimensional problem,
since human motion is both diverse and has many degrees of freedom.
The traditional approach to reducing the dimensionality has been to utilize
manifold learning, i.e. to try and restrain the motions in a subspace of the
full space. This approach is used in [44, 45, 46], but seems to be most
suited for a constrained set of motions like walking or golf–swinging.

We want to be able to process a larger set of motions, and thus need
some other means of reducing the dimensionality. Inverse kinematics has
been used in motion estimation before [47], but not as a dimensionality
reduction tool. Our work differs in that it utilizes the posing abilities of the
inverse kinematics system to infer the pose of the remaining joints. Thus,
the estimation can be performed on the end–effector joints only.

Our inverse kinematics system is based on the robust system described
in previous sections.

The motion estimation system used is the one described in [6]. While [6]
concentrated on the motion estimation, this work focuses on the interactive
inverse kinematics solver.

9 Visual Motion Estimation

Visual motion estimation is the process of inferring the motion of a moving
object from a sequence of images. In this work we wish to infer the 3
dimensional pose of a human moving in front of a camera.

In this Thesis the Visual motion estimation will not be described in detail
since this part of the work must be attributed mainly to Søren Hauberg.
The interested reader is referred to the papers [6] and [4] where a detailed
description of the motion tracking can be found. In this workk we will
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Figure 14: Traditional motion estimation in full pose space using 100 par-
ticles. Notice that the superimposed figure looses track of the person in the
image.

concentrate on the effects of introducing the inverse kinematics solver as a
dimensionality reduction tool. and thus we present the results of our tests.

9.1 Results

To verify the quality and to measure the time improvement we performed
some simple tests. The tests consisted of estimating the motion of a person
sitting on a chair moving his arms about. The resulting skeleton had 3 end–
effectors , the hands and the head. The skeleton was fixed at the hip and
the legs were not modelled. The method can handle a full skeleton but for
these tests we chose a simple skeleton. The original video clip used was
app. 45 seconds long, at 15 fps.

The purpose of the tests was to compare the time expenditure and qual-
ity of our method to a traditional method.

We performed tests and timing of the system, using a Lenovo T400
Thinkpad� laptop with an Intel �core™2 duo 2.40 Ghz.
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Figure 15: Traditional motion estimation in full pose space using 5000
particles. The results of this motion analysis are satisfactory but the com-
putation took more than 10 hours.
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Figure 16: Motion estimation using inverse kinematics with 25 particles.
As it can be seen the results are very similar to Figure 15. However the
time spent was only 5 minutes.
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Figure 14, 15 and 16 show selected frames from an image sequence
with the pose estimation results superimposed. The images in each of the
figures correspond to the 32nd, 94th, 126th and the 196th frame of the se-
quence. A video version of the test results are available at:

http://humim.org/vriphys2009/
The first test was a traditional full pose motion estimation without in-

verse kinematics using 100 particles. Figure 14 shows the result. Here the
system quickly looses track of one arm and produces a large amount of
shaking in the motion estimation. The computations took approximately
five minutes on the test hardware. We then increased the number of par-
ticles to 5000, which resulted in a successful motion estimation with only
little shaking. Unfortunately, this required more than 10 hours of compu-
tation time. The results of this test can be seen in Figure 15.

The final experiment was run using the inverse kinematics system for
pose calculation, making it possible to track in only 9 dimensions. Only
25 particles were used and the running time was approximately 5 minutes.
This is a speedup factor of approximately 120 compared to the 5000 parti-
cle run and a comparable quality, while the 100 particle run is comparable
in time spent, but in this case, the quality of the inverse kinematics tracker
is much better.

The results show that motion estimation in end–effector space is possi-
ble and that large speedups can be achieved using this approach. Our long
term goal is to create a motion estimation system for use in a physiothera-
peutic rehabilitation program and here it is essential to have real–time per-
formance, in order to provide feedback to both patients and therapists. Es-
timation in end–effector space makes this requirement more feasible com-
pared to estimation in full–pose space.

Using only a single camera gives no depth information which means
that the system has difficulty in placing the goals correctly in this direc-
tion. This problem might be solved by using a camera type which can infer
some depth information such as a stereo camera or a time of flight camera.
Weighting the depth parameter of the goals with a small weight might also
help since this would give the inverse kinematics solver more freedom in
the placement with regards to the depth. It could however, also result in
poses which would fit badly with the visual data so it could not stand alone.

10 Discussion and Conclusion

The non-linear optimization approach has shown beneficial behavior as a
strong mathematical formulation of the inverse kinematics problem. We
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have presented an efficient and robust numerical approach for solving the
problem. We believe our approach is simple and elegant and easy to im-
plement, even for non-specialists in numerical optimization. Further, we
have demonstrated that our approach is sufficiently exact and responsive
for interactive manipulation of multiple end-effectors while handling joint-
limits.

We have shown the connection between using a Projected gradient
method for the non-linear optimization and the traditional Jacobian Trans-
pose method. Further, we showed how the Jacobian Transpose method
could be improved by using our projected line-search method.

The shaky and jittery motion often reported near singular configura-
tions can be avoided completely when using an optimization approach,
since the variable step-length cancels out the adverse effect of the high an-
gular velocity. It is thus only a matter of a sufficiently exact line-search and
a sufficiently low minimum step-length.

We have demonstrated how the inverse kinematics solver can be used in
an articulated tracker application with a significant speedup as the result.

In our opinion, we have only touched upon the subject of seeking the
best suited mathematical formulation for interactive inverse kinematics and
matching numerical methods. There are many possible avenues for further
work. It could be interesting to reformulate the first order necessary opti-
mality conditions into a complementarity problem and further reformulate
this as a possible smooth or non-smooth non-linear equation solving prob-
lem. This would in a sense take us back to the equation solving approaches
but with the difference that constraints are dealt with implicitly without the
need for projections at all. Quasi-Newton and Steepest Descent methods
are but a few out of many methods for solving the constrained minimiza-
tion problem we have stated. Trust region methods or hybrids may be other
interesting methods to adapt to the formulation given.
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Part II

Joint Constraint Models

Box constrained joint limits are excellent for modelling the joint constraints
of e.g. robots, but it is not a very exact reconstruction of actual joint lim-
its in the human body. Therefore, my research began to concentrate on
finding a good alternative, that would still be compatible with the Inverse
Kinematics method described in the previous part, as well as being usable
for other methods. This led to an investigation into whether such a model
existed. As it turned out there was no method for describing joint limits
which could supply a constant time projection operator, thus, we decided
to invent our own. This research resulted in the following publications

• ’ A Joint-Constraint Model for Human Joints using Signed Distance-
Fields.
Special issue of Multibody System Dynamics [48].

• Local Joint-Limits using Distance Field Cones in Euler Angle Space.
Computer graphics international CGI 2010 [49].

• Distance-Field Based Joint-Limits for Biomechanic Joint Models.
Euromech Colloquium 511 - Biomechanics of Human Motion.

All made in collaboration with Sarah Niebe and Kenny Erleben.
The topics of these 3 publications are the development and presentation of
the signed distance field joint constraint model. The application moved to-
wards biomechanics and clinical motion analysis. This Is a very nice exam-
ple of the way a method developed initially for a purely graphics oriented
application can be used in e.g. biomechanical work.
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11 Joint constraints using signed distance fields

We present a local joint-constraint model for a single joint which is based
on distance fields. Our model is fast, general and well suited for modelling
human joints. In this work, we take a geometric approach and model the
geometry of the boundary of the feasible region, i.e. the boundary of all
allowed poses. A region of feasible posed can be build by embedding mo-
tion captured data points in a signed distance field. The only assumption
is that the feasible poses form a single connected set of angular values. We
show how signed distance fields can be used to generate fast and general
joint-constraint models for kinematic figures. Our model is compared to
existing joint-constraint models, both in terms of generality and computa-
tional cost.
The presented method supports joint-constraints of up to three degrees of
freedom and works well with sampled motion data. Our model can be ex-
tended to handle inter-joint dependencies, or joints with more than three
degrees of freedom. The resolution of the joint-constraints can be tweaked
individually for each degree of freedom, which can be used to optimize
memory usage. We perform a comparative study of the key-properties
of various joint-constraint models, as well as a performance study of our
model compared to the fastest alternative, the box limit model. The study
is performed on the shoulder joint, using a motion captured jumping mo-
tion as reference.

12 Introduction

When simulating articulated figures, one needs a model that describes the
range of motion of the individual joints. An example of such a model is the
inverse kinematics (IK) skeleton which is a hierarchy of bones where each
bone is connected to a parent bone by a joint [11]. The relative coordinate
transforms between connected bones are given by a set of joint parameters.
The focus of this work is the presentation of a novel accurate model for
representing legal values of these joint parameters based on experimental
kinematic data.

From a mathematical viewpoint, an IK skeleton is a hierarchy of ho-
mogeneous coordinate transformations, where each bone corresponds to a
homogeneous transformation. The different joints of the skeleton require
varying numbers of parameters for representing a given pose. For instance,
the elbow joint only needs a single parameter describing the angle between
the upper and lower arm. Joints such as the shoulder or hip joints, have a
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higher degree of freedom (DOF) and thus require more angle parameters.
One could even use a translational joint parameter to model the sliding of
the scapula on the thorax in the shoulder complex.

These joint parameters are not unbounded, they are constrained by a
highly non-convex, continuous connected and closed subset of the param-
eter space. We use the term feasible pose when all the joint parameters of
a given pose are in the legal parameter space. Joint-constraints describe
the boundaries of the feasible region of poses. Figure 12 illustrates the
geometric complexity of the feasible regions we face within our applica-
tion perspective. It shows joint-constraints sampled from several motions,
found in the Carnegie Mellon university database of motion capture record-
ings [50].

Figure 17: Examples of joint-constraints for different joint types and differ-
ent motions. Each row corresponds to one joint type and each column to
one motion. Observe the complex geometry of the feasible region.

The method we present is comparable to the method presented in [23].
However, the use of Euler angles and distance-fields results in a constant
time projection operator, making our method a faster, more accurate and
attractive approach. Our model, the signed distance-field joint-constraint
model, is generalized, supports highly nonconvex joint-constraints, has a
simple geometric interpretation and shows no performance problems that
would prohibit use in interactive applications.
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The work presented here is highly motivated by tracking human poses us-
ing computer vision and machine learning based methods [6]. Within this
application perspective, there is a need for a joint-constraint model that is
computationally fast and gives an accurate description of the feasible re-
gion of a single specific human motion. An early version of this research,
with an animation focus, was presented in [51].

13 Related Work

Several researchers have investigated the range of motion of joints [52, 53],
and numerous models exist e.g [23, 22, 25]. The box-limit model is the
prevalent model, used in motion file formats such as Acclaim’s asf/amc
[54]. Animation tools such as Maya [5] and Blender [1] also use the box-
limit model. With box-limits, the individual parameters are bounded within
a minimum and maximum of allowed values, thus the feasible region forms
a product of independent intervals. As this is a linear model with a convex
feasible region, the box-limit model is easy to combine with optimization
methods []. However, there are two major drawbacks of box-limits: They
tend to result in a loose fitting boundary and they fail to include interde-
pendencies between joint parameters. In practice, these short-comings are
handled by tweaking the box-limits for specific motions, thus for a running
motion one set of values would be used whereas, for a jumping motion, an-
other set of joint parameters would be used. Despite these shortcomings,
the box-limit model is widely used. As shown in previous work, box-limits
can be determined automatically from motion capture data [6, 55]. The
alternatives to the box-limit model offer more descriptive models, at the
cost of increased complexity. The signed distance-field model, presented in
this work, takes a geometric approach. For each joint, we model the ge-
ometry of the boundary of the feasible region of the joint parameters. Our
model is local, in the sense that we only model joint parameter dependen-
cies for each individual joint. The model requires a two-manifold feasible
region, so it can be embedded as the zero level-set of a signed distance-
field, allowing us to handle any nonconvex joint-constraint regions. In
this work, we have used the shoulder joint as the primary test case be-
cause it exhibits some of the more complex behaviour of joint-constraints
and thereby stresses the joint-constraint model used. The legal parameter
space of the human shoulder joint is bounded by a nonconvex nonlinear
joint-constraint [23, 22].

The authors of [22] use a sinus-cone model from [56], a human shoul-
der is modelled by a hierarchical IK skeleton. The scapula-thoracic joint is

43



modelled by breaking the closed chain and using the scapula as an end-
effector constrained to the surface of an ellipsoidal thorax. The sinus-cone
model is more general than the box-limit model. A reach-cone model based
on an idea from Korein [57] is presented by Wilhelms and Gelder [25].
This is extended in [26] where a general joint component framework is de-
scribed. In [58], a spline based implicit joint model is suggested for multi-
body dynamics. Due to the implicit nature of the model, the geometry of
the boundary of the feasible region can be modelled as box-limits in the
spline parameter space, interdependency of parameters is omitted. Shoul-
der joint-constraints are modelled in [23] using quaternion field bound-
aries. The orientation of the shoulder joint is sampled from motion capture
data in quaternion space. Radial basis-functions are used to reconstruct an
implicit surface representation of the boundary of the feasible quaternions.
Our approach has similarities with this method, as it uses an implicit sur-
face and supports general nonconvex joint-constraints. However, our pro-
jection operator is superior as it is a constant time operation, i.e. it is not
an iterative procedure.

The approach of [23] is further developed in [59] where a hierarchical
model of joints is presented. It seems that this approach can only handle a
single parent hierarchy as there is no information about deeper hierarchies.
In both papers, the main focus is on the machine learning part of building
the joint-constraints, while our focus is on the joint-constraint model itself.

Table 1 is a summary of a comparison study between key-properties of
the above mentioned methods and our signed distance-field (SDF) joint-
constraint model. All the compared models can essentially be seen as ge-
ometric models of the boundary of the feasible region. Their differences
lie mostly in their choice of geometric model for representing the bound-
ary and in the actual computational representation. Finally, there are some
differences in the technicalities of how the back-projection operator and
feasibility tests are supported.

As Table 1 shows, the SDF model offers more generality than its alter-
natives, while supporting constant time operations.

Projection operators fall in two categories: constant time operation or
iterative search schemes. One major feature of our SDF model is that the
projection is a constant time operation. The only other model that can offer
this, is the box-limit model. On the other hand, the memory usage can be
high. In our work, each joint needs I × J × K cells of a map, storing a
regular sampling of the distance-field, where I, J,K denote the resolution
of the map along the three axes. Adaptive distance-maps could be used
in place of a regular sampling. However, our results show that in most
practical cases, coarse maps can be used and so, the memory usage can be
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Model Model Rep-

resentation

Data Representation Projection Operator

Box Limits Explicit Vector of intervals Constant time projection

Sinus Cones Implicit Implicit function Root-search problem, It-
erative Newton method

Reach Cones Explicit Set of connected tetrahedra Linear search for closest
tetrahedron

Spline Joints Para-metric B-splines Not available

Quaternion Boundary
Fields

Implicit Radial basis functions (RBF) Root-search problem, It-
erative Newton method

Signed Distance-Field Implicit Signed distance-field Constant gradient pro-
jection

Model Feasibility Test Operator Model Capabilities

Box Limits Constant time verification of enclosing
interval

Convex/ Boxed

Sinus Cones Evaluation of closed form solution Convex/ Ellipsoid

Reach Cones Linear search for enclosing tetrahedron Nonconvex, but no holes

Spline Joints Infeasible poses are not allowed General nonconvex

Quaternion Boundary
Fields

Global support of RBF convolution of
all samples

General nonconvex, difficulties
with holes

Signed Distance-Field Constant time lookup of distance value General nonconvex

Table 1: A comparison study of key-properties of various joint-constraint
models.

kept at an acceptable level.
The predominant trend in previous work in this research area is to con-
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sider only local joint-constraints models, the exception being [26] where
the global dependency of joint parameters is considered in the case of for-
ward kinematics. In this respect, our work is no different, our model is
also a local model. However, we do consider the full dependency between
joint parameters within a single joint. Neither box-limits, sinus-cones nor
reach-cones offer this.

One final aspect of joint-constraints, on which we will elaborate below,
is the ease with which one can set up the model. In machine learning, this
is termed model selection and could be approached as a nonlinear regres-
sion problem [28]. Some models can employ sampled feasible poses for
setting up the joint-constraints, the SDF model is one such model. Quater-
nion boundary fields share similarities with our approach in this regard,
although their coordinate basis (imaginary part of a quaternion) is non-
trivial to work with. To our knowledge, no prior work addresses model
selection of sinus-cones or reach-cones.

The presented SDF model offers full modelling generality of local joint-
constraints with constant time operations and easy model selection. This
makes the presented model a novel method for obtaining more accurate
joint-constraints, highly suitable for motion simulation of articulated fig-
ures.

14 The Signed Distance-Field Model

Even though the model presented here is a local model, it could be ex-
tended to cover inter-joint dependencies. Our base assumption is that the
boundary of the feasible parameter space of a joint forms a single con-
nected component. This implies that feasible joint motion is a connected
subset. Thus, the test for feasibility is reduced to a simple inside/outside
test. Thus, in case of an infeasible configuration, the point is projected unto
the closest feasible point.
We use Z-Y-Z Euler angles as basis, where the orientation is specified by the
angles p =

�
φ ψ θ

�T . This allows us to work in a 3D space rather than 4D
or 9D as would be the case for quaternions and homogeneous coordinates.
By modelling the motion range geometrically, we have a broader basis of
well-known geometrical representations to choose from, e.g. polygonal
meshes, tetrahedral meshes etc.
As performance is of great importance, the geometric representation must
support two constant time operations: Verification of a feasible joint pose
and projection of infeasible joint poses back onto the boundary of the fea-
sible region. Distance-fields are known to offer both these qualities, but
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at the cost of extra memory usage. A distance-field is an implicit repre-
sentation of the geometry, defined by the function Φ : R3 �→ R where
| ∇Φ(p) |= 1 everywhere and Φ(p) = 0 for all p corresponding to the
geometry.

14.1 Building the Signed Distance-Map

In the following we describe how we compute the discrete signed distance-
map from the continuous signed distance-field. In principle, any signed
distance-field algorithm could be used [60]. For this work, we used a sim-
ple brute-force approach. Because the signed distance-field rigging is done
as a preprocessing step, the cost of generating the signed distance-map is
of minor importance. In fact, we did not even bother storing the prepro-
cessing for our tests. Our experience shows that a fairly coarse resolution
is sufficient, as the set of motions we study only requires a low number of
temporal samples. Running this process off-line means that generating the
distance-map is not a bottleneck, as might have been suspected. Table 2 in
section 15.1 lists runtime statistics for generating the signed distance-maps
of a jumping motion.

Although we use a simple brute-force method in constructing the distance-
map, we will – for completeness of presentation – give a full detail descrip-
tion. Initially, we create a regular grid of a user specified resolution. The
grid is located in space such that the minimum and maximum corner points
of the grid is within the angle interval bounds of the Euler angles:




φ
ψ
θ



 ∈




0, 2π
0, 2π
0, 2π



 . (63)

Once the grid has been created all distance values stored at the grid nodes
are initially set to ∞.

Φ(p) = ∞ ∀p ∈ N , (64)

where N is the set of all grid nodal positions in the map.

1. Next we sample the joint motion from some exemplar based motion,{qi}i=N
i=1

, for instance some motion capture data.

2. For each time sample qi we extract the Euler angles of the present
joint

p
i =




φi

ψi

θi



 ← qi. (65)
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The Euler angles are collected in a chronologically ordered list {pi}i=N
i=1 .

3. For each node of the grid, we compute the distance to the closest
sample point. Running through the entire list of samples we check
the distance to the current sample. If the newly computed distance
is less than the distance value currently stored in the corner node
then we replace the stored value with the new value. This gives the
following selection operation:

Φ(p) ← min
i=1..N

�
Φ(p), � p

i
− p �

�
∀p ∈ N (66)

The temporal sampling of the motion might be too coarse, thereby cre-
ating multiple disjoint regions in the final signed distance-map. There are
at least two ways of dealing with the sampling problem. One may adopt
a naive approach: Detect if the problem occurs and then redo the entire
motion sampling at a finer resolution. This could be done by detecting how
many connected components we have in the final map. However, a more
intelligent approach is to use an adaptive sampling: Given a grid resolution
we can adaptively modify the motion capture sampling rate to ensure that
the distance between any two consecutive motion samples is never larger
than half the maximum grid spacing. We use the adaptive motion sampling
strategy in our implementation.

14.2 Adaptive Sampling of Motion

We use a chronologically ordered list of our samples to interpolate between
neighbouring samples. Coarsely sampled regions are subsampled using
spherical linear interpolation( slerp [61]) in angle space. We can subsam-
ple the region between two neighbouring samples as densely as necessary,
to ensure that the distance between the new samples are never greater than
half the grid resolution. The resulting quaternions are then converted into
Euler angles and added to the list between the existing samples.

Figure 18 summarizes the adaptive sampling algorithm. If disjoint mo-
tion is encountered, some interpolation scheme must be established to con-
nect the manifolds of the unconnected motions. For testing purposes, we
simply interpolate between the last frame of one animation with the first
frame of the second animation. For the test sets used, this simple approach
works well. It should be noted that this would not generally be sufficient.
It should be ensured that the motion samples are not disjoint, meaning the
motions should share at least one common point.
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n = 0
t = 0
pn ← qn ← current sample at time t
for n = 1 to end

qn+1 ← next sample at time t+∆t
while distance(qn, qn + 1) > grid spacing/2

∆t ← ∆t/2
qn+1 ← next sample at time t+∆t

end

if ( distance to small) increase ∆t
n ← n+ 1

end

Figure 18: Adaptive motion sample algorithm. Observe that he ∆t variable
can be seen as a kind of trust region radius.

14.3 The Signed Distance Property

We know that all motion samples are feasible poses and we can assume
with some certainty that not all feasible poses are represented. Further, we
know that some poses are in the interior of the region and some are on the
boundary. In some cases we want to treat all samples as if they were lying
on the boundary. This would be the case when we have a very restricted
motion from which we have built our signed distance-field, and we want
to use these to make it possible to mimic the specific motion from which
the samples have been taken. Thus, one may wish to add an additional
pass to the distance-map generation algorithm. We want to implicitly add
the interior void to our representation. The above part of the algorithm
only represents the samples as the feasible position and has no notion of
what the interior is. To add such a notion one may convert the distance-
map into a signed distance-map. The idea is to place a positive sign on
some outside border cell of the grid. Then one simply performs a region
filling operation where all neighbouring cells not crossing the zero level-
set is given a plus sign. In the end, all unassigned cells must be interior
and are given a minus sign. One flaw in this approach is that the region
must be a closed manifold, otherwise it will be hollowed out and there will
be no interior region assigned. This can be helped by either ensuring that
the motion is sufficiently dense sampled or by using an alternative method
for determining boundary cells. Ensuring the density of the samples has
shown to be difficult [23], and for this application the extra work is not
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needed. The single motion sampling represents a very limited area. In this
setting the above mentioned subsampling is sufficient to ensure the signed
property of the map. For sculpted joint-constraints on the other hand, the
signed distance-map property must be handled as we will show in the next
section.

14.4 Sculpted Signed Distance-Field Joint-Constraints

It may be difficult to obtain enough motion samples to automatically gen-
erate signed distance-fields. Also, one may wish for the option to have
specific control over the motion and directly model the behaviour. Using
a geometric representation, such as distance-fields, allows for an easy and
direct approach for modelling signed distance-fields, for instance by using
sculpting tools [62]. As a proof-of-concept to support our claim we used a
simple setup exporting the surface of a signed distance-field as a polygonal
mesh and then used the open source 3D modelling program Blender [1]
to tightly fit a two-manifold to the data, using an enclosing sphere and the
shrink-wrap modifier. An example of a feasible region obtained in this way
is shown in Figure 19(b). An advantage of this approach is that a non-
convex manifold can be easily obtained and is easily modifiable, either by
directly manipulating the mesh or by manipulation through some intuitive
interface such as modifying the feasible region as a polygon on a sphere.
Figure 20 shows the result of applying the sculpted signed distance-fields.

The shrink wrap method used in this example is a way of filling out the
empty parts of the feasible region. For completeness, we will give a brief
description of the way this modifier works. For a full description we refer
to Blender documentation [1].

1. Choose an enclosing two-manifold object e.g. a sphere.

2. Project all points of the enclosing object inward onto the surface of
the target object.

3. Generate a new signed distance-field from this object.

Note that the original shape of the two-manifold object has a significant
impact on the quality of the resulting joint-constraints. We have chosen this
approach as an easy-to-use and intuitive approach, to show the possibilities
of signed distance-field joint-constraints. Other more elaborate techniques
for constructing a surface from a point cloud, such as the one described
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(a) Sampled joint-constraints. (b) Sculpted joint-constraints using
shrink-wrap.

(c) Sculpted joint-constraints shown
in Cartesian space.

Figure 19: An example of refining the sampled joint-constraints of the left
shoulder using an enclosing sphere and a simple shrink-wrap modifier from
Blender [1].

in [23], may give more correct results. Either technique could be used
together with our method.

14.5 Applying Signed Distance-Field Joint-Constraints for

Inverse Kinematics

We use an inverse kinematic (IK) modelling approach similar to [11], where
the IK problem is formulated as an optimization problem which is solved
using an iterative line-search method. The feasibility of a given IK iterate,
p, is determined by testing the corresponding Euler angle distance value in
the signed distance-fields:

Φ(p) ≤ ε ⇒ p is feasible. (67)
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The parameter ε is a threshold value to counter round-off errors. The
impact of this parameter is analysed in our results section. The signed
distance-field lookup is performed in constant time by indexing the sur-
rounding grid points and performing a tri-linear interpolation at the lookup
position. Infeasible poses are projected back onto the feasible region, by
moving in the opposite direction of the distance-map gradient. The gradi-
ent is computed as a central finite difference approximation:

∇Φi,j,k =





Φi+1,j,k−Φi−1,j,k

2∆i
Φi,j+1,k−Φi,j−1,k

2∆j
Φi,j,k+1−Φi,j,k−1

2∆k



 , (68)

where ∆i,∆j,∆k denote the grid spacing along each coordinate axis. The
gradients at the grid nodes surrounding p are interpolated using a tri-linear
interpolation on each component of the gradient. The projection of the
infeasible p is then:

p ← p− Φ(p)∇Φ(p). (69)

The central difference approximation of the gradient may cause numerical
dissipation in the computation of Φ(p) and ∇Φ(p). To alleviate this, the
projection (69) can be applied twice, this does not make the procedure
iterative. It is merely an implementation safeguard against numerical dis-
sipation. Due to the distance-map properties, no more than two iterations
is needed, this gives a constant time operation.

15 Results and Discussion

We have chosen to verify and validate the signed distance-fields in the con-
text of IK. We use the box-limit model as a base of reference, mostly due
to its widespread use in interactive application and because it is the model
currently used in human motion tracking. We have excluded the alterna-
tive methods from the tests, since none of them live up to both the time
and modelling demands of our application. We focus on performance and
accuracy.

15.1 Building the signed distance-maps

In our tests, a brute-force approach was used for building the distance-
maps from motion samples. Table 2 shows the timings for generating the
signed distance-maps for the joint-constraints of a single jumping motion.
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Figure 20: Comparison study of animation quality when using box-limits
versus signed distance-fields. The figure on the left shows signed distance-
fields, the figure on the right shows box-limits. The figure in the center is
the motion capture reference.

Grid Resolution # Motion Samples Storage Requirement Computing Time (secs.)
8× 8× 8 200 4 kB 0.21

16× 16× 16 200 32,7 kB 1.34
32× 32× 32 200 262 kB 8.30

Table 2: Timings of brute-force approach for distance-map generation for
30 joints in a jumping motion sample. Observe that even for detailed maps,
the processing time is acceptable as this is a preprocessing step.

15.2 Parametrizing the Distance-Field Joint-Constraints

The signed distance-field model is dependent on the user specified grid res-
olution I × J × K and the ε parameter. The parameters are orthogonal
in the sense that grid resolution mostly influences the signed distance-field
generation, while the feasibility threshold parameter is a run-time only pa-
rameter.

We have tested different grid resolutions and it turned out that for our
single motion sampled signed distance-fields there seemed to be a thresh-
old around a resolution of 16×16×16. For finer resolutions, the animations
ran smoothly and with acceptable quality. For coarser resolutions, the gen-
erated motions were jagged and tended to get stuck.
For sculpted signed distance-fields, which tend to be more connected (see
Figure 19(b)), the resolution could be set much lower. Resolutions of
8× 8× 8 or lower were acceptable in this case.
For the single motion case, the ε parameter needs to be large enough to
ensure the existence of a solution for all poses, yet small enough to counter
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loose constraints. We observed that for values above 0.2 radians, the con-
straints are too loosely fitted, and for values below 0.2 radians the motion
is jittery and the IK solver tends to stall.

15.3 Constant Time Performance

Figure 21: Computation times of box-limits versus signed distance-fields
when used in inverse kinematics. The measurements are ordered by value
to make comparison easier. Notice that the box-limits are generally faster
but cannot guarantee the same upper bound on computation time as the
signed distance-fields.

We have measured the computational time in an application, where the
end-effectors of an IK solver are driven by the corresponding end-effector
positions in a motion capture example. The measurements are performed
on the IK solution. Figure 21 shows a plot of our measurements.

Our experiments show that the signed distance-fields are slower than
the box-limits. This was to be expected. We can also see that the worst case
performance of the signed distance-fields is much better than worst case
for the box-limits. In the worst case the signed distance-fields still achieves
approximately 20 fps, while the box-limits only reaches approximately 10
fps.

15.4 Increased Modelling Accuracy

Using the more constrained signed distance-field model, we expect a gain
in accuracy as this should reduce the redundancy of the simulation. The
test uses an elbow joint, this joint is a child joint of the shoulder which has
a wide rang of motion. We measured the deviation of the joint, using both
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(a) Plot of error compared to motion capture.

(b) Accumulated error over time.

Figure 22: Plots showing the difference between the right elbow ’s global
position using the different joint-constraints. The more restrictive joint-
constraints cancel out the effect of the redundancy of the joint, thus get-
ting a solution closer to the motion capture reference. 1 unit on the axis
corresponds roughly to 20 cm in real world measurements.

sampled, sculpted, and box-limits, shown in Figure 22(a). As expected,
the results show that the box-limits does not constrain the position very
much. The box-limits result in an error which, transformed into real world
measures, corresponds to an error of 20 cm. The simulated motion is shown
in Figure 20.

16 Conclusion

We have presented a novel joint-constraint model using signed distance-
fields.

The fitting of our model, although loose on account of the threshold, is
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still the tightest fitting model, compared with the other presented models
as seen in Figure 1.

The model supports general non-convex joint-constraints of 3 degrees of
freedom and works well with sampled motion data. The memory usage is
cubic in the resolution of the mesh. However, in most cases it is possible to
get by with a comparably low resolution, in which case the memory usage
is acceptable. The assumption of locality has shown to be insufficient, e.g.
the orientation of the hip joint indeed has an effect on the joint-constraints
of the knee. Therefore, an interesting venue for further research would be
to extend our model to handle more than 3 degrees of freedom.
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Part III

Activation splines

The Joint Limits conclude the work I have done with motion planning. Now
we move on to something even more interesting. How to actuate a body in
a dynamics simulation, to actually do the motions, we have planned in the
previous chapters.

The first thing you need, when getting something to move, is a motor.
The human body use muscles for actuation, so the development of a muscle
model is the logical next step.

To develop a muscle model, it is necessary to decide on the application
of the model. Software packages, such as Maya, has inbuilt methods for
animating muscles, but what I wanted was something more similar to the
models used in bio-mechanics something that would have the possibility
to replace the existing methods in software such as anybody but would
still retain the interactive nature of simple linear actuators. The Idea was
to let the actuator remain a one dimensional spline but embed it into a
deformable body of arbitrary complexity. This way we get something that
is potentially as complex or simple as is needed.

The Work presented in this part is done in collaboration with Kenny
Erleben. It is not yet published but a paper presenting this method has
been submitted to the SCA 2012 Symposium on computer animation. The
following is an extended and modified version of that work.
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17 Activation splines

Figure 23: A man flexing his arm. The simulation was made using 5 spline
muscles in the shoulder and arm.

We present a method for simulating the active contraction of deformable
models, usable for animation of characters and soft deformable objects. We
propose to embed splines into a deformable model to control deformation
patterns. The splines model a type of contraction force that is transferred
to the ambient space of the deformable model. We present a novel phys-
ical principle as the governing equation for the coupling between the low
dimensional 1D activation force model and the higher dimensional 2D/3D
deformable model. The coupling model is robust towards artistic force
splines that might overlap and share their region of influence in the de-
formable model. Our activation force method works well with both mass-
spring systems, finite volume, and finite element simulations. The contrac-
tion method we propose for our splines is shown through experiments to
be robust and allows for rapid and responsive control of the deformations.
Our activation splines are easy to set up and can be used for physics based
animation of deformable models such as snake motion and locomotion of
characters. Our approach generalises easily to both 2D and 3D simulations
and is applicable in physics based games or animations due to its simplicity
and low computational cost.

Figure 24: A cartoon stool rigged with an activation spline in each leg.
A simple impulse activation signal controlling the contraction of the leg
activation splines produces a gait for the locomotion of the stool.
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Figure 25: Our system is used to make a snake crawl on the ground. The
snake contains a left and right activation spline running from head to tail.
Two cosine functions with a phase shift control the contraction that acti-
vates the spline. A simple anisotropic Coulomb friction model is used to
model friction between the snake’s skin and the ground.

18 Introduction

Making deformable models move by themselves in computer animation,
as though they have internal muscles, is a time consuming process both in
terms of rigging and computational cost. Existing approaches work through
external dynamic constraints acting between bodies like creating point-to-
nail constraints on the fly. Although an animator may control this, the
approach uses an external fictitious view to create the actuation rather than
an internal more physically correct view. Other approaches use accurate
muscle models with a micro scale view of muscle fibres. These models are
hard to come by as only specialists know how to create the correct fibre
data and the models require a substantial computational effort. Thus, we
believe such models are not easily adaptable by animators or feasible in an
interactive application context.

We present a method which allows animators to model activation forces
with splines embedded in the passive mesh. Each spline affects a region of
the mesh. The splines are intuitive, as they can be understood as tendency
lines of the true continuum field of activation forces. Thus, our spline
model reduces time consumption in rigging compared to a muscle based
model. Existing physically realistic methods are computationally heavy,
taking hours of wall clock time to simulate seconds. Our method is con-
ceptually closer to the traditional line-based models such as Hill [63] and
Zajac [64] . However, our approach naturally overcomes the difficulties
in having to model via points to ensure proper physical correct bending
moments. Our work allows for a natural coupling between the activation
forces and the resulting deformations. This is ignored in most line-based
modelling. Our spline model bridges the gap between the physically accu-
rate, but computationally heavy, methods, and the classical biomechanics
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models which are computationally efficient but typically lack deformation
and collision support. Our novel contributions are,

• A novel force equivalence principle for transferring coarse low 1 di-
mensional representation of activation forces to a fine high 2/3 di-
mensional representation of the activation force field.

• A generalization of line-based force models to arbitrary smooth curved
lines.

• An orthogonal approach to extend line based force models to include
a physical realistic passive deformation of the deformable models.

• A unique robust and responsive method for contraction, which works
by altering the rest shape of a spline, rather than tweaking physical
parameters such as stiffness.

We present parameter studies, demonstrating that our method is not sensi-
tive to specific modelling of the splines and that complicated deformations
are possible with the novel contraction parameter. Thus, our approach
is suitable for artistic created models as it allows for overlapping splines
and can transfer activation forces to all regions of the deformable model .
Several animation examples show that the method produces robust anima-
tions, resulting in interesting motion with little rigging or animation time.

Figure 26: An animation of a biceps muscle bending an arm. The simula-
tion does simple collision handling and uses gravity to pull the arm down
after flexing. Our method was not developed for biomechanics. However,
as the example shows it can capture some of the real world muscle effects.
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19 Related Work

Early work in computer graphics focused on simple kinematic deforma-
tions [65] or cage-based deformations such as free form deformation (FFD) [66].
Later, energy constraints were introduced for adding constraints between
parametrized models [67] and generalized [68]. A more physical approach
used the finite element method (FEM) for simulation of deformable mod-
els and added constraints using Lagrange multiplier method [69]. Some
of these early ideas have been optimized by precomputing of principal
components [70] to build responsive dynamic textures [71]. There have
been kinematic approaches to make a connection between deformation
and muscle motion. An example of this is the approach by Aubel and Thal-
mann [72] in which a visualization mesh is wrapped around a spline and
volume preservation is approximated, or Lee and Ashraf [73] which makes
passive deformation of simple fusiform muscles. None of these kinematic
or animation approaches handle the activation of the deformable models
which is our main focus in this work.

Activation of mass spring systems have been investigated previously in
computer graphics where a mass-spring lattice/cage mesh is used for both
activation forces, the deformable model, and handling of collisions [74,
75]. The cage ideas have been extended to use hierarchical FFD as the
lattice [76] . These are all best classified as Eulerian approaches to the
activation forces whereas ours is a Lagrangian approach. We embed lower
dimensional 1D spline polylines into the 2D/3D deformable model rather
than caging the deformable model. For the coupling between the two dif-
ferent physical systems we apply a physical principle to tie together the
deformable model and the actuation model. No such physical principle
is used in previous work[74, 77, 75, 76] as their cage holds both the de-
formable model and collision/contact response.

Our contribution is based on a physical principle for coupling our acti-
vation model with the deformable model – no previous work is as far as we
know based on a physical principle for this. Our approach allows the en-
vironment to interact directly with the deformable model rather than with
a cage. Our approach also allow for any deformable model being mass-
spring systems, finite element/volume methods or to be used together with
our activation force model.

Tu, Grzeszczuk and Terzopoulos [78, 75] use mass spring systems in the
same manner as [74]. The focus in this work is on learning motion patterns
for these types of mass spring models the focus on our work is on the actual
activation force model. These authors vary their activation force springs us-
ing a linear interpolation between a prescribed fully contracted rest length
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Figure 27: A children toy rubber lizard walking using 6 activation splines.
Two are used to flex the spine and one is placed in each leg. The activation
is controlled by phase shifted cosine functions. (3D model by Kevin Hays.)

and the initial relaxed rest length in contrast we use a simpler linear scal-
ing of the initial rest length. This allow our activation forces to contract to
zero length if needed or even expand far beyond the initial rest length. Our
choice seems more reasonable for purpose of general animation.

Space-time optimization problems use a force field applied on the whole
2D/3D deformable model to actuate the deformable model and make it
move in some desired manner [79, 80]. This means that any external force
can be applied to a model to make it move into some desired shape. This
is an unnatural activation force. Our approach models activation forces
much more similar to the approaches taken for articulated figures where
activation forces live in the joint space of the model [81, 19]. Hence for de-
formable models the control parameter vector scales linear with the num-
ber of vertices in the deformable model mesh. In our case we have as little
as a single parameter for a whole embedded spline. Hence our control pa-
rameter vector scales linear in the number of splines we apply. Space-time
optimization problems are not the focus of this work but we speculate that
these could benefit from a low dimensional activation force model such as
ours.

Simulation of muscles has been researched in computer graphics, com-
putational physics and engineering, and biomechanics communities for
years. Viceconti et al [82] published a review of the current state of the
art of modelling the musculoskeletal apparatus. They state that most full
body simulators use linear muscle-actuators, ideal joints and infinitely rigid
bones, and stress that this is not an optimal modelling, since it neglect the
factors of muscle interaction and non-linearity of the force splines. In the
review by Pandy and Andriacchi [83], the function of human muscles is
extensively reviewed and several ways of measuring muscle activation are
compared to current models. Computational modelling is described as a
valuable tool in the analysis and explanation of human joint and muscle
function.

Most approaches use a FEM method [84, 85, 86] or a finite volume
method (FVM) [87, 88] to model the muscle and use a three dimensional
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vector field to represent the fiber direction. The fiber direction may be
modeled from real life observations as a constant vector field. All of these
approaches are off-line methods. In comparison, our approach simplifies
the modelling of the direction of the activation force field in exchange for
less computational complexity. Our method can handle branches of the
deformable models and multiple force directions.

More accurate muscle models in computer graphics includes Teran et
al [87] which use B-spline solids to represent the fibre direction. Their
approach is further developed and applied to a 3D muscle test case of the
arm and shoulder complex in [88]. Their fibre representation is mixed with
the constitutive equations for the muscle tissue. In contrast our work com-
pletely separates the activation force model from the constitutive equation
of the deformable material. Hence, we do not need to worry about non-
linear elasticity, plasticity or volume preservation as these properties are
determined from the deformable model simulator. Lastly, our work use
1D spline curves rather than spline solids that must cover the whole de-
formable model. This makes for a much more intuitive interface. In prin-
ciple our model can be perceived as a graceful degradation of the spline
solid. In the limit of adding infinite many 1D splines our model would be-
come a spline solid. As our 1D embedded splines do not need to cover the
whole region of the deformable model they are much more easy to rig. One
major benefit of the 1D splines over the spline solids is the ability to handle
multiple directions within the same tissue. The spline solid approach lacks
this ability completely.

Porcher-Nedel and Thalmann[89] used a polyline representing the ac-
tion line of a muscle. The muscle surface is modelled using a mass spring
system. The idea is refined by Aubel & Thalmann[72]. The polyline is
moved using either pre defined behavior or a 1D damped mass spring sys-
tem. The mass spring system is not unlike our activation spline. However,
our splines are not restricted to follow the line of action but can be embed-
ded anywhere in the deformable model, Thus providing much more gen-
erality and flexibility for an animator. Aubel and Thalmann use attractive
and repulsive force fields to constrain the polyline and pre-defined behav-
iors – pinned guide points – for dealing with attachments and proper wrap
around of the line of action around joints. In contrast our approach does
not rely on force fields to deal with constraints or guide points instead we
use the physical simulation of the deformable model to deal implicitly with
all these issues. Thus, our approach requires much less modelling input
and simpler rigging.

During simulation Aubel and Thalmann updates local coordinate frames
at points on their polyline then the muscle surface vertices are kinemati-
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cally coupled to the motion of the polyline. In our work the coupling is
fully dynamic and based on a physical equivalence principle. Further, in
our work we address how to choose the mass spring parameters to yield
rapid response and we introduce a control parameter for controling the
dynamic behavior of our activation spline.

Sueda et al. [90] describe a framework for modelling muscle and specif-
ically tendon movement in hand animation, originally presented in [91]. It
has some similarity to our approach.The fact that it uses a spline along
which it activates and transfers force to the bones is similar. However, it
does not have the two way coupling between the active spline and the de-
formable mesh.

In teh work by Pandy and Garner [92], the focus is on modelling the
muscle path, that is the path spanned by the centroid line of the muscle. In
this way, it is similar to the piecewise linear Hill type muscles, but it extends
the linear segments with curved segments. Their approach cannot handle
muscles with fibres, not following the centroid line. The work by Pandy
and Garner did not consider deformation – their work allowed classical line
models to wrap around bones using via points – their focus is the obstacle
problem for classical usage of 1D muscle models . Our work makes via
points unnecessary as the wrap around effects would be handled implicitly
by the deformable model simulation (contact forces between deformable
model and rigid body model).

We extend these existing approaches by presenting interactive behaviour,
general non-muscle shapes, such as a stool, and intuitive rigging of the
muscle fibre direction allowing animators to e.g. paint activation splines
into a deformable model.

20 The Activation Spline Method

We present a system consisting of a passive deformable model represented
by a volume mesh and one or more splines, used to represent the activation
forces in the deformable model. On a coarse level, our approach can be
described as follows

• As a pre-processing step, activation splines are discretized and em-
bedded into the deformable model such that the splines will follow
the motion of the deformable model once simulation starts.

• During run time, our simulation loop’s first step is to compute activa-
tion forces on the activation splines. This can be viewed as a coarse
low dimensional representation of the true activation force field in the
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deformable model. A novel approach is taken to control the activa-
tion forces, where we change the rest shape of the activation splines
rather than their material parameters such as elastic stiffness.

• We formulate a novel force equivalence principle as the governing
equation for the force transfer between spline and volume mesh. This
allow us to transfer the coarse activation forces to the entire influence
region in the deformable model.

• We feed the whole volume mesh activation force field to a deformable
model simulator as an external force field. This allows us to use any
deformable model simulator as a black box simulator. Note that it
is only an “implementation” trick to apply the activation forces as
external forces. In reality the activation forces are internal forces in
the whole model – Hence, our activation force model is a Lagrangian
model. In principle this can be viewed as an interleaved simulation
approach [93, 77].

• Having obtained a new state for the deformable model we update the
spline position before we initiate the next step of our simulation loop.

The simulation loop is sketched out in Figure 28.
To ease notation, and without loss of generality, in the following, we will

describe our method using a single spline. We assume that an animator or
modeller have created a spline with K control points and any point on the
spline can be found using

p(s) =
K�

k=1

Nk(s)gk (70)

where p ∈ RD with D = 2, 3 and Nk : R �→ R+ is the kth global basis func-
tion of the spline. The vector gk ∈ RD is the corresponding control point
and s ∈ [0..L] is the spline parameter. The spline is assumed to be inside
the volume mesh having V vertices, where xj ∈ RD is the coordinates of
the jth vertex.

The governing equation of motion for any deformable model can be
written abstractly as

M
d2x

dt2
+C

dx

dt
+ k(x− x0) = Fext (71)

where M is a mass matrix, C is a damping matrix and k is the elastic forces
that depends on the current displacement field x − x0. For linear elastic
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(a) (b)

(c) (d)

Figure 28: Illustration of our pre-processing phase and simulation loop. As
a pre-processing step (a) we bind a spline to a volume mesh. During the
simulation loop we first compute spline forces (b), afterwards we transfer
the forces to the volume mesh using neighbourhoods (c). Finally we update
the deformable model and move the embedded spline (d).

materials there is k = K(x − x0) where K is the stiffness matrix. The
vectors x and x0 are the concatenation of the current and initial (rest) mesh
vertex positions respectively. Thus, x,x0,k ∈ RDV and M,C,K ∈ RDV×DV .
Fext ∈ RDV is the concatenation of external forces. In our simulations, we
mostly use gravity which in 3D means

Fext,j = (0, 0,−g)T , ∀j = 1..V (72)

where g is the gravitational acceleration. We have simple ground reaction
forces incorporated which work by inserting a spring force, but without
loss of generality we do not describe these here. During a simulation, k
is the elastic passive forces coming from the deformable model itself. The
activation spline forces will be coupled to the model by adding a right hand
side force term, Fact ∈ RDV . We will later add a contact force term to the
right hand side, Fcon ∈ RDV . The resulting equations of motion to be time
integrated is written as

M
d2x

dt2
+C

dx

dt
+ k(x− x0) = Fext + Fact + Fcon (73)

In the following, we will detail the steps of the simulation loop and how
the forces in the governing equation can be computed.
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20.1 Discretization of the Activation Spline

For simplicity we choose to discretize a spline into a sequence of N discrete
spline points pi and corresponding line segments li between two consecu-
tive discrete spline points i + 1 and i. We label the discrete spline points
by p1, p2, p3 ,. . . , pN where pi ∈ RD for all i. The spline has N − 1 line
segments and the length of the ith segment is given by

li =� pi+1 − pi � (74)

For simplicity, we discretize the spline equidistant in parameter space. Thus
if s = [0..L] then

pi =
�

k

Nk(si)gk for i = 1..N (75)

where Nk : R �→ R+ is the kth global basis function of the spline and gk ∈

RD is the corresponding control point and si =
(i−1)L
N−1 . For our test examples

this has been sufficient. One could have taken curvature of the spline into
account to create a more adaptive discrete version of the spline.

20.2 Embedding the Activation Spline

We embed the discrete spline into a volume mesh by binding the spline
points to a volume mesh using mesh coupling. We use barycentric coor-
dinates for an embedding tetrahedron or bi-/tri-linear interpolation for a
square or cube mesh [94, 95]. Given a volume mesh with vertex positions
xj ∈ RD for j = 1 to V , we write

pi =
�

j∈C(pi)

wj xj (76)

where C(pi) is the vertex index set of the mesh cell (triangle, tetrahedron,
square, or cube) that contains the point pi. The values wj ∈ R are the
interpolation weights. At initialization, after an animator has defined the
spline and its influence region, the spline is discretized. Then, all wj ’s
for each spline point can be precomputed and stored as attributes for each
spline point. During run time the above equation can be used to re-compute
and update the current position of the discrete spline point.

When pi lies on the border between two elements, simply pick the ele-
ment at random. If pi is outside the mesh then pick the “closest” element.
Barycentric coordinates may be used even when pi is outside the element.
For squares and cubes similar ideas can be used with little modification.
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20.3 Computation of Activation Spline Forces

We compute the spline forces at the discrete spline points. This is done
by creating a linear damped spring for each line segment of a spline. Let
ei ∈ RD be the unit direction vector from xi to xi+1 then the spring force
on xi+1 is

a
i
i+1 = −ki (li − αil0i) ei − cieie

T
i (vi+1 − vi) (77)

and on xi we have from Newton’s third law of motion

a
i
i = −a

i
i+1 (78)

where the spline point velocity is given by vi = d
dtpi for all i. Further,

ki, ci ∈ R+ are the stiffness and damping coefficients respectively. Here li is
the current length and l0i is the initial rest length pre-computed during the
binding process both given by (74). Note that ei = pi+1−pi

li
.

We have extended the standard spring damper law with the parameter
αi ∈ R+. This is our contraction parameter which we use to control con-
traction and extension of the spline. When 0 < αi < 1 then the ith segment
of our spline contracts. If α > 1, we have an extension and for α = 1 the
activation spline is passive. We can now compute the spline force at the ith

spline point as
fi = a

i−1
i + a

i
i (79)

If a spline force is wanted for an arbitrary s-value the spline basis functions
are used to interpolate the wanted value.

In our examples, we control the α-values. In some of our test cases,
we use a single α-value for an entire activation spline as in the example
of the stool legs shown in Figure 24. In other cases, we use a functional
expression to control the contraction of each segment as in the case of the
snake in Figure 25. Our initial experiments indicated that we obtained
much better controllability of the activation splines by manipulating the α-
parameter rather than trying to change ki and ci on the fly. This makes good
sense as varying ki and ci on the fly would change the overall material. This
would subsequently affect the time integration method, possibly resulting
in a stiff system, which is unsuited for interactive simulations.

We choose the spring and damping coefficients to create a critically
damped spring. This is motivated by behaviour of real human tissue. We
follow the approach by Barzel and Barr [68] and use

ki =
1

τ 2
and ci =

2

τ
(80)

where τ is the characteristic time. In Erleben et. al[96] it was shown that
if the deviation of the spring length from rest length should be within a

69



fraction 0 < ε � 1 after the frame time, characteristic time intervals must
be used. Thus, τ should be given by τ = ∆t

n . We apply this formula to
control how fast the spline forces should be able to contract to a given
deviation within a frame time-step. Our experiments showed that a value
of � < 0.01 gave visually satisfying results.

From our 2D experiments using mass-spring systems for our deformable
models, we observed that a spline should be at least twice as stiff as the
embedding deformable model to be able to provide a rapid response in a
controllable manner.

20.4 The Force Equivalence Principle

We will introduce our novel force equivalence principle between a force on
a spline point p(s) and the volume integral of the activation force F(x) in
a neighbourhood N ⊂ RD around the spline point,

f(s) =
1

VN (p(s))

�

x∈N (p(s))

F(x) dV. (81)

where VN (p(s)) is the total volume of the neighbourhood N (p(s)). Thus,
f(s)can be interpreted as the average force over the entire neighbourhood.

We will use this single principle to create a discrete mapping between
activation forces at discrete spline points and discrete vertices in the am-
bient mesh where the spline is embedded. This single equation forms the
main contribution of our model.

We discretize the spline parameter using our discrete spline points

fi =
1

VN (pi)

�

x∈N (pi)

F(x) dV. for i = 1..N (82)

We then define the discrete counterpart Ni of N (pi).
For our FEM simulations, like the muscle animation in Figure 26, we

have added all vertex indices in the mesh to Ni, where the correspond-
ing vertex is closer to pi than any other pm for m �= i. When computing
the distance between a spline point pi and a mesh vertex xj care must be
taken to respect the boundaries of the deformable model. The shortest path
inside the volume of the deformable model should be chosen. This is im-
portant in order to avoid an activation spline in one tentacle of an object
affecting a different tentacle of the object. Our method is robust towards
the neighbourhood definition and allows for overlapping neighbourhoods.
Neighbourhoods could even be defined by animators using a painting tool
such as the ones used for skinning. For the 2D simulations using a square,
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(a) (b)

(c)

Figure 29: Illustration of different ways to define the neighbourhood set
for different types of meshes.(a) A closest point set, based on geodesic
distances inside the volume mesh. (b) A simpler grid based definition. (c)
A region defined by a manifold mesh, a distance measure or a function.

mesh we define neighbourhoods to be the four enclosing mesh nodes. For
the 3D simulations using cube meshes, we use the eight enclosing nodes.
The different neighbourhood definitions are illustrated in Figure 29.

Using the discrete vertex index sets Ni and the mid-point rule approx-
imation, we can rewrite the integral of (82) as a summation over the dis-
crete volume elements

fi =
1

VNi

�

j∈Ni

Fj∆Vj, for i = 1..N (83)

∆Vj is the volume associated with the jth vertex of the volume mesh. Given
a lumped mass matrix M, we get Mjj = mjID×D, where ID×D is the D-
by-D identity matrix and mj is the mass of the jth vertex, Mjk = 0 for
j �= k. For a material with a homogeneous constant mass density, ρ, then
∆Vj =

mj

ρ and VNi =
1
ρ

�
j∈Ni

mj. For lumped mass matrices, the following
is equivalent to (83)

fi =

�
j∈Ni

mjFj�
j∈Ni

mj
, (84)

In all our examples we used (84). We can state the problem as a system of
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equations 


f1
...
fN





� �� �
b

= A




F1
...

FV





� �� �
y

. (85)

Each block of A contains the mass ratio coefficients defined by (84). A sub
block of A is given by

Aij =

�
mj�

j∈Ni
mj

ID×D If j ∈ Ni,

0 Otherwise
(86)

Once we have solved for the unknown y, we have Fact = y. In general, A
will not be a square matrix. This depends on the resolution of the discrete
spline and the resolution of the volume mesh. In most cases, A will have
more columns than rows. We have Ni �= Nj when i �= j, this means A

can be assumed to have full row rank. If all index sets Ni are disjoint,
meaning Ni∩Nj = ∅ for all i �= j, the matrix system Ay = b can be broken
down into N smaller independent systems. These can be solved in a naive
parallel manner. This is the case for the walking stool example.

In general, we have an under-constrained system and we solve this by
adding the constraint that we want to minimize the norm of Fact

F
∗
act = argmin

F

1

2
F

T
F s.t. AF− b = 0 (87)

The first order optimality (KKT) conditions result in the saddle point prob-
lem �

IV D×V D A
T

A 0

�

� �� �
KKT

�
F

∗
act

−λ∗

�
=

�
0

b

�
, (88)

where λ∗ is the Lagrange multiplier for the solution and IV D×V D is a V D
dimensional identity matrix. The KKT-matrix is a square symmetric indefi-
nite matrix of full rank. Using a Schur complement method, the solution is
found to be

F
∗
act = A

T
�
AA

T
�−1

� �� �
A†

b. (89)

The pseudo-inverse matrix, A†, can be pre-computed during initialization
and allows for a fast run-time solution.

However, the pre-computation can be even more effective, since (88)
may be solved using an iterative solver such as preconditioned conjugate
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gradient method (PCG). This is very fast as A is usually very sparse. This
method scales linearly in the number of mesh vertices, both in memory
usage and in computational cost. The drawback is that the approximate
solution will not solve (85) exactly. This can cause visible ghost forces if
the solution is not sufficiently accurate.

Rather than using a direct method for minimizing (87), a gradient de-
scent method can be used. We note that the gradient of the Lagrangian
function L is

∇FL = F−A
Tλ (90a)

∇λL = b−AF (90b)

We need to maximize wrt. λ and minimize wrt. F. This leads to the
iterative updates

λk+1 = λk +∇λL
k = λk + b−AF

k (91a)
F

k+1 = F
k
−∇FL

k+1 = A
Tλk+1 (91b)

Letting λ0 = 0 and F
0 = 0, the first iterate yields

λ1 = b (92a)
F

1 = A
T
b (92b)

If AA
T ≈ I little improvement can be gained from more iterations. Thus,

we have the approximate solution

F
∗
act = A

T
b. (93)

It is worthwhile noting that using this approach, even if we do not get an
accurate solution during the first integration step, the method will converge
to the optimal solution over time. For our 2D and 3D simulations, using
square and cube meshes, we have applied this gradient solver technique
with great success.

Note that the condition AA
T ≈ I bares similarity with the Galerkin con-

dition for algebraic multigrid methods [97]. The matrices A and A
T can

be viewed as restriction and prolongation operators in a multigrid method
for computing activation forces.

If more than one activation spline is used, we obtain a linear system for
each spline. We have to solve




b
1

...
b
S





� �� �
b�

=




A

1

...
A

S





� �� �
A�




F1
...

FV





� �� �
y

(94)
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where we have S splines and each b
i and A

i are defined as in (85). Observe
that we still have the same number of unknowns, but our system now has
more rows than previously. In principle, if we add enough splines, the
linear system will become over-constrained. However, for all the examples
using multiple splines, like our muscle simulation in Figure 26, the system
is under-constrained and we apply all of the above solution techniques.

It is known, from real muscles, that their activation cannot move the
center of mass of an isolated system, the total activation force of a muscle
must sum to zero. This is obviously true for a single deformable object float-
ing in space. This is also true for more complex systems like an astronaut in
outer space. It is only through interaction with the environment that objects
move. In our model this means

�
i fi = 0 and

�V
j=1 Fj = 0. Furthermore,

one should guarantee that the total torque of the splines equals the total
torque of the mesh activation force field. That is,

�
i ri × fi =

�V
j=1 rj ×Fj

where rj is vector from some origin to pi. Similarly, rj is a vector from that
same origin to xj. By construction, our spline model fulfils these criteria. If
some other activation force model is used, it should be ensured that these
criteria are fulfilled. All the criteria can be expressed as linear constraints
for (87). Thus, our method can easily be extended to other activation force
models.

20.5 Contact Forces

Our method generalizes to any collision handling strategy. For our proof-of-
concept simulations however, we have chosen a simple penalty force sim-
ulator. We have a single deformable model that can collide with a ground
plane. The contact force for any mesh vertex above the plane is zero. If a
vertex is below the plane, we apply a penalty force in the normal direction
of the plane, proportional to the penetration distance. Let n ∈ RD be the
unit outer normal for the plane and let q ∈ RD be an arbitrary point on the
plane. The velocity of the jth vertex is given by uj =

d
dtxj.The penetration

depth is then computed as

dj = (xj − q) · n (95)

The normal force is

nj =

�
0 if dj ≥ 0

−kdj − cnnT
uj if dj < 0

(96)

where k and c are the stiffness and damping coefficients, which we set using
the same principles as in Section 20.3. If there is a non-zero tangential
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velocity
uT,j = uj − nn

T
uj (97)

we add a friction force according to Coulombs law of friction, opposing the
sliding direction

tj = −µ � nj �
uT,j

� uT,j �
(98)

where µ > 0 is the scalar coefficient of friction. In some cases (like in our
snake simulation) we change the value of µ depending on the direction of
uT,j. The total contact force on the jth vertex is

Fcon,j = nj + tj (99)

21 Validation

0 1000 2000 3000 4000 5000 6000
14

15

16

17

18

19

20

21

22

23

Simulation steps

N
od

e 
di

sp
la

ce
m

en
t

 

 

ratio = 1.0
ratio = 1.25
ratio = 1.5
ratio = 1.75
ratio = 2.0
ratio = 2.25

Figure 30: An example of the effect of changing the ratio between active
and passive stiffness constants. The passive stiffness is kept constant and
the active stiffness is changed.

To validate the method, we have implemented a proof-of-concept sim-
ulator in Matlab for both 2D and 3D. This system uses simple mass spring
systems for the passive mesh, where spline points are assigned to cells in
the mesh as shown in Figure 29(b). This makes it easy to assign splines and
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setup simulations. We also implemented a C++ version of a co-rotational
linear FEM based on tetrahedral meshes. This version supports both the
assignment strategies shown in Figure 29(a) and 29(c).
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Figure 31: A plot showing the near critically damped response, given con-
traction of two overlapping splines at different times during a simulation.
The plot shows the displacement of nodes in a mesh over time, during a
contraction sequence similar to the one shown on the left in Figure 33.

We performed extensive parameter studies to investigate the effect of
changing the damping and spring stiffness ratios between activation force
and passive response. We have included a few of the results. Figure 30
shows a study of the effect of changing the ratio between passive and active
stiffness. The passive stiffness is kept constant, while the active stiffness is
changed. The simulation mesh is first contracted actively at simulation step
1000 and then released at step 3000.

It can be seen that it is important to find a ratio which gives a rapid and
effective contraction but does not cause too long oscillations after release.
We have used the ratio 2:1 for all our tests. Note that the oscillations are
not present in the final simulation as explained in Section 20.3, and shown
in Figure 31.

A number of simple tests have been performed to validate the correct-
ness of the activation spline model as well as the generality of the activation
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Figure 32: A time lapse of a 2D table walking, by pushing of from the
ground and elongating or contracting its middle part.

force spline model. These have been designed to address both varying and
multiple activation force directions, in both 2D and 3D.

Figure 33: Test case for overlapping splines. The region of the first spline is
shown in Yellow, The region of the second in blue, while the overlap is col-
ored green.Notice that even though both bodies undergo rapid deformation
no linear or angular momentum is induced.

Figure 31 shows a plot of the displacement of the mesh nodes in the
x direction frame by frame. Even though the mass spring system imposes
secondary oscillations, the response when the contractions are initiated in
frames 20 and 60 is close to instantaneous and oscillations are minimal.
Likewise, when the spline is relaxed in frames 40 and 80.

Figure 33 shows one such test case, where two cylinders is fitted with
two overlapping splines and activating one after the other. One is overlap-
ping in the direction of contraction the other orthogonal to this. The colors
show the region of influence for each spline. yellow for the first spline blue
for the other. The green region is the overlapping region. First the blue
region is contracted, then the yellow and finally both are contracted. the
leftmost image show the relaxed state.

Figure 34 show the effect of larger influence regions. In this test the
the three cylinders where fitted with identical splines but each was given a
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different size of influence region. the red one was given an influence radius
of 0.2 the green 0.4 and the blue 0.6. This meant that for the green and
blue cylinders there was an overlap of the influence of the points in the
spline. this turns out not to be a problem since it smooths out the force
influence of individual spline points. The fundamental constraints are still
upheld and notice in particular that the overall contraction is the same for
all three cylinders. This makes sense since the splines are identical and
thus, induce the same force on the mesh.

Figure 34: Three different settings for the size of influence region the
red cylinder has the smallest influence region while the blue has the
largest.Notice how the larger influence region smooths out the contraction
as spline points share mesh nodes.

Furthermore, we have designed a number of simulations to test the
capabilities of the system. In 2D, we have constructed a walking table
(Figure 32). In this case, the deformable model was propelled forward
using the activation splines. The table comprised two splines for pushing
the legs of from the ground and one spline to elongate and contract the
“back”. As it turned out the resulting locomotion was surprisingly effective,

In 3D, we designed a number of simulations. To show the ability to
make simple animations, a cartoon stool was rigged with activation splines
in the legs. By simple impulse contractions, the stool was made to walk
along the ground as shown in Figure 24. This locomotion was very similar
to the one in the 2D case but since we now had four legs we could use these
instead of having to contract the seat of the stool. This was animated using
our matlab version of the system.

Figure 26 shows a simple muscle animation made with the C++ frame-
work. The simulation consists of simple collision handling and two way
constraints between deformable bodies and rigid bodies. It is possible to
flex the arm and let it fall back to a stretched position under gravity.

A snake crawling along the ground was made using one spline in the
left side from head to tail and one in the right side. The splines were acti-
vated using a phase shifted cosine function. This resulted in a surprisingly
realistic behaviour for such a simple setup. Figure 25 shows a frame from
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the animation. Anisotropic friction was used to simulate the properties of
snake skin. This animation was further developed to show the control it is
possible to gain over the meshes. We let three snakes crawl and deform to
spell three letters, Figure 35 shows the result of this animation.

Figure 35: A time lapse of snakes spelling “SCA”. Even though the anima-
tion is based on a physical simulation, explicit control of the poses of the
bodies can be obtained.

The visualization of the 3D simulation meshes has been done using em-
bedded surface meshes which are then exported and rendered separately
Using the Blender rendering engine. The 2D versions show the simula-
tion mesh directly. Figure 24 and Figure 27 shows examples of animations
where unlikely objects are articulated using the spline activation. Figure 27
shows a toy rubber lizard actuated using 6 splines. the actuation makes the
toy come to life and waggle its way forward. The rubbery secondary effects
of the passive mesh are a biproduct of the fact that this is a deformable
model simulation and not a scripted animation. Similarly the walking stool
in Figure 24 shows how an inanimate object can be brought to life. even
though a very simple impulse activation is used the stool actually moves
along the ground in a controllable way.

Our final test case is a human bending his arm. For this test we needed
several new features. In contrast to rubber toys, humans have a skeleton
which constrain the deformation of the soft parts. This was included by ma-
nipulating the stiffness of individual tetrahedrons in the simulation mesh.
A skeleton was modelled and embedded into the mesh, where the skele-
ton mesh and the simulation mesh intersected the stiffness of the affected
tetrahedra was increased 250 times. Figure 36(a) show the skeleton used.
We used a comparatively fine grained mesh for this simulation, comprising
6902 tetrahedral elements. The figure was fixed at the pelvis so as not to
fall, since we have no balance control in this simulation. Three muscles,
the biceps the deltoid and the trapezius was activated to bent, raise and
lower the arm. It proved slightly more difficult to control this particular
simulation due to the rather thin limbs of humans. However even without
a control parameter the figure flexes and releases his arm. Figure 23 shows

79



(a) (b)

(c)

Figure 36: (a) shows the skeleton used for the human simulation. The
stiffness of the tetrahedra which comprised the skeleton was set 250 times
higher than the surrounding mesh. (b) shows the tetrahedral mesh used in
the simulation. (c) shows the influence region of the five muscles overlaid
on the visualization mesh.
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four frames from this simulation. In Figure 37 the noticeable bulging of the
biceps muscle under activation is clear.

Although no user interface was developed for the system, all simulations
were set up in a matter of a few hours, at worst. This included creating and
rigging the simulation mesh.

Figure 37: The bulging of the biceps muscle under activation is clearly seen
in this animation

21.1 Performance measurements

To gauge the speed of the system we performed several tests with different
mesh resolutions, using the c++ framework. We used a tetrahedral mesh
cýlinder with mesh resolutions varying from 128 to 4011 elements. The
cylinder was contracted for 1000 frames and the median values as well as
the 1st and 3rd quartiles was plotted for each resolution. The results can
be seen in Figure 38

As can be seen the time spent was very stable and didnt exceed 60ms/fr.
for any of the test. This timing does not tell so much about our method as
it tells about the FEM solver. The timings shown are for a full simulation
pass including visualisation. The actual spline activation is app. 0.5 − 1.0
percent of the full simulation time and ranges from 0.02 to 0.3 ms for the
shown mesh resolutions.

Figure 39 show the time spent on the activation, which is much less and
never exceeds 0.4ms/fr for the tested meshes.

Further we measured the performance when changing the number of
splines in the mesh. we made measurements for 1-40 splines with an in-
terval of 5. Figure 40 show the results of these measurements. Since the
activation matrix can be precomputed and the number of splines are usu-
ally much lower than the number of mesh nodes, the number of splines has
negligible effect on the overall time spent.

As can be seen from all these timings the systems runs interactively
for even moderately large tetrahedral meshes in our c++ implementation.
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Figure 38: The timings for contraction of a single tetrahedral mesh cylinder
with varying mesh resolution. a single spline was fitted to the mesh and
contracted for 1000 frames. The plot shows the median and upper and
lower quartiles for different mesh resolutions

Further refinements might give even better speed, but since the activation
spline method takes up such a comparatively small amount of the time we
have not investigated this further. It would seem that With our method
the limiting factor is always going to be the passive mesh simulation and
possibly the collision detection algorithm. It would seem that the time
is better spent optimizing these than tweaking the already fast activation
method.

22 Conclusion and Future Work

We have presented a novel approach for describing and modelling the acti-
vation forces of deformable models, based on 1D splines. We have demon-
strated the method in several scenarios, both 2D and 3D, to show how it is
possible to make animations using the actuation splines. No explicit con-
trol scheme is present, but it is still possible to explicitly control posing due
to the straight forward and intuitive relation between the spline and the
mesh.
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Figure 39: The timings for activation part of simulation. The plot shows
the median and upper and lower quartiles for different mesh resolutions.
Notice that the time never exceeds 0.4ms/fr

As we have demonstrated, our method presents an attractive compro-
mise between precision and realism on the one hand, and speed and gener-
ality on the other. Activation splines are an intuitive way of extending the
simple line-actuator to a deformable contraction spline. These follow the
deformation of the surrounding mesh, and are influenced by collisions and
attachments to other bodies.

A number of promising avenues for extending the presented ideas are
obvious. Regarding the muscle simulation case, the current version uses a
hand modelled skeleton. It would be interesting to use real scanned data
and actual measured parameters to further refine the model and show its
applicability outside the animation world.

Control using key framing, or similar techniques, would make the sys-
tem easier to use for animators. We speculate that short horizon space-time
optimization or inverse dynamics schemes might be possible ideas for this.

Our work focused on allowing animators artistic freedom to create acti-
vation splines in. However, to assist animators one could consider creating
tools that could automate some of the spline creation work. We specu-
late that medial surface representations or curve skeletons could be used to
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Figure 40: The timings for running simulations with varying number of
splines. As it can be seen the number of splines have very little effect on
the simulation time.

seed 1D splines [98]. Even with our simple interface it was comparatively
straight forward to rig the activation splines and their influence regions but
with more time this could be refined considerably, making the activation
splines a valuable tool for animation and simulation.
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Part IV

Optimal control using space time

optimization

Control of synthesized motion is something I have not yet touched upon.
Well that may not be entirely true, the motion planning in itself, is an ex-
ample of a simple form of control. It does not take forces into account
though.

Therefore, some other scheme is needed to get from the purely kine-
matic motion to a dynamic simulation. In short we need something that can
calculate the forces from a kinematically driven motion. If we where talk-
ing about rigid body dynamics, a simple inverse dynamics scheme might
suffice. Using that, we could plan the motion, with the inverse kinemat-
ics method from section 3. Then, we could calculate the necessary forces,
using an off the shelf inverse dynamics solver such as the one used in the
Anybody system [99] or in opensim [100].

When it comes to controlling the motion of deformable objects how-
ever, there is no such easy road. Equally important is the fact that inverse
dynamics only works if there is a pose available in every time step of the
simulation, which makes optimizing motions hard. We wanted something
that could both, handle deformable objects, and calculate the forces nec-
essary, for a given motion, with only keyframes as the input. Space Time
optimization does exactly that.

The following section describes our first ideas and our results for simple
spring connected particles. The theory extends easily to deal with more
complex structures and our first promising results makes us believe this
is indeed a feasible way of solving the problem of optimal control for de-
formable objects.

The research in this last part of my thesis is not published yet. The plan
is to publish this as soon as we have sufficient results to be sure the method
works robustly. Our initial results are good enough for us to believe this is
the case.
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23 Introduction to Space Time Optimization

In the following we will introduce the Adjoint method for space time opti-
mization of deformable bodies.

The space time optimization problem is, by design, stated as an op-
timization problem and hence our challenge is that of finding a compu-
tational cheap way of computing the gradient of the objective function.
For this we will use the Adjoint method. This makes it possible for us to
reduce the number of unknowns from n2 to n. Further we will take ad-
vantage of the sparse block structure of the resulting equations to yield an
O(n) algorithm for computing the gradient. We present our modification
of the adjoint method for solving the space time optimization problem for
deformable bodies the method may be extended to spline activated soft-
bodies as the ones described in the previous part, by constraining the pos-
sible forces to the subspace given by the force splines, and incorporating
the activation mapping in the calculation of the active component of the
gradient.

24 Previous Work

In this section we will give a short introduction to space time optimiza-
tion. this is by no means a full description of the many methods developed
for control of articulated mechanisms. we only seek to give the reader a
background for appreciating the following.

In 1988 Witkin & Kass [81] introduced space–time constraints to the
graphics community for articulated rigid bodies. Here motion control was
solved as an optimization problem. The gradient of their objective func-
tion was found using automatic numerical differentiation. Witkin & Kass
never experienced problems with discontinuities as their simple examples
allowed for analytical solutions (they never used the Adjoint method) and
contact was modelled as explicit constraints. Later, McNamara et. al. [101]
applied the Adjoint method for optimal control of a fluid solver. McNamara
et. al. did have discontinuities when dealing with their level set surface
and did report some problems from the collision of a clay blob. Wojtan
et. al. [79] used the Adjoint method for particle systems and cloth. They
did report that the collisions could be a problem but showed examples that
handled the cases. The Adjoint method was applied for deformable models
in [80]. The authors used per vertex control forces. However, they applied
a reduced coordinate method to the deformable models and they created a
technique for obtaining a good starting iterate. The work goes into detail
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on how to create a reduction basis that actually contain the deformation
modes of the key frames. Collisions and impact are dealt with using bilat-
eral contraints this is similar to what Witkin & Kass did [81].

25 The Space Time Constraint Problem

We will now explain how the Adjoint problem is related to the space time
constraint problem. Assume we are given a state vector of some system
q ∈ Rm. For now we will abstract over the details of the specific system
and keep things on a general abstract level. Later we will explain explicitly
how our state vector is defined. Using some forward simulation routine
we advance the state from some time t to the time t + ∆t. We write this
abstractly as

q
t+∆t = F

t(qt, αt) (100)

where αt ∈ Rs is the value of the control parameter vector for the tth sim-
ulation step. The function F(·, ·) is the actual forward simulation that is
being run. However, for all purposes we can just think of this as a func-
tion that takes a given input state and input control parameter vector and
produces a resulting final output state.

If we are given the initial state of the system q
0 as initial conditions

and then after N simulation steps we will have computed q
N . Introducing

matrix vector notation we may stack all the elements from (100) and write
one system of equations as





q
N

...
q
2

q
1





� �� �
Q

=





F
N−1(qN−1, αN−1)

...
F

1(q1, α1)
F

0(q0, α0)





� �� �
F(Q,a)

(101)

where Q ∈ Rn with n = N m, F : Rn ×Rk �→ Rn with k = N s and we have
defined the stacked control parameter vector a ∈ Rk as

a =
��
αN−1

�T
. . . (α0)T

�T
(102)

Definition 25.1 The simplest form of the space-time constraint problem can
now be stated as the problem of finding a solution a

∗ for the control parameter
vector a such that, given the initial state q

0, after N simulation steps, a∗ will
produce a motion such that, a given wanted final state qgoal is reached.
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In principle there may be many solutions for this problem hence to make
the problem solvable we write the problem mathematically as a nonlinear
optimization problem

a
∗ = argmin

a
φ(Q, a) (103)

such that Q− F(Q, a) = 0 and where

φ(Q, a) ≡
1

2
� a �

2 +
µ

2
� q

N
− qgoal �

2 (104)

where µ ∈ R+ is a user-specified penalty parameter. This is a penalty
method that seeks to minimize the control effort given by the first term,
subject to the penalty constraint (the second term) of meeting the pre-
scribed goal state after N simulation steps. The parameter µ can be used
as a tradeoff parameter between minimizing the effort or reaching the goal
state. To effectively solve such a minimization problem we are interested in
being able to compute the gradient dφ

da . This is the computational problem
we need to solve.

The specific choice of objective function (104) is based on current prac-
tice in computer graphics [81, 101, 79, 80]. In principle one can alter
and change the objective function depending on specific needs.It may seem
strange that the penalty term is associated with the state term and not the
control parameter term. The answer is obvious as the goal state may be a
physically unrealisable state due to the fact that it can be a user specified
input(e.g. a pose specified by an artist). It is therefore quite possible that
we are in the situation where no solution for a exist. A penalty formulation
allow us to solve the problem even in this case.

One generalization of the simple space time optimization problem may
be to introduce multiple goal states along the motion path (also known as
key frames). This would change the objective function into

φG(Q, a) ≡
1

2
� a �

2 +
µ

2

N�

i=1

wi � q
i
− qgoal,i �

2 (105)

Here we have introduced the weights wi ∈ [0..1]. These can be used to
control the importance of the individual key frames. In particular using
wN = 1 and wi = 0 for all i �= N we recover the simple form in (104).

Similar optimization formulations exist in other fields such as image
processing. Here people often use 1-norms and a kind of regularization of
the a-term that prevents it from changing too much from frame to frame.
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This leads to the following formulation.

φI(Q, a) ≡� a �
2
1 +

β

2

k�

j=2

��ak
− a

k−1
��

+
µ

2

N�

i=1

wi � q
i
− qgoal,i �

2

(106)

The 1-norm may be a numerical advantage as it often favours sparse so-
lutions. The rate limited constraint can be controlled through the weight
parameter β ∈ R+. The rate limitation has some physical interpretation
imagine a representing the power input for an engine, or the activation of
a muscle. In real life both muscles and motors have a certain maximal acti-
vation speed. For the muscle, this is the time for the nerve signals to reach
the muscle fibres, and the chemical process to take place. In the motor it is
the time needed to accelerate.

From an optimization viewpoint the term is attractive as it couples the
components of a. Intuitively speaking the extra term reduces the possible
search space of a making the optimization problem “easier” to solve.

25.1 The Adjoint Method

We will start by introducing the Adjoint problem on an abstract level. We
want to compute the value of gT

B for a known g ∈ Rn and an unknown
B ∈ Rn×k such that the relation AB = C always hold for a given known
A,∈ Rn×n and C ∈ Rn×k. The difficulty here is that B is a matrix of n × k
unknowns. We write the problem as

g
T
B such that AB = C (107)

The Adjoint problem is then given by

r
T
C such that A

T
r = g (108)

where r ∈ Rn is the unknown Adjoint vector. Observe that

r
T
C = r

T
AB =

�
A

T
r
�T

B = g
T
B (109)

Thus, rather than solving for B and compute g
T
B we can solve for r,reducing

the number of unknowns from n2 to n unknowns – and compute r
T
C in-

stead.
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25.2 Computing the Gradient using the Adjoint Method

From the chain rule we get that

dφ

da
=

∂φ

∂Q

dQ

da
+

∂φ

∂a
(110)

The first term ∂φ
∂Q

dQ
da is the tricky part as the part dQ

da is very difficult to
compute analytically for large complex systems. The second term ∂φ

∂a can
usually be obtained analytically with little difficulty and as such pose no
real difficulty. For our specific objective function (104) we find that

∂φ

∂a
= a (111)

We know Q− F(Q, a) = 0 always hold for all values of Q and a. Thus,
the gradient must always be 0

d

da
(Q− F(Q, a)) = 0 (112)

This can be rewritten as
�
I−

∂F

∂Q

�
dQ

da
=

∂F

∂a
(113)

The problem of computing the gradient can now be stated as the problem
of computing

dφ

da
=

∂φ

∂Q

dQ

da
+

∂φ

∂a
(114)

such that �
I−

∂F

∂Q

�
dQ

da
=

∂F

∂a
(115)

It seems we have obtained nothing but making the problem more compli-
cated but Defining:

g
T =

∂φ

∂Q
(116)

A =

�
I−

∂F

∂Q

�
(117)

B =
dQ

da
(118)

C =
∂F

∂a
(119)

(120)
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we have
dφ

da
= g

T
B+

∂φ

∂a
such that AB = C (121)

From this we immediately recognize that we can apply the Adjoint method
and instead solve the Adjoint problem of computing

r
T
C such that A

T
r = g (122)

which is

r
T ∂F

∂a
such that

�
I−

∂F

∂Q

�T

r =
∂φ

∂Q

T

. (123)

Afterwards we may compute the gradient as

dφ

da
= r

T ∂F

∂a
+

∂φ

∂a
(124)

We may now summarize the computational method for computing the gra-
dient

Step 1: Calculate and assemble ∂F
∂a , ∂F

∂Q , ∂φ
∂Q , and ∂φ

∂a .

Step 2: From the right hand side of (123) solve for r such that

r =
∂F

∂Q

T

r+
∂φ

∂Q

T

(125)

Step 3: Finally compute the gradient

dφ

da
= r

T ∂F

∂a
+

∂φ

∂a
(126)

This is the general recipe which we may now apply some optimization for
where we take advantage of sparsity patterns. Note that r depends on itself,
but bear with us a moment then we will explain how this can be.

25.3 Exploiting the Sparse Block Matrix Patterns

For our specific choice of (104) we find that

∂φ

∂qi
=

�
µ
�
q
N − qgoal

�T if i = N

0
T otherwise

(127)
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Thus

∂φ

∂Q
=

�
∂φ
∂qN

∂φ
∂qN−1 · · ·

∂φ
∂q1

�

=
�
µ
�
q
N − qgoal

�T
0
T · · · 0

T
� (128)

and ∂φ
∂a = a. Further, we observe from (101) that the partial derivative of

the forward simulation with respect to the state has the block structure

∂F

∂Q
=





0
∂FN−1

∂qN−1 0 . . . 0 0

0 0
∂FN−2

∂qN−2 . . . 0 0

...
...

...
...

...
0 0 0 . . . 0

∂F1

∂q1

0 0 0 . . . 0 0




(129)

Notice that only the first upper band blocks are non-zero. The partial
derivative with respect to the control parameters give the block diagonal
structure

∂F

∂a
=





∂FN−1

∂αN−1 0 . . . 0 0

0
∂FN−2

∂αN−2 . . . 0 0

...
...

...
...

0 0 . . . ∂F1

∂α1 0

0 0 . . . 0
∂F0

∂α0




(130)

The very sparse block structure of ∂F
∂Q and ∂F

∂a allow us to solve (125) very
efficiently. Defining the block notation of the Adjoint vector

r =
��
r
N
�T

· · · (r1)T
�T

(131)

with r
i ∈ Rm for all i = [1..N ]. We compute the solution of (125) by initially

setting r
N = ∂φ

∂qN

T
and then incrementally compute

r
i−1 =

∂F

∂qi

T

r
i +

∂φ

∂qi−1

T

for i = N − 1 to 2 (132)

The final ingredients we are missing in our framework is closed form solu-
tions for computing ∂Fi

∂qi and ∂Fi

∂αi . Here we must consider the specific case
of the deformable model simulation.
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25.4 Deformable Models

After appropriate spatial discretization (using for instance the finite ele-
ment method ) the governing equations of a deformable model is given by
the ordinary differential system of equations

Mu̇+Cu+ k(x− x0) = fext + f(α) (133a)
ẋ = u (133b)

where M ∈ R3V×3V is the mass matrix and V is the number of vertices in
the spatial computational mesh, C3V×3V is the damping matrix, x ∈ R3V

is the spatial coordinate vector and u ∈ R3V is the spatial velocity vector,
x0 = x(0) is the initial state of the deformable model. Hence x − x0 is
the current displacement field and k(x − x0) : R3V �→ R3V is the elastic
force function that computes the spatial elastic forces given the current
displacement field as argument. Further, the system is subject to external
forces such as gravity etc. given by fext ∈ R3V . The last term f(α) : Rs �→

R3V is the control forces. These are a function of the control parameters
α ∈ Rs. Time discretization of the ordinary differential equations yields the
discrete velocity update

u
t+1 =

�
I−∆tM−1

C
�
u
t

+∆tM−1
�
fext + f(αt)− k(xt

− x0)
� (134)

and the position update

x
t+1 = x

t +∆tut+1. (135)

From the velocity and position updates, (134) and (135), we have that the
partial derivatives of the forward simulation function are given by

∂xt+1

∂xt
= I (136a)

∂xt+1

∂ut
= ∆t

∂ut+1

∂ut
(136b)

∂ut+1

∂xt
= ∆tM−1

K (136c)

∂ut+1

∂ut
= I+∆tM−1

C (136d)

and
∂xt+1

∂αt
= 0 (137a)

∂ut+1

∂αt
= ∆tM−1 ∂f

∂αt
(137b)
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where K = ∂k
∂x is the stiffness tangent matrix. We Define the state space

vector qt ∈ Rm with m = 6V as

q
t =

�
x
t

u
t

�
(138)

This results in the partial derivatives

∂Fi

∂qi
=

�
I ∆tI+∆t2M−1

C

∆tM−1
K (I+∆tM−1

C)

�
(139a)

∂Fi

∂αi
=

�
∆t2M−1 ∂f

∂αt

∆tM−1 ∂f
∂αt

�
(139b)

We observe from this, that we really only need to compute the tangent
stiffness matrix K and the derivative of the control force ∂f

∂α .
Notice that for linear elasticity the tangent stiffness matrix is constant

and needs not be re-computed. However, for nonlinear elasticity the stiff-
ness matrix would depend on the current displacement field and must
be re-computed for each simulation step. This requires us to store all
the states q

0,q1, . . ., q
N . We may compute the tangent stiffness matrix

for general hyper elastic materials using a closed form solution (See Er-
leben [102, 103, 104, 105, 106]). The control force can be quite compli-
cated. However, the most simple model would simply be a nodal force.
Hence

f(α) = α (140)

and one would find ∂f
∂α = I. For the muscle splines described in the previous

part we could replace f(α) in (140) with the spline activation and force
distribution function.

Observe that to compute φ, the forward simulation is performed and
q
1,. . .,qN are stored. Once this is done it is straightforward to evaluate the

value of the objective function.
In order to compute the gradient of the objective function, compute the

Adjoint vectors rN , . . .,r1. Notice these are computed in reverse order of the
forward simulation. For the ith step of the Adjoint problem we need the q

i

state to calculate the partial derivatives. This is a potential drawback, as we
need sufficient storage, to store the state for all simulation steps. Another
potential drawback is the costly computation of the tangent stiffness ma-
trix. Finally, from previous work it is well known that the Adjoint method
has difficulties dealing with discontinuities in the state function. This, ob-
viously occurs during collisions and contacts. Some scheme is needed to
handle this if the method is to be effective beyond short horizon planning.
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26 A Simple 2D Particle Example

Consider the equation of motion of a single 2D particle in a gravitational
field

mr̈ = fext + f(α) (141)

where m is the particle mass and r = (x, y)T is the particle position, fext =
(0,−mg) is the gravitational force with the gravitational acceleration given
by g ≈ 9.82 [m/s2]. The control force is given by f(α) = (αx, αy).

Introducing the particle velocity ṙ = v and using the usual time-discretization
we obtain the velocity and update rules

r
t+1 = r

t +∆tvt+1, (142a)

v
t+1 = v

t +
∆t

m

�
fext + αt

�
, (142b)

where ∆t is the time step size. This defines our forward simulation function
F

t(qt, αt) with the state given by

q
t =

�
r
t

v
t

�
. (143)

We may now compute the partial derivatives ∂Ft

∂qt and ∂Ft

∂αt as

∂Ft

∂qt
=

�
∂rt+1

∂rt
∂rt+1

∂vt

∂vt+1

∂rt
∂vt+1

∂vt

�
=

�
I2×2 ∆tI2×2

0 I2×2

�
(144)

and

∂Ft

∂αt
=

�
∂rt+1

∂αt

∂vt+1

∂αt

�
=

�
∆t2

m I2×2
∆t
m I2×2

�
(145)

It may be instructive to compare this to the general deformable model for-
mulas using C = K = 0 and M = m

27 A 2 Particle Example in 2D

Building on the example from the previous section, we extend our system
to have two particles label A and B. Now let us consider adding a single
spring between the two particles. this simple system is the foundation of
more complicated systems since every mass spring system can be disassem-
bled into this simple relation.
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Defining e = rA − rB then the spring force on particle A is

kA = −k (� e � −l0)
e

� e �
− c

�
ee

T

� e �2

�
(vA − vB) (146)

The force on particle B is by symmetry kB = −kA. By the product rule we
have

∂kA

∂rA
= −k

e

� e �

�
∂ (� e �)

∂rA

�

− k (� e � −l0)




∂
�

e
�e�

�

∂rA





− c




∂
�

e
�e�

�

∂rA



 e
T (vA − vB)

� e �

− c
e

� e �
(vA − vB)

T




∂
�

eT

�e�

�

∂rA





Defining the auxiliary variables

h
T =

∂ (� e �)

∂rA
=

e
T

� e �

H =
∂
�

e
�e�

�

∂rA
=

1

� e �
I2×2 −

ee
T

� e �3

We may rewrite the equation

∂kA

∂rA
= −

e

� e �

�
khT + c (vA − vB)

T
H

�

−

�
k (� e � −l0) + c

e
T (vA − vB)

� e �

�
H

and ∂kA
∂rB

= −
∂kA
∂rA

. Now the stiffness matrix for our 2 particle mass spring
system would be

K =

�
∂kA
∂rA

∂kA
∂rB

∂kB
∂rA

∂kB
∂rB

�
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The damping terms are

∂kA

∂vA
= −c

ee
T

� e �2

and ∂kA
∂vB

= −
∂kA
∂vA

so the damping matrix is

C =

�
∂kA
∂vA

∂kA
∂vB

∂kB
∂vA

∂kB
∂vB

�

and the mass matrix is

C =

�
mAI 0

0 mBI

�

where mA and mB are the respective particle masses.
Observe that if one extends to a mass spring system with several parti-

cles and several springs. Then one would assemble a global stiffness matrix
and damping matrix by looping over all springs and compute the above
local spring element matrices and accumulate their values into a system
global matrix.

28 Results

Since this research is still very much ongoing, we have less results to show
that was the case for the other parts of this thesis. We have however made
a simple setup with 2 particles connected by a spring as described in section
27. To test the method we shoot each of the particles in a given direction,
and let them travel for a fixed number of timesteps under the influence of
a given force and the spring force from their connection. For each of the
time-steps we measure the position and velocity of each of the particles
we then make a perturbed solution which we use as a starting guess for
the optimization. Our objective function is the least squares difference of
velocity and position for every fourth frame.

We then run the optimization routine with the expectation of getting
a solution which is close to the original. We use the inbuilt matlab solver
fminunc, with the gradient which we have calculated using the results from
above. The optimization took around 10-15 seconds in most cases. Figure
41 show the results of our test.

As it can be seen the result is almost identical to the ground truth.
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Figure 41: The result of testing the adjoint method on two particles con-
nected with a spring.

29 Conclusion on space time optimization

A lot of work still remains for this method to be feasible but the preliminary
result are very promising. We have shown that we can set up the relation of
the passive deformable mesh and shown a simple 2D example to verify the
correctness of the solution. We have sketched the modification necessary,
to incorporate active contraction of the mesh along a fibre direction. What
we are still missing is the actual implementation of the general method
in 3D for larger, more complex systems and the process of validating the
method based on the results
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Part V

Concluding remarks

This concludes my research work for this PhD project in the following, I
will try to wrap up and conclude on the project as a whole. Three years is
a long time and much have happened. During these years I have learned
many things I didn’t even know was possible (some of them weren’t when
I started out.) Most of my research have been published but more ideas
keep popping up, so if possible, I expect to keep doing this for the next
many years.
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30 Conclusion

Initially I set out to do Interactive Human motion. Our common goal in the
HUMIM group, was a system which could help people in physiotherapeutic
rehabilitation. As exciting a goal as this was it did not fully encompass what
I wanted to do. My interests are in the simulation of human motion, not
in vision and machine learning, even though these subject are interesting
in their own right. My goal was to be able to simulate motion of humans
but even when I started I knew that to make a full simulation system from
scratch in three years would be an impossible task. Even more so, as I had
to learn (and to some extend invent) all the theory behind it first. My more
realistic goal was the following

• develop a robust and intuitive inverse kinematics system for motion
planning and kinematic analysis.

• investigate methods and develop a model for joint constraints which
could describe the highly non convex form of human joint limits.

• develop a muscle model which included deformation without loosing
the interactive quality.

• investigate ideas for controlling the motion of complex deformable
bodies in space and time.

I believe I have succeeded in at least coming up with some solutions for
each of these points.

I believe that the methods and models that we have developed are us-
able and applicable and I hope that People will use them, not just as ci-
tations in their own papers but as actual tools in their projects, be that
research, industrial, artistic or something completely different.

31 Future Work

Human motion simulation is a huge area. I have so far only scratched the
surface of the many possibilities for contributing to this exciting field of re-
search. With the knowledge I have acquired through my three years of PhD
studies, I expect to be able to continue contributing to the Human Motion
simulation research. Some of the topics I find most appealing in the light
of my previous work are:
Developing the control scheme further so it becomes possible to drive the
spline activation using kinematic data.
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Applying the spline activation in a biomechanical muscle model thus, hope-
fully making better analysis of muscle activation analysis possible.
Combine all the techniques I have developed in a motion analysis frame-
work. Such a framework might be able to do synthesized or optimized
motion from temporally sparse samples, instead of relying, as most current
tools do, on full motion captured kinematic data
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32 Epilogue

Life is just a party, and parties weren’t meant to last!

Prince

All things must have an end. And so this is it, for my PhD studies. This
Thesis effectively concludes three exciting years of research. I can honestly
say that I have had fun all the way. I feel privileged to have been able to
follow my whims and ideas and to explore what I found interesting. The
only Problem with this is, I want more. I cannot now imagine a life where
I do not have the opportunity to investigate ideas, and invent solutions for
problems I encounter and find interesting.

I am convinced that I will continue doing research , either in Academia
if the opportunity presents itself, in an R & D department in a private com-
pany, or just as something i do on the side. Conviction got me this far, i
am sure it will get me further. It is My hope that my collaborators and col-
leagues are prepared to indulge me in the future as they have done until
now.

with this I conclude.
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