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Chapter 1

Introduction

A journey of a thousand miles must begin with a

single step

— Lao-Tzu

1.1 Chest Computed Tomography

Figure 1.1: Picture of the

first medical X-Ray image of

a hand. Reprint from [1].

Modern computed tomography originated

back in November 1895 in the experiments of

Wilhelm Conrad Röntgen with an X-ray tube

and a fluorescent screen. He discovered, that un-

known invisible rays, X-rays, passed through pa-

per and wood and cast a shadow on a fluorescent

screen, while it could not travel through metal

pieces. When he put his hand into the beam he

was surprised to see bones in the casted shadow.

Shortly after he photographed his wife, Anna

Berthe Röntgen’s, hand with the X-Ray beam

Figure 1.1 and published a paper on his discov-

ery [1]. The paper made a sensation and spread

around the world within few weeks. Already in

1901 he received the Nobel Prize in Physics for

his breakthrough discovery.

The impact of the discovery on medical sci-

ence was colossal, it was the first time, when one could see inside the human

3



4 CHAPTER 1. INTRODUCTION

Figure 1.3: An example of a modern chest CT scan. The axial, coronal and
sagittal slices are extracted from a three dimensional lung CT scan.

(a) An axial slice (b) A coronal slice (c) A sagittal slice

body without direct intervention. Shortly after in 1896, Francis Williams started

X-Ray examinations of patients with tuberculosis [2]. Owing to the fact that

he had access to the state-of-the-art equipment in the Massachusetts Institute of

Technology, he was able to carry out thorough research of tuberculosis using the

fluoroscopic examination.

Figure 1.2: Hounsfield scale of a CT

scan

For a long period, projection radiogra-

phy was one of the most popular techniques

for medical imaging. The idea of imaging

just a section of an object was pioneered

by Allesandro Vallebona back in 1931 [3].

The term tomogram refers to the obtained

image of a single section or a slice of an

object and the method is called tomogra-

phy. Almost half a century later in 1972

the revolution in medical imaging begun.

Godfrey Hounsfield invented computed ax-

ial tomography (CAT or simply CT) [4]

where a volumetric image of an object was

reconstructed from a series of axial tomo-

grams. Since then, computed tomography

progressed rapidly from the first CT scan-

ner developed by Godfrey Hounsfield and

applicable only for imaging of small objects to the full body scan in 1976 and

the first spiral CT scanner in 1989. Modern CT scanners acquire chest CT scans

with high spatial resolution up to 0.5 mm just within several seconds and with

the radiation of dozens times smaller than the original CT scanner. An example

of a modern chest CT scan is shown in Figure 1.3.

Attenuation coefficient characterizes the decrease of energy of an X-Ray beam
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passing through matter. Chest CT scan is a volumetric image where intensity

values corresponds to the attenuation coefficient of the matter. A unit of intensity

is the Hounsfield Unit (HU). The Hounsfield unit scale is a linear scale of the

original attenuation coefficients or the radiodensity. The attenuation coefficient

of distilled water under a standard pressure and temperature (0◦C, 1 atm) is set

to μH2O = 0 HU, and the attenuation coefficient of air is set to μair = −1000 HU.

A general value μ HU corresponds to a material with the attenuation coefficient
μ−μH2O

μH2O
−μair

×1000. The range of Hounsfield Units for human tissues, such as bones,

fat, water, blood and muscles is given in Figure 1.2. Typical range of HU for the

anatomical structures observed in a lung CT scan is from −1000 HU (corresponds

to the attenuation of air) to the 50 HU (corresponds to the attenuation of blood).

Air in the lung CT appears dark and blood vessels appear bright as one can see

in Figure 1.3.

A modern volumetric lung CT scan is a three dimensional image with typ-

ically a sub-millimeter in-plane resolution and slice thickness of about 1 mm.

However for several clinical applications such as radiation therapy planning a

time series of lung CT scans is acquired during a breathing cycle. The obtained

four dimensional image is called 4D-CT or dynamic CT lung scans, and along

with the regular lung CT scans, images extracted at different phases of 4D-CT

lung scans are used in this thesis.

1.2 Anatomy of Lungs

When an experienced radiologist looks at a lung CT scan in Figure 1.4, he

or she immediately recognizes the anatomical structures presented in the image.

As a computer scientist, it took me a while before the sagittal, coronal and

axial slices formed into a meaningful three dimensional picture of human lungs.

The following anatomical lung structures can be identified in chest CT scans:

Figure 1.4: An example of ax-

ial, sagittal and coronal views

of a 3D chest CT scan.

• Alveolar lung tissue or parenchyma (typ-

ically appears as grey homogeneous mat-

ter),

• Pulmonary vasculature (appears as bright

stripes or spots),

• Trachea and bronchial tree (appears as

pipes with dark inside and bright borders),

• Fissures between the lung lobes (appears

as hardly visible thin plate-like structures

in light grey color).
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Figure 1.5: A sketch of
lung anatomy presenting
main anatomical structures
within human lungs: lobes,
bronchial tree and vessels.
@ 2006 Terese Winslow U.S.
Govt. has certain rights.

Figure 1.6: Lung anatomy in
CT scan. Clearly visible ves-
sels in red color, bronchial tree
in blue color. Fissures between
the three lobes in right lung
are indicated by arrows. A
magnified example of a sample
within lung tissue is displayed
in the bottom right corner.

Figure 1.5 shows a drawing of human lung anatomy. The right lung consist of

three lobes and the left lung consist only of two lobes. Air enters the lungs

first through the trachea and then spreads into the bronchial tree. Blood travels

through the vessels and spreads in the lungs. Figure 1.6 shows how the cor-

responding anatomical lung structures appear in a CT scan, for visualization

purposes only a coronal CT slice is shown.

1.3 Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary Disease (COPD) encompasses both small air-

way disease and emphysema. The main topic of the thesis is emphysema, it is
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characterized by irrevirsible destruction of lung parenchyma [5]. Due to the fact

that both diseases usually coexist, the common term COPD is used for diag-

nostics. The most important risk factors of COPD are tobacco smoking and air

pollution. COPD cause a shortness of breath, cronical cough, sputum production

and may progressively lead to death.

COPD is presently estimated to be the fourth leading cause of death in the

world [5]. Accordingly to the World Health Statistics report in 2008, COPD is

predicted to be the third leading cause of death worldwide after ischaemic heart

disease and cerebrovascular disease in 2030 [6].

Pulmonary function tests (PFT) or lung function tests (LFT) are the primary

tools for diagnosis of COPD. Spirometry is the most common test in clinical prac-

tice, it measures vital lung characteristics, such as the maximum amount of air

exhaled in the first second (FEV1, first expiratory volume in 1 second) and forced

total amount of exhaled air (FVC, forced vital capacity). These methods are ac-

cepted worldwide for diagnosis of COPD, however there are several drawbacks to

the lung function tests. The lung function tests are confirmed to lack sensitivity

on the early stages of COPD; can not distinguish type of the abnormality (e.g.

emphysema or airway disease) and spatial distribution of disease; and have poor

reproducibility [7, 8, 9, 10].

Based on the LFTs, COPD is characterized into four stages; mild, moderate,

severe and very severe COPD [5]. Based on the conventional diagnostic tools,

disease progression could be determined only in the subjects, who change the

COPD stage. A continuous measure of disease progression can be obtained from

the lung function tests, but due to lack of sensitivity and reproducibility, the

accurate monitoring of COPD is a difficult task in longitudinal studies. Com-

puted Tomography offers a powerful alternative for examination of COPD. CT

analysis allows both detailed visual assessment and the whole-lung quantification

of emphysema extent via lung densitometry.

Emphysematous regions appear as areas with low-attenuation in CT scans of

lungs, suggesting that CT image intensities can be used to quantify the severity

of emphysema. Averaged lung density, n-th percentile density, and relative area

with attenuation below, e.g. -910HU (emphysema index, RA-910HU) have all

been successfully applied as emphysema measures. For detailed description of

the computed tomography methods for lung disease quantification I refer reader

to the book written by Webb R.W. et al. [11].

1.4 Monitoring Regional Disease Progression using Lung

CT scans

In a longitudinal study, the lung densitometry from CT scans provides a con-

tinuous measurement of disease progression [12, 13, 14, 15, 16, 17, 18]. In a recent
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study on monitoring emphysema progression in Alpha-1 Antitrypsin deficiency

subjects [16], the CT densitometry is reported to be significantly more sensitive

than the conventional lung function test, the FEV1.

Although computed tomography offers a more promising alternative to spirom-

etry, the CT scores of emphysema are global measures quantifying the disease in

the complete lung. Lung partitioning is an approximate solution that allows quan-

tification of emphysema and further monitoring of the disease progression in dif-

ferent regions of the lungs [12]. Another option of monitoring regional emphysema

progression is enabled via segmentation methods. The state-of-the art segmen-

tation methods provide anatomical partitioning of lungs into lobes [19, 20, 21],

thereby allowing to monitor emphysema progression on a scale of a single lobe.

Further segmentation of the lungs into pulmonary segments is extremely challeng-

ing task. There is no gold-standard method for segmentation of lung segments,

since there are no clear boundaries between the segments, and even manual an-

notation of pulmonary segments is difficult. Several methods has been proposed

for segmenting lung segments [22, 21], but it is still remains a difficult problem

without a gold-standard. With use of segmentation methods alone, quantitative

analysis of the emphysema will be always limited to the scale of reliably seg-

mented structures. A CT lung scan provides detailed information of the lungs on

a scale of 1 mm, thus potentially allowing to perform analysis of lung structures

on a much smaller scale than the limiting scale of currently available segmentation

methods.

For the detailed analysis of longitudinal changes in lungs, one needs an ac-

curate spatial correspondence between the CT scans. Human observers possess

a natural ability of determining corresponding structures in the two dimensional

images. However, the task of determining corresponding structures in three di-

mensions is extremely difficult and time consuming for humans. Furthermore,

the human vision system could easily recognize the same object but lacks the

sensitivity to the spatial location, e.g., a small translation or distortion to the

image may be left unnoticed. Therefore, for an accurate and efficient local analy-

sis of longitudinal CT scans we need an automatic procedure, that will establish

a point-to-point correspondence between the CT scans, the image registra-

tion procedure. Recent studies reported that an image registration procedure

could provide comparable accuracy of the spatial correspondence with the human

inter-observer variability [23, 24].

The following example in Figures 1.7-1.8 illustrates how an image registration

facilitates monitoring of disease progression on an example of two CT lung scans

of the same subject taken with a time interval of approximately two years. The

axial, sagittal and coronal slices from the baseline CT scan are showed in the

Figure 1.7a and the approximately the same slices from the follow up scan are

displayed in Figure 1.7b. In both the baseline and the follow up images a bulla
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Figure 1.7: An example of a subject with clearly visible pathology (bulla in the
right lung indicated by red box) from the DLCST.

(a) Axial, sagittal and coronal slices from a baseline lung CT scan.

(b) Approximately the same axial, saggital and coronal slices from the follow up scan.

is presented in the right lung. Bulla, or air bubble, is a complication of the

emphysema and may be treated by surgical removal or bullectomy.

Consider that subject location was identical in the baseline and the follow

up scans, a simple subtraction of the two CT scans should reveal longitudinal

changes of the bulla. However direct subtraction of the two images, Figure 1.8a,

shows ambiguous and misleading information because of the two main reasons:

subject location is not the same in the two CT images; breathing level at the

two examinations vary significantly thus resulting in non homogeneous local de-

formations. After obtaining point-to-point correspondence between the images,

the follow up image was deformed to the system of the coordinates of the base-

line image and then subtracted from the baseline image. Figure 1.8b shows the

final subtraction image and now, once the two images are properly aligned, the

subtraction image reveal substantial increase of the bulla size.

Image registration of chest CT scans was successfully used for monitoring nod-

ule growth [25, 26, 27]. Recently image registration has been used to estimate the

progression of interstitial lung disease [28]. The benefits of image registration for
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Figure 1.8: An example of how an image registration procedure is used for mon-
itoring disease progression in a sequence of longitudinal CT scans.

(a) Direct subtraction of the follow up lung CT
scan from the baseline CT scan.

(b) Subtraction of the deformed follow up CT
scan from the baseline CT scan after the image
registration procedure is applied.

monitoring emphysema progression was investigated in this thesis in Chapters 6-7

[29, 30] as well as by other research groups [31].

1.5 Overview of Image Registration Methods

This section presents a brief overview of existing image registration methods,

for the details I refer the reader to the concise but mathematical book by J.

Modersitzki [32] or to the handbook on medical image analysis by M. Sonka and

J.M. Fitzpatrick [33].

Image Registration Formalism

The starting point of any registration algorithm is a pair of images If (fixed

image) and Im (moving image). Other definitions of the If and Im exist in the

literature: image registration methods for lung CT scans define the fixed image
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Figure 1.9: Discrete image as a continuous function of space coordinates.

(a) An axial slice of a lung CT scan with the zoom
(b) The intensity function plotted
as surface of the spacial coordinates
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as reference image [32, 34, 35, 36, 37, 38]; or target image [39, 40, 37, 41, 42].

The moving image also appears as template image [32, 40]; source image [39, 42];

floating image [38]; or test image [36]. In this thesis I will use the terms fixed and

moving images, because these names reflect the essential functions of the images:

while the fixed image remains fixed during the registration procedure the moving

image is being deformed.

The task of image registration is to establish point-to-point correspondence

between the two images. In case of lung CT scans, images are three dimensional

and have discrete nature, the intensities are defined in a finite set of voxels If (x) =

If (x
i
1, x

j
2, x

k
3). Figure 1.9a shows an example of an axial slice of a CT lung scan

and a magnified area within lungs region. The zoomed image illustrates discrete

nature of the lung CT scan. By means of the interpolation function, images may

be defined in a continuous space of the spatial coordinates If (x). Figure 1.9b

displays a surface - the continuous linear approximation of the image intensities.

This is the first fundamental part of the registration the interpolation function.

The registration procedure establishes point-to-point correspondence between

the fixed image region Ωf ⊂ R3 and the moving image region Ωm ⊂ R3. The re-

quired point-to-point correspondence is defined in natural sense, e.g., an anatom-

ical structure presented in the fixed image in a point x ∈ Ωf corresponds to

the same anatomical structure presented in the moving image in a corresponding

point y ∈ Ωm. The formal definition of the correspondence is given via the associ-

ated transform function T : Ωf → Ωm, which takes a point x ∈ Ωf and provides a

corresponding point y ∈ Ωm, T (x) = y. This is the second important part of the

registration - the transform function. For the obtained transform function we

can compute the resulting deformation vectors of every voxel in the fixed image

grid �d(x) = y − x. The two terms deformation field and transform function are

equally common and usually interchangeable in the image registration literature.

Given a transform function T , one can evaluate the quality of the obtained

point-to-point correspondence by first deforming the moving image Im ◦ T =
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Figure 1.10: Diagram displaying the image registration procedure and illustrat-
ing the interactions between the image registration components.

Im(T (x)) and comparing the deformed image with the fixed image If using a

(dis)simmilarity function C(If (x), Im(T (x))). This is the third component of the

registration - the (dis)similarity function. The (dis)similarity function could

be applied directly to the images or to features extracted from the original images.

For particular medical applications, an additional constraint on the transform

function is needed, the regularizer. The (dis)similarity and the regularizer are

both combined into a cost function, which balances between the (dis)similarity

of the images and the regularity of the transform.

Finally, in the task of finding the best possible transform that defines point-

to-point correspondence between the two images the minimum of the cost func-

tion should be obtained, therefore the following optimization problem should be

solved:

argmin
T

(C(If , Im ◦ T )). (1.1)

The final part of the registration procedure is the optimization method used

to solve problem (1.1). The complete diagram displaying the workflow of image

registration is given in Figure 1.10.

Evaluation of an Image Registration Method

It is always helpful to first check image registration results visually by com-

paring the fixed image with the deformed moving image. The deformed moving

image could be assessed by displaying it side-by-side with the fixed image, or by

displaying a checkerboard between the two images, or displaying the difference
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between the two images. The disadvantage of the first two methods is that with

the side-by-side comparison the human eye could leave a small translation unno-

ticed and the checkerboard image limits the comparison to the size of the blocks,

while in the difference image the mis-registrations are immediately visible.

Generally two classes of quantitative evaluation methods for assessing the

quality of registration methods exist: explicit methods that assess the spatial

accuracy of alignment in physical units usually millimeters; and implicit meth-

ods. The latter methods measure quality of the registration by first deforming

the moving image and then comparing it with the fixed image using various

(dis)similarity functions, e.g., cross-correlation coefficient, mutual information or

sum of squared differences of the two images.

The explicit methods assess the spatial accuracy of the registration by means

of, e.g., manually annotated corresponding points, landmarks, in the fixed and

the moving images. The Euclidean distance between the landmarks of the moving

image and deformed landmarks of the fixed image, the target registration error

(TRE), is the quantitative measure of registration accuracy.

Manual annotation of landmarks is both time consuming and difficult for a

pair of three dimensional images, therefore automatic or semi-atomatic alter-

natives were developed for detecting corresponding points in the image pairs.

The semi-automatic methods ease the procedures of manually landmarking by

suggesting possible corresponding points [39, 23]. Betke et al. [25] proposed a

fully-automatic system for detecting corresponding landmarks such as trachea,

sternum and spine in chest CT scans.

Another fully-automatic alternative to landmarking is assessment of spatial

accuracy via presegmented anatomical lung structures. The distance between

the correponding anatomical structures in the fixed and moving images, e.g.,

lung surfaces, lobe fissures, airway trees or vessel trees, estimates the spatial

accuracy of the registration. The Euclidean distance could be computed by first

deforming the anatomical structure segmented from the fixed image and then

computing the distance to the same structure in the moving image. However,

manually annotated landmarks remain the gold standard for the evaluation of

image registration accuracy.

Examples of Image Registration Methods for Lung CT scans

The aim of this section is to give a brief overview of modern image registration

methods used for lung CT images including the work presented in this thesis as

well as work by other authors. Complete overview of general image registration

methods could be found in [43].

Depend on the type of information that is being used in the registration algo-

rithm, two classes of image registration methods could be defined: feature-based

and intensity-based registration methods. The first class refers to the registration
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algorithms, where features are first extracted from the original intensity images

and then the point correspondence is established using the obtained features. An

examples of a feature-based method is landmark-based registration where the

manually annotated landmarks used to align the images [44]. Another example

is registration of segmented anatomical lung structures such as vessel trees and

lung surfaces [37, 45], Chapter 3[46].

The intensity-based methods directly use the original intensities of the images.

These methods are generally more widely used for lung CT images [47, 48, 38,

49, 50, 23, 51, 52, 53, 54, 55, 45, 56], Chapter 2[29]. Also joint registration

algorithms where intensity is combined with the features were developed for lung

CT scans [57, 58, 59], Chapter 4[60].

Depend on the type of the underlying deformation model, registration meth-

ods can be further classified into parametric and non-parametric registration. In

parametric methods the transform is parameterized by a number of control pa-

rameters. The example of the parametric transform is a B-Spline transform,

where the deformation is parameterized by a deformation vectors defined in

grid points. Image registration with B-Spline transform was pioneered by D.

Rueckert [61] and was first applied to the lung CT scans by D. Mattes [36].

The following registration methods of lung CT scans use the B-Spline trans-

form [47, 48, 38, 49, 50, 23, 29, 51]. In contrast to the parametric methods, in

non-parametric methods the deformations are assumed to fulfill a certain physical

model, e.g., deformations of fluid [52, 53], proposed by Christensen G. et al. [62]

and further developed by M. Bro-Nielsen [63]; elastic material [55, 45], first pro-

posed by Briot C. et al. [64] and further developed by Bajcsy R. et al. [65]; or the

optical flow methods [56], first proposed by Horn B.K.P. and Schunk B.G. [66].

While in the first group of methods, the deformation field is free-form and in

any point it is interpolated from the deformations defined at the grid positions,

in the latter methods the deformation field is obtained from the solution of the

associated system of partial differential equations. Overview and implementation

details of the latter methods could be found in PhD Thesis by M. Bro-Nielsen [63].

1.6 Outline of the Thesis

This thesis contains 8 chapters, including the general introduction in Chapter 1

and general discussion and conclusion in the final Chapter 8. The results of the

novel scientific investigations are described in the Chapters 2, 3-7. A brief outline

for each of the chapters is given below.

Chapter 2 describes a novel intensity-based image registration method de-

veloped specifically for registering intra-subject lung CT scans. The registration

method is based on the widely used free form image registration via B-Splines [61].

The novelty of the developed method is in the proposed model of lung tissue ap-
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pearance in CT scans during inspiratory cycle. The lung appearance in CT

depends significantly on the amount of air inhaled. First because the lungs are

larger in size at the inspiration level and second because the lung tissue saturates

additional air and appear darker in CT scans which should not be confused with

the emphysema progression and lung tissue destruction. We investigated the

validity of the assumption that mass of lungs is preserved during the breathing

cycle. The mass preserving assumption was incorporated into the image registra-

tion procedure and verified on a large set of lung CT scans with varying quality,

ranging from small to large differences in inspiratory level.

Chapter 3 presents a new feature-based image registration where lung anatom-

ical structures are used to establish a point-to-point correspondence. Three types

of registration methods are evaluated: a curve-based registration method where

the lung vessel centerlines are used to establish correspondence between the scans,

the surface-based registration method where the lung surfaces are used for reg-

istration, and the combined method where both curves and surfaces are incor-

porated into a feature-based registration. The potential advantage of a feature-

based registration method over intensity-based method is for diseased subjects,

where intensity may change significantly because of the development of the dis-

ease. The proposed feature-based registration method does not require any point

correspondence, thus it may be applied even using an incomplete and inconsistent

segmentations.

Chapter 4 presents a combination of the intensity- and feature-based regis-

tration methods of Chapters 2 and 3. The deformations in the intensity-based

method are constrained locally with the deformations obtained from the feature-

based method. The weak point of intensity-based registration method is its

dependence on the image gradient, thus favoring the good registration of the

structures with high gradients, while disregarding misalignment of small unclear

structures like the peripheral vessels. On the other hand the feature-based reg-

istration assigns the centerlines of small vessels and of large vessels the same

value, therefore leading to equally accurate alignment of small and large vessels.

The potential benefit of the combined approach is that final alignment is more

accurate and realistic.

Chapter 5 presents results of the challenge ”Evaluation of Methods for Pul-

monary Image Registration 2010” (EMPIRE10) conducted in conjunction with

the Grand Challenges in Medical Image Analysis Workshop in 2010. The mass

preserving registration method from Chapter 2 was registered for the competition

and final results are included into the thesis.

Chapter 6 presents an application of the intensity-based image registration

method, described in the Chapter 2, for monitoring regional disease progression

in longitudinal image studies. Areas with lower intensity in the follow up scan

compared with intensities in the deformed baseline image indicate local loss of
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lung tissue that is associated with progression of emphysema. To account for

differences in lung intensity owing to differences in the inspiration level in the

two scans rather than disease progression, we propose to adjust the density of

lung tissue with respect to local expansion or compression such that the total

weight of the lungs is preserved during deformation. Our method provides a

good intensity-based estimation of regional destruction of lung tissue for subjects

with a significant difference in inspiration level between CT scans and may result

in a more sensitive measure of disease progression than standard quantitative CT

measures.

Chapter 7 presents new methodology and experimental results on monitor-

ing local emphysema progression. We extended the framework from the Chap-

ter 6. Follow up images were first registered to the baseline image and then

local image dissimilarities were computed in the corresponding anatomical loca-

tions indicating the amount of local changes between the images. Experiments

were conducted on patients from the longitudinal study of Alpha-1 Antitrypsin

deficiency subjects scanned five times during a period of three years.

The final Chapter 8 presents general discussion and gives a brief overview

of future perspectives.

In this thesis, I used four different lung CT datasets: the pairs of CT scans

taken at full inspiration breathhold from the Danish Lung Cancer Screening

Study [67] in Chapters 2 and 6; pairs of lung CT scans taken at maximum

and minimum breathhold from the study of children with cystic fibrosis (CF)

at Sophia Children’s Hospital [68] in Chapter 2; the pairs of end inspiratory and

end expiratory phases of 4D-CT lung scans from the publicly available dataset [39]

in Chapters 3 and 4; the pairs of CT scans taken at full inspiration breathhold

from the EXAcerbations and Computed Tomography scan as Lung End-points

(EXACTLE) Trial Study [16] in Chapter 7.

The following open source software packages were used to develop the de-

scribed methods: ITK [69], CImg [70], elastix [71, 72], iso2mesh [73], exoShape∗.

∗To be released at http://www-sop.inria.fr/asclepios/software.php



Chapter 2

Mass Preserving Image

Registration for Lung CT

In theory there is no difference between practice and

theory, in practice there is.

— Jan L. A. van de Snepscheut.

This chapter is partially based on the publications ”Weight Preserving Image

Registration For Monitoring Emphysema Progression”, Gorbunova V., Lo P.,

Ashraf H., Dirksen A., Nielsen M., de Bruijne M., in proceedings of Medical

Image Computing and Computer Assisted Intervention Conference in 2008 and

”Mass Preserving Registration for Lung CT”, Gorbunova V., Lo P., M. Loeve,

H. Tiddens, Nielsen M., J.Sporring, de Bruijne M., in proceedings of Medical

Imaging SPIE Conference in 2009.

2.1 Introduction

Registration of lung CT images is increasingly used in various clinical appli-

cations. Three main applications may be distinguished as follows [74] : atlas

registration based segmentation of the lungs and structures within the lungs;

registration of longitudinal CT image series to monitor disease progression; regis-

tration of successive frames in dynamic CT sequences to estimate local ventilation

and perfusion.

17



18 CHAPTER 2. MASS PRESERVING IMAGE REGISTRATION FOR LUNG CT

Examples of the first application can be found in [75, 20]. Sluimer et al. [75]

proposed to segment lungs containing dense pathologies by non rigidly registering

a set of segmented example images to the image to segment and propagating their

labels, while Zhang et al. [20] used atlas registration to initialize fissure detection

for lung lobe segmentation. Registration of scans of the same patient taken at

different points in time is applied for instance in the monitoring of lung nodules,

both to robustly match nodules in sequential CT scans [26, 27] and to visualize

nodule changes over time [50]. Recently, registration was also applied to estimate

local emphysema progression from longitudinal image data [29, 31]. Registration

of successive time frames of 4D-CT lung images is used for motion estimation in

lung cancer radiotherapy planning [49, 55, 76] and for estimation of regional lung

ventilation [52, 45, 77, 42, 35]. The end expiratory lung CT scans was registered

to the end inspiratory scans to facilitate classification of pulmonary diseases [78].

A crucial factor in image registration is the choice of a similarity measure

describing the (dis)similarity between the fixed and the deformed images. Com-

monly used image similarity functions are the sum of squared differences (SSD),

mutual information (MI) and normalized cross correlation (NCC) [79].

For intra-subject registration of lung CT images, which is the case we con-

sider in this chapter, SSD is probably the most commonly used similarity measure

[48, 27, 52, 53, 80, 81]. Sum of squared differences is optimal when correspond-

ing anatomical points are represented by the same intensity in the images, with

additional Gaussian noise. This is a valid assumption because Hounsfield unit

(HU) in CT scan represents the density of tissue. Densities of the same tissue

is often expected to remain constant in different scans. Previous studies on lung

CT scans showed that density of lung tissue depends on regional ventilation and

changes during breathing [82, 81]. The basic assumption of SSD similarity func-

tion does not hold for lung tissue and as a possible solution we propose to model

appearance of lung tissue in CT scan with respect to the regional ventilation

using a simple law of mass preservation.

In the mass preserving model, density of the lung tissue is inverse proportional

to the local volume. Therefore change in local volume could be computed from

the change in the density. First, Simon et al. [83] proposed this model and

applied it to estimate regional ventilation from image intensity in 4D-CT lung

scans. Vice versa, the change in density of the lung tissue could be computed from

the change in the local volume. Under applied local deformations the density of

the lung tissue is directly proportional to the determinant of the Jacobian of the

transform function, associated with the deformations. Recently, Reinhardt et al.

[52] showed strong correlation between regional ventilation obtained from the Xe-

CT image and the ventilation computed from the image registration procedure.

In the latter case, regional ventilation was computed from the determinant of

Jacobian of the obtained transformation between the two images.
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Several recent studies have incorporated mass preserving assumption in reg-

istration process. Sarrut et al. [81] proposed to modify lung density in a 4D-CT

image prior to registration. Tannenbaum et al. [84] proposed a completely new

registration method which establishes the optimal mass transportation between

the images while the image intensities remain constant. Castillo et al. [56] pro-

posed to incorporate the mass preserving intensity modification model into the

optical-flow registration and applied it to the 4D-CT images.

We developed our registration method based on the results from [52] and

modeled the lung tissue density using the determinant of the Jacobian of the

transform function. We modified the sum of squared differences similarity func-

tion to enable mass preservation and continuously simulated the appearance of

the lung tissue under the given deformations.

Early versions of this work appeared in [29]. Since then a similar idea has

been used by Yin et al. [85, 38], where the mass preserving image registration

was applied to breath-hold lung CT images acquired at the maximum inspiration

and maximum expiration in the same scanning session. We previously applied

mass preserving algorithm to the pairs of maximum inspiration and maximum

expiration CT scans taken on the same day [86].

In this chapter, we present the registration framework in more detail, investi-

gate the assumption of mass preservation, and present a quantitative evaluation of

registration accuracy of the proposed mass preserving image registration method

compared to a standard image registration method on a large number of CT scans

of varying quality, ranging from small to large differences in inspiration level.

2.2 Mass preserving image registration

This section briefly presents a general deformable image registration framework

based on B-Splines which is used in many medical imaging tasks [61, 36], and

explains how the proposed mass preserving methodology can be incorporated in

this framework.

2.2.1 Image Registration Outline

Consider a pair of images If and Im, referred to as fixed image and moving image

respectively. The task of registration is to find for every point in the fixed image

domain Ωf the corresponding point in the moving image domain Ωm. The ob-

tained point correspondences defines a general transform function T : Ωf → Ωm.

Validity of the transform can be assessed by comparing the deformed moving

image and the fixed image using a dissimilarity function C(If , Im ◦ T ). An opti-

mal transform should minimize the dissimilarity between the deformed and fixed

image, therefore the registration process can be formulated as a minimization



20 CHAPTER 2. MASS PRESERVING IMAGE REGISTRATION FOR LUNG CT

problem, as follows,

argmin
T

(C(If , Im ◦ T )).

2.2.2 Preprocessing

To improve registration performance, segmentations of the lung fields are ob-

tained using region growing and morphological smoothing [87]. Previously, sev-

eral papers showed better performance of registration if the rib cage was erased

from the images [23, 48]. To remove the influence of the rib cage, we extract the

lung area from the images and set the background to 0HU. Finally, the image in-

tensities are shifted with a value 1000HU so that the new intensities approximate

the real densities of the tissues.

2.2.3 Transformation

We follow a common approach and use a multi-resolution image registration strat-

egy. First, the images are registered affinely. To provide an accurate initialization

of the affine transform, the trachea and main bronchi are first extracted using

a modified fast marching algorithm [87]. The center of the affine transform is

then set at the carina point in the fixed image and the initial translation is set to

the difference between the carina points in moving and fixed images. Secondly,

a series of B-Spline transforms, with corresponding Gaussian smoothing at the

coarser levels, is applied to the pre-aligned images. The final transform is thus a

composition of a global affine transform TA and N levels of B-Spline transforms

T i
B-Spline with decreasing grid size:

Tfinal(x) = TN
B-Spline ◦ ... ◦ T 1

B-Spline ◦ TA(x), (2.1)

where x = (x1, x2, x3) is a point in the fixed image domain Ωf .

In this work, we have used small step size along the gradient and multi-level

B-Spline grid to ensure that the transform is invertible [88].

2.2.4 Mass Preserving Similarity Function

We use the sum of squared differences similarity function as the basis for the

mass preserving similarity measure,

C(If , Im ◦ T ) = 1

|Ωf | ||If (x)− Im(T (x))||2L2
, (2.2)

where x is a point in the region Ωf occupied by the fixed image If , y = T (x) is

the corresponding point in the region Ωm occupied by the moving image Im.

The sum of squared differences is an optimal similarity measure if image

intensities are identical or differ with Gaussian noise. This assumption does not
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hold in case of lung CT images, where both blood and air enter the lungs during

inhalation. We used a hypothesis that majority of incoming blood stays in the

larger vessels, and only air is inhaled into the alveoli. Therefore we can presume

that mass of parenchyma remains constant and the density of lung tissue is inverse

proportional to the amount of air. Under the applied local deformations, the

induced change in local volume is defined by the determinant of Jacobain of the

associated transform function.

Using the mass preserving assumption, the intensity of the moving image Im in

a point y ∈ ΩM is inverse proportional to the change in local volume
1

det(JT−1)
in

the point y. The modeled intensity can be written Îm(y) = [det(JT−1(y))]−1 Im(y).

Assuming that the transform function T is invertible, the determinant of Jaco-

bian JT−1(y) is the inverse of the determinant of Jacobian JT (x) and the modeled

intensity of the moving image can be written Îm(y) = det(JT (x)) · Im(T (x)).

Finally, the mass preserving intensity model can be naturally incorporated in

the standard sum of square differences similarity function:

C(If , Im ◦ T ) = 1

|Ωf |
∫
Ωf

[If (x)− det (JT (x)) · Im(T (x))]2dx. (2.3)

2.2.5 Optimization

In this chapter we use a stochastic gradient descent method [51] to optimize the

similarity function. The closed form expression for the gradient of the proposed

mass preserving similarity function of (2.3) is,

DaC = − 2

|Ωf |
∫
Ωf

[If (x)− det(JT (x)) · Im(T (x))] · det(JT (x)) · (2.4)

· [vec(J−T (x))T · Davec(J(x)) · Im(T (x))−DyIm(T (x)) · DaT (x)
]
dx,

where Da represents a gradient row vector operator with respect to the transform

parameters a, Dy represents a spatial gradient vector operator, and vec(·) is the
vector constructed by concatenating all columns of a matrix. The derivation of

(2.4) is given in the Section 2.7.

In case of SSD similarity function, only voxels with non-zero image gradient

contribute to the gradient thus resulting in a higher uncertainty of registration

in homogeneous regions [47]. On the contrary, for the proposed mass preserving

similarity function of (2.4), voxels where the image gradient DyIm(y) is close to

zero also contribute to gradient thus providing additional information in homo-

geneous regions.
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2.3 Evaluation Strategy for Image Registration Accuracy

This section describes how the performance of image registration with the reg-

ular sum of squared differences similarity function (2.2) is compared to image

registration with the proposed mass preserving similarity function (2.3). Evalu-

ation of the registration procedure is done based on the vessel tree centerlines.

Additionally, the registration accuracy on a subset of images is assessed using

manually annotated landmarks.

The vessels are segmented using the algorithm described in [87]. First, the

image is thresholded with fixed intensity tv = −380HU, followed by multi-scale

local analysis of the Hessian matrix to remove non-tube like structures. Large

vessels in the hylum area are discarded. Finally, centerlines are extracted from

the segmented vessel tree using a 3D thinning algorithm [89]. Figure 2.1 shows

an example of a segmented vessel tree and the centerlines extracted from it.

(a) (b)

Figure 2.1: Surface rendering of segmented lung fields and vessels (a) and corre-
sponding vessel centerlines (b).

We measure image registration accuracy using the Euclidean distance between

vessel tree centerlines. First, we extract vessels from both moving and fixed

images. Next, the moving image vessel tree is deformed according to the final

transform coefficients. The vessel centerlines are extracted from the segmented

vessel trees in fixed and deformed images. Then the Euclidean distance map is

computed for the centerlines of the fixed image. Finally, the image registration

error is computed as the Euclidean distance map value averaged over all centerline

voxels in the deformed moving vessel tree.
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2.4 Experiments and Results

Section 2.4.1 describes the parameter settings for the two registration methods

used in all the conducted experiments. We performed three different experiments

to study the proposed mass preserving assumption. First experiment, described

in Section 2.4.2, was designed to evaluate the assumption of mass preservation and

to investigate the relationship between the volume of lungs and appearance of lung

tissue. Section 2.4.3 illustrates the behaviour of the two registration methods,

the proposed registration with mass preserving similarity function (MP) and

the registration with sum of squared differences similarity function (SSD), on a

synthetic example. Finally, the third experiment in Section 2.4.4 was designed to

investigate how the difference in lung volume effects the two registration methods.

2.4.1 Parameter Settings

We applied three levels of B-Spline transforms, N = 3, with decreasing grid size.

The first two levels were applied to the deformed moving image blurred Gaussian

σ1,2 = 1 voxel and sampled by a factor of two in each direction. The third level

was applied to the full resolution image without smoothing. The number of grid

cells in each B-Spline level was 3× 3× 3, 6× 6× 6 and 12× 12× 12 respectively.

Optimal parameters were obtained by minimizing the cost function between the

fixed and corresponding moving images.

After each level of transform we computed the current deformation field as

the sum of the deformation fields from the previous transforms. The deformation

field of the following transform was obtained at the deformed point from the

previous transform. The original moving image was then deformed with the

obtained deformation field and image intensities were adjusted with respect to

the mass preserving model. The Jacobian of the transform was computed using

a first order difference scheme with the step equal to the image spacing.

Each of the four transforms in (2.1) was optimized separately using the

stochastic gradient descent [51]. The number of voxel samples was chosen pro-

portional to the number of parameters to optimize but not smaller than 104, and

was set to 5 · 104 for the finest B-Spline transform and to 104 for the interme-

diate B-Spline and Affine transforms. Maximum number of iterations was 1000

for all the transforms. The maximum step length along the normalized gradient

direction was set to 0.5 mm.

Vessel trees were segmented using the algorithm as in [87]. The intensity

threshold was set to -400HU for the scans in the groups A-C, and -600 for the scans

in the group D, and the ratio of Hessian eigenvalues was set to m1 = 0.5,m2 = 0.5

for the groups A-C and m1 = 0.75,m2 = 0.5, for the group D. For more details

on the parameters of the segmentation algorithm we refer reader to [87].
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2.4.2 Experiment 1: Relationship Between Mass, Volume and Density

of Lungs

We selected 797 subjects which were scanned annually during 3 year period. All

subjects did not suffer from Chronic Obstructive Pulmonary Disease (COPD) at

the baseline and at the follow up visits according to the GOLD guidelines [5]. We

generated all possible pairs of scans of the same subject and randomly selected

1430 image pairs. We computed total lung mass, total lung volume and average

lung density for each pair of CT scans. Figure 2.2a shows the scatter plot between

relative change in total lung volume and change in total lung mass for the image

pairs. Figure 2.2b shows the scatter plot between relative change in total lung

volume and change in average density. Spearman correlation between difference in

mass and difference in volume was r = 0.14 (p < 0.001), and correlation between

difference in average density and difference in volume was r = −0.91 (p < 0.001).

We investigated the relationship between total lung volume and the shape of

histogram of a CT lung scan. We applied a simplified mass preserving model,

where the lungs were assumed to expand or contract uniformly and the intensities

were globally adjusted as

Î1(x) =
V1

V2
(1000 + I1(x))− 1000, (2.5)

where the I1 is the first image in a pair, the V1 and V2 is the total lung vol-

ume of the first and the second images in the pair. The proposed adjusting

model may result in missing intensity values, e.g., if the ratio of volumes is equal

to V1/V2 = 2 the adjusted intensities will be only even numbers. In order to

eliminate this artifact, the histograms were smoothed with Gaussian σ = 5 HU.

Finally, the histograms were normalized to represent probability distribution of

the intensities. The difference between the probability distributions of intensity

values of lung parenchyma before and after adjustment was assessed using the

Kullback-Leibler divergence.

The 1430 pairs of CT scans were split into 15 groups with the relative volume

difference varying from −37.5% to 37.5% of the mean lung volume of the two

scans. For each group, the average and the standard deviation of the Kullback-

Leibler divergence is reported in the Figure 2.2c.

2.4.3 Experiment 2: Synthetic Data

The two image registration methods were evaluated on a synthetic image pair

constructed to mimic lung tissue expansion under the mass preservation law.

Both moving and fixed images represented uniform spheres placed in the center

of the images with the background density 0 [g/L] (or intensity −1000HU). The

moving sphere S1 had radius r1 = 16 mm and density ρ1 = 200 [g/L] (or intensity

value I1 = −800HU) and the fixed sphere S2 had radius r2 = 20 mm and density
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(a) (b)

(c)

Figure 2.2: Scatter plot (a) displays the correlation between relative change in
total lung volume and change in total lung mass. Scatter plot (b) displays the
correlation between relative change in total lung volume and change in average
lung density. Average Kullback-Leibler divergence between histograms of two
CT scans of the same subject before and after the global intensity adjustment is
presented in plot (c).

ρ2 = 100 [g/L] (or intensity value I2 = −900HU). The mass of the two spheres

was approximately equal, 1.93 g and 1.89 g respectively.

The initial affine transform was excluded from the image registration frame-

work described in Section 2.2.3 and only the multi-level B-Spline transforms were

used. Optimization parameters were identical for both image registration meth-

ods.

Figure 2.3 shows the original fixed (a) and the moving (b) spheres and the

resulting difference between the registered and fixed images for the standard

registration method (c) and the mass preserving method (d).
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(a) (b) (c) (d)

Figure 2.3: The two image registration methods were applied to a synthetic
example. The moving image (a) and fixed image (b) consist of spheres with equal
mass, but different density. Results (difference image) of the standard image
registration method (c) and the proposed mass preserving image registration
method (d).

2.4.4 Experiment 3: Registration of Lung CT scans

The third experiment was conducted on a large number of lung CT scans of

variyng quality, ranging from small to large differences in inspiration level.

• Group A: 44 image pairs of the same subject with the relative difference

between total lung volumes for baseline and follow up images ΔTV < 2.5%;

• Group B: 44 image pairs of the same subject with the relative difference

between total lung volumes for baseline and follow up images ΔTV > 9%;

• Group C: 16 image pairs of inspiratory and expiratory CT scans;

• Group D: 5 image pairs extracted at the end exhale and end inhale phases

of the 4D-CT scans from publicly available database [39].

For all four groups, we measured performance of the registration algorithms using

the proposed evaluation technique Section 2.3. For the last group, 300 manually

selected landmarks for each image pair were available. In this group we addition-

ally compared the two registration methods with the target registration error.

Longitudinal Study: Groups A and B

Two groups of low dose CT image pairs were selected from the Danish Lung

Cancer Trial Study (DLCST) database [67]. Before the acquisition, subjects

were instructed to hold their breath at maximum inspiration. Image pairs have

a time interval between baseline and follow up of approximately one year. The

in-plane resolution was 0.78×0.78 mm and the slice thickness was 1 mm. In group

A the average relative difference between the baseline and follow up lung volumes

was 1.23 ± 0.77% and in group B the average difference was 14.96 ± 5.84%.
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Evaluation results for the two image registration methods are presented in the

Table 2.1. For each patient, we computed the average distance between center-

lines registered with the standard method and with the proposed mass preserving

method. The overall improvement for each data set is presented in Figure 2.4

with box plots showing median, lower and upper quartile, and skewness of the

distribution within each group. The correlation between the relative difference

in total lung volume and decrease in error of the mass preserving method in the

two selected groups was r = 0.44 (p < 0.001).

Expiratory and Inspiratory CT Images: Group C

The group C in our experiment consists of sixteen children with cystic fibrosis

(CF) monitored at Sophia Children’s Hospital [68]. All children underwent bian-

nual CT scanning during annual checkup during a clinically stable period. Each

CT study consisted of a low-dose CT scan taken at maximum inspiration and an

ultra low-dose scan taken at maximum expiration. Before the acquisition, sub-

jects were instructed to exhale or inhale completely and to hold their breath. The

in-plane resolution was on average 0.54× 0.54 mm, the slice thickness is 2.5 mm

with a slice overlap of 1.3 mm. The difference in inspiratation level between the

two images was large and many of the expiration scans show regions of trapped

air, indicating local inhomogeneity of deformation. On average, the difference

between inspiratory and expiratory volumes was 48.27±19.69%. The inspiratory

image was set as the fixed image.

Evaluation results are presented in the Table 2.1 and the overall improvement

in the group C is presented in the box-plot Figure 2.4. Correlation between the

relative difference in total lung volume and improvement of the mass preserving

method in the selected group was r = 0.77 (p < 0.001). Figure 2.5 shows an

example result of the two image registration techniques. The expiratory image

was deformed according to the final transformation and subtracted from the

inspiratory image. The two images show corresponding slices in the difference

images for the mass preserving image registration technique 2.5a-2.5d and for the

standard registration 2.5e-2.5h.

End Exhale and End Inhale CT Images: Group D

The last group D consists of 5 pairs of images from a publicly available dataset

[39], where each pair consists of images extracted at the end exhale and the end

inhale phases of 4D CT images. In-plane resolution of the images varied from

0.97×0.97 mm to 1.16×1.16 mm and slice thickness was 2.5 mm. The study [39]

also provides 300 manually placed landmarks at the end exhale and end inhale

phases of the 4D CT images. End exhale image was set as the fixed image.

We validated accuracy of the two image registration algorithms using two

independent validation methods. First, we validated using target registration
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Figure 2.4: Box plots showing the improvement in registration accuracy obtained
by the mass preserving image registration method for each of the groups A-C.
Each plot shows the median (central mark), lower and upper quartile (edges of
the box), skewness of the distribution (notches) and outliers (crosses). From left
to right: group A (44 subjects with average ΔTV = 1.23%), group B (44 subjects
with average ΔTV = 14.96%), group C (16 subjects with ΔTV = 48.27%).

Table 2.1: Average registration accuracy in each group, assessed using the ves-
sel centerline distance, for the registration with the mass preserving (MP) and
the sum of squared differences similarity function (SSD). Number in brackets
indicates the number of subjects in the group.

Vessel Centerline Distance [mm]

Group ΔTV [%] ΔTV [L] SSD MP T-test

A (44) 1.23 ± 0.77 0.07 ± 0.04 1.541 ± 0.258 1.539 ± 0.251 p = 0.604

B (44) 14.96 ± 5.84 0.83 ± 0.29 2.017 ± 0.634 1.987 ± 0.619 p = 0.028

C (16) 48.27 ± 19.69 1.53 ± 0.94 3.959 ± 1.370 3.535 ± 1.046 p = 0.003

D (5) 11.15 ± 2.86 0.37 ± 0.10 2.070 ± 0.519 2.038 ± 0.522 p = 0.160

error (TRE) between the landmarks. The mean and the standard deviation of

TRE for each case is reported in the Table 2.3. The significance of the difference

between the two registration methods is assessed using the Student t-test. Second,

we evaluated the performance of the registration using the proposed evaluation

method from Section 2.3. The mean and the standard deviation of the vessel

centerline distance for each case is reported in the Table 2.3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: An example illustrating the registration performance of mass pre-
serving image registration (a)-(d) and standard registration (e)-(h) for the same
randomly selected subject from the group C. The difference images were con-
structed by first deforming the expiratory image and then subtracting it from
the inspiratory image. Every 20th slice, selected in the range of 40 − 100 from
the corresponding volumetric difference image is displayed from left to right.

Table 2.2: The two registration methods compared based on the proposed eval-
uation measure and the target registration error. Results of the validation based
on the landmarks are reported before the registration (Initial), after the registra-
tion was applied with the mass preserving similarity function (MP), and with the
sum of squared differences similarity function (SSD). The statistical comparison
of the target registration errors is performed using Student’s test and the p-value
is reported in the last column.

Target Registration Error, [mm]

N ΔTV% Initial MP SSD p-value

1 9.2 3.99 ± 2.75 1.15 ± 0.55 1.18 ± 0.56 p = 0.05

2 8.9 4.34 ± 3.90 1.26 ± 0.70 1.27 ± 0.68 p = 0.53

3 11.5 6.93 ± 4.09 1.79 ± 1.08 1.88 ± 1.12 p < 0.001

4 15.9 9.83 ± 4.86 2.01 ± 1.41 2.16 ± 1.54 p < 0.001

5 10.2 7.51 ± 5.53 2.31 ± 1.89 2.29 ± 1.82 p = 0.32

All 11.14 6.52 ± 4.83 1.70 ± 1.30 1.76 ± 1.32 p < 0.001

2.5 Discussion

2.5.1 Mass Preservation in Lung CT Scans

The experiment in Section 2.4.2 showed that the correlation between the change

in average lung density and the change in total lung volume was much stronger
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Table 2.3: The two registration methods compared based on the proposed evalua-
tion measure and the target registration error. results of the evaluation based on
vessel-centerline distance before the registration (Initial), after the registration
was applied with the mass preserving similarity function (MP), and with the sum
of squared differences similarity function (SSD).

Vessel Centerline Distance, [mm]

N Initial MP SSD

1 3.16 ± 2.17 1.38 ± 1.61 1.43 ± 1.61

2 4.64 ± 3.67 1.82 ± 2.35 1.80 ± 2.34

3 5.15 ± 3.80 2.16 ± 2.78 2.25 ± 2.79

4 4.86 ± 3.80 2.02 ± 2.26 2.05 ± 2.25

5 6.35 ± 6.42 2.81 ± 3.68 2.82 ± 3.65

All 4.83 ± 1.14 2.04 ± 0.52 2.07 ± 0.52

(r = −0.91, p < 0.001) than the correlation between the change in lung mass and

the change in total lung volume (r = 0.14, p < 0.001). This indicates a strong

dependency of lung tissue appearance in CT image on the level of inspiration.

The correlation between the change in mass of the lungs and the change in to-

tal lung volume was weak but significant. This may be due to the incomplete

vessel extraction, since inspiration leads to increase in perfusion and therefore to

increase in partial volume effect near the vessels.

A simplified intensity correction model based on the idea of mass preservation

was investigated in the Section 2.4.2. Analysis of image histograms of healthy

subjects from Figure 2.2c confirms the fact that the probability density function

of image intensities significantly depends on the level of inspiration. Furthermore,

the simplified global mass preserving intensity correction significantly reduced the

divergence between the histograms as shown in Figure 2.2c.

2.5.2 Mass Preserving Registration of Lung CT Images

The experiment in Section 2.4.3, conducted on synthetic data, illustrated the

principle advantage of the proposed mass preserving registration, where mass

preserving image registration leads to the expected alignment of the two spheres

equal in mass and different in volume. The SSD similarity function aligns equal

intensities and in the presented synthetic data, intensities of the two spheres were

different therefore the geometrically correct solution results in a larger value of

the SSD similarity function than the initial positioning of the spheres. The mass

preserving similarity function allows to align initially different intensities since

the intensity can be changed during the registration procedure thus resulting in

the expected alignment of the spheres.



2.5. DISCUSSION 31

Optimization for the sum of squared differences similarity function as well as

the proposed mass preserving similarity function is mainly driven by high gradient

structures in the moving image. In areas where the image gradient is close to

zero, the optimization of the mass preserving similarity function additionally

incorporate the original image intensities. If the difference in intensities is induced

by local difference in regional ventilation the optimization of mass preserving

similarity function will follow the mass preserving model and align intensities

correctly with respect to the measured local volume change.

The advantage of mass preserving image registration is further confirmed in

the third experiment, especially in cases where the difference in lung volume is

large, which implies differences in regional ventilation and density. The group A

of subjects in our experiments had negligible difference in lung tissue appearance

between the two CT scans, therefore the difference between the two methods

was not significant (p=0.6). In the group B, mass preserving image registration

resulted in a relatively small, but statistically significant, improvement in regis-

tration accuracy compared to the standard image registration method (0.03 mm,

p=0.03). In group C, the most challenging group, a considerable and significant

improvement was measured (0.43 mm, p=0.003). The improvement in registra-

tion accuracy in groups A-C was strongly correlated with the relative difference

in lung volume (r = 0.78, p < 0.001). In the last group D, the improvement of

mass preserving registration assessed via manually selected landmarks was 0.06

mm, and was statistically significant (p ≤ 0.001).

A mass preserving model predicts lung tissue appearance in CT scan during

respiration based on a simple assumption: preservation of blood in lungs. The

density of lung tissue is corrected locally, within the typical size of the B-Spline

kernel, according to the change in regional ventilation as measured by the Jaco-

bian of the deformation field. We previously applied this model for monitoring

local emphysema progression in patients with COPD [29]. Recently, a similar

study was done to monitor emphysema progression in patients with Alpha-1 an-

titrypsin deficiency patients [31], where a mass preserving intensity correction

was applied after normal image registration to compensate for differences in in-

spiration level between scans. Results suggested more accurate estimates of the

disease progression in both these studies.

2.5.3 Distance Between Vessel Centerlines as a Measure for Regis-

tration Accuracy

Manual extraction of landmarks is both time consuming and prone to inter-

expert variability. In this work, instead of relying on manual landmarking we used

an automated evaluation method based on vessel tree centerlines to assess the

registration accuracy, resulting in a large number of approximately correspond-

ing landmarks throughout the lungs. The drawback of the proposed evaluation



32 CHAPTER 2. MASS PRESERVING IMAGE REGISTRATION FOR LUNG CT

is that vessels that are segmented in only one of the scans may lead to inflation

of errors, whereas the absence of point correspondence may lead to underesti-

mation of errors especially in regions where vessel density is high. This could

be improved for instance by determining corresponding vessel bifurcation points

and parameterizing vessel segments in a consistent manner. However, the effects

of over- and under-estimations should be similar for the two different registra-

tion methods of the same scan pair provided that both registration methods are

reasonably good, and the vessel tree distance is therefore well suited to compare

registration accuracy of different methods on the same images.

Comparison with landmark registration error (TRE) showed that the vessel

distance measure underestimated the errors before the registration (the average

vessel distance measure was 4.83 mm while the average TRE was 6.52 mm) and

resulted in overall overestimation of errors after the registration (2.40 mm versus

1.70 mm respectively).

2.5.4 Comparison to Results in Literature

In the conducted experiments, the proposed mass preserving image registration

was better than the registration with the sum of squared differences similarity

function. The results of the registration with SSD similarity function was com-

parable with those reported in the literature. Most registration methods were

evaluated on 4D-CT scans [39, 38, 48, 37, 80, 56].

Wu et al. [48] used manually extracted landmarks from four end exhale and

end inhale image pairs from dynamic CT sequences to evaluate a B-Spline image

registration algorithm and reported an average distance between landmarks of

2.78 mm. Pevsner et al. [80] analyzed 6 pairs of end-exhale and end-inhale CT

lung scans registered using a fluid registration method with 41 landmarks and

reported a discrepancy between registered and observer-determined landmarks

of 2.9 mm on average. Vik et al. [37] evaluated a B-Spline image registration

algorithm on a set of 10 pairs of end exhale and end inhale phases of 4D-CT lung

scans with user-determined landmarks. The average distance between landmarks

was 2.85 ± 3.06 mm. Castillo et al. [39] compared optical flow and landmark-

based image registration algorithms on 5 pairs of end inhale and end exhale

4D-CT images as in our experiments. The average accuracy was 6.9 ± 0.1 mm

for the optical flow image registration and 2.5 ± 0.02 mm for landmark-based

registration. Another study by Castillo et al. [56] reported the average TRE of

1.59 mm obtained on the first 3 pairs of the end exhale and end inhale phases

of 4D-CT scans. The target registration error of the proposed mass preserving

registration method applied on the same 5 pairs end inhale and end exhale phases

of 4D-CT scans was 1.70 mm on average.

In our experiments on group C, the pairs of maximum expiration and maxi-

mum inspiration CT lung scans, the average vessel distance after the mass pre-
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serving registration was relatively large 3.53 mm. This group was the most chal-

lenging because of large difference in volume and large amount of pathology such

as air-trapping and fibrotic tissue. In this group, the mass preserving registra-

tion showed clear improvement compare to the registration method with the SSD

similarity function.

Registration of pairs of inspiratory lung CT scans generally produces more

accurate results than can be obtained for expiration/inspiration scan pairs or

end-exhale/end-inhale images from 4D-CT. Our experiments on longitudinal in-

spiratory CT lung scans showed comparable accuracy of mass preserving registra-

tion 1.76 mm to the results on similar studies reported in the literature [25, 23].

Betke et al. [25] evaluated an image registration algorithm on 10 pairs of re-

peated inspiratory CT scans using RMS between corresponding surface points

and measured error of 3.7 mm. Murphy et al. [23] reported an average error of

only 0.7 mm evaluated on a set of semi-automatically extracted landmarks. In

the study, selection of landmarks was supported by a thin-plate spline landmark

registration algorithm, potentially favoring smooth deformation fields.

2.6 Conclusion

In this chapter we investigated the assumption of mass preservation during

breathing cycle on the large number of CT scans of varying quality, ranging from

small to large difference in inspiration level. We incorporated the mass preserving

model into a standard image registration method and evaluated it synthetic data

and intra-subject lung CT scans. The results showed that the mass preserving

model is a plausible model which describes the change in density in lung CT scans

during breathing cycle. Furthermore, the performance of the image registration

method with the mass preservation is superior for image pairs with a considerable

difference inspiratory level than the image registration method without mass

preservation assumption.

2.7 Appendix: Gradient of the mass preserving similarity

function

In this section we derive the analytical expression for the gradient of the proposed

mass preserving similarity function as given in (2.4). Consider the similarity

function (as in (2.3)):

C(If , Im ◦ T ) = 1

|Ωf |
∫
Ωf

[If (x)− det(JT (x)) · Im(y)]2dx, (2.6)

where
∫ ◦dx is a shortened notation of the volume integral

∫ ∫ ∫ ◦dx1dx2dx3. The
transform y = T (x) depends on the set of parameters a, T (a,x). For simplicity,
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we shorten the notation of the Jacobian determinant |J | = det(JT (x)), the fixed

image value in a point x as If = If (x), the transformed point y = T (x,a), the

moving image value in the transform point Im = Im(y) and label the observed

difference in intensities at a point x with respect to the transform parameters a

as a function G(a,x):

C(If , Im ◦ T (a)) =
∫
Ωf

G(a,x)2 dx,

G(a,x) = If (x)− det(JT (x)) · Im(y(a,x)) = If − |J |Im.

Using differential algebra we write the full differential of the similarity function,

dC(a) =

∫
Ωf

2GdGdx,

dG(a,x) =DxIfdx− |J |tr(J−1dJ)Im − |J |DyImdy

=DxIf dx− |J |

⎛
⎜⎝tr(J−1dJ)︸ ︷︷ ︸

(∗)

Im +DyImdy

⎞
⎟⎠ , (2.7)

where the notation dC stands for the full differential of the function C. Using

the definition of the vec operator, we can simplify the term (*):

tr (J−1dJ) = vec(J−T )Tvec(dJ). (2.8)

Further the term vec(dJ) can be expanded,

vec(dJ) = d(vec(J)) = Davec(J) da+Dxvec(J) dx, (2.9)

and by substituting (2.9) into (2.8) we get

tr (J−1dJ) = vec(J−T )T · Davec(J) da+ vec(J−T )T · Dxvec(J) dx, (2.10)

where Da is the gradient in the direction of the transform parameters a and Dx

is a spatial gradient. The differential dy is defined as

dy = Day da+Dxy dx = Day da+ J dx. (2.11)

By substituting (2.10) and (2.11) into (2.7) we get the full differential of C(If , Im◦
T ):

dG(a,x) =DxIf dx− |J | · DyIm · J dx− |J | · Im · vec(J−T )T · Dxvec(J) dx

−|J | · vec(J−T )T · Davec(J) da · Im − |J | · DyIm · Day da.

Finally, since x is fixed, we find that the partial derivative of C(If , Im ◦T ) w.r.t.
the transform parameters a is

DaC = − 1

Ωf

∫
Ωf

2(If − |J | · Im)|J | (vec(J−T )T · Davec(J) · Im −DyIm · Day
)
dx,
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where DyIm = (∂y1Im; ∂y2Im; ∂y3Im) is the spatial row-vector gradient and Da is

the row-vector gradients the transform T (x) = y = (y1; y2; y3) in the direction of

the transform parameters a,

Day =

⎛
⎜⎝
∂a1y1 ... ∂any1
∂a1y2 ... ∂any2
∂a1y3 ... ∂any3

⎞
⎟⎠ . (2.12)





Chapter 3

Curve- and Surface-based

Registration of Lung CT images

via Currents

This chapter is based on the publication ”Curve- and Surface-based Registration

of Lung CT images via Currents”, Gorbunova V., Durrleman S., Pechin L., Pen-

nec X., de Bruijne M., in proceedings of The Second International Workshop on

Pulmonary Image Analysis in conjunction with the Medical Image Computing

and Computer Assisted Intervention Conference 2009.

3.1 Introduction

Registration of chest CT scans is an important topic within pulmonary image

analysis. The general task of registration is to establish a point-to-point cor-

respondence between two images. Registration of lung CT images can be used

in various clinical applications, such as lung cancer radiotherapy planning and

quantitative analysis of disease progression.

Image registration methods can be separated into two general groups: intensity-

based and feature-based methods. Intensity-based methods integrate spatial in-

formation over the entire image domain, whereas feature-based methods require

a representation of the image data in terms of distinctive geometrical structures.

Feature-based methods offer more robust registration when image intensity is

changed, for instance owning to pathology, image artifacts or differences in scan

protocol. Generally, segmentation of geometrical structures in lungs is less sensi-

37
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tive to intensity changes, since a segmentation method incorporates geometrical

regularity constraints or prior anatomical knowledge. Moreover, segmentation of

distinctive lung structures may be either corrected manually or delineated by a

professional.

The most distinctive anatomical structures in lung CT images are vessels,

airways, lobe fissures and lung surfaces. Deformation of lungs surfaces and lobe

fissures provide an insight into the global motion of the lungs, while deformations

of vessels and airway tree characterize small-scale deformations inside the lungs.

A feature-based registration relies on various geometrical structures, e.g.,

points, curves or surfaces. Thin-plate spline image registration [44, 90, 91] is

the standard method for matching points under the assumption that deforma-

tions are small. For large deformations, a diffeomorphic point matching approach

was developed by Joshi and Miller [92] and was later adapted for surface match-

ing [93]. Current-based diffeomorphic method for surface matching under the

large deformations, pioneered by Glaunès et. al. [93], was further developed and

adapted for curve matching problem [94, 95]. Within a framework of currents,

no point correspondence between structures is required.

Several surface-based registration methods were previously developed for lung

CT images [37, 76, 25]. The outer surface of the lungs together with the outer sur-

face of vessels were used in an algorithm similar to iterative closest point methods

in [37]. Lung surfaces were used to register CT lung images [25] and to constrain

intensity-based registration with a deformation field obtained from surface match-

ing procedure [76]. The two main advantages of the feature-based registration of

lung CT images via currents are: no point correspondence is required and unified

representation of curves and surfaces. The low dimensional geometrical features,

such as curves and surfaces contain much fewer points compared to dense inten-

sity images, thus feature-based registration can be more efficient. Moreover, in

the framework of currents, dimensionality of image features may be reduced even

more without decreasing registration accuracy [96].

In this chapter we apply the current-based registration method, pioneered

by Glaunès et. al. [93] and further propagated by Durrleman [95, 97], to three

feature sets: vessel centerlines, lung surface and combined set of centerlines and

surface. We evaluated the registration methods on a set of 5 pairs of end ex-

halation and end inhalation phases of 4D-CT images with manually annotated

landmarks.

3.2 Registration via Currents

This section describes how lung CT scans can be registered using the framework

of currents, developed in [93, 98]. Firstly, Section 3.2.1 explains how curves

and surfaces are represented via currents. Secondly, Section 3.2.2 describes how
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anatomical lung structures, e.g., vessel tree and lung surfaces, were adapted to

the framework of currents. Finally, Section 3.2.3 provides details of current-based

registration of curves and surfaces.

3.2.1 Representation of curves and surfaces

In the framework of currents [93, 94, 97], geometrical shapes such as curves and

surfaces are represented with a set of vectors. A current is encoded with a finite

set of vectors attached to the specified positions. A curve C(x) can be defined

with its tangent vector τ(x) at each position x. In a discrete setting, curve is

considered as a set of piece-wise linear segments, where each segment is repre-

sented by its center point, tangential direction, and segment length. Similarly, a

surface S(x), with a constructed mesh, is defined with the normal direction n(x),

face center x and area. Both surfaces and curves are thus encoded into currents

as a set of vectors. Geometrical shape in the framework of currents is defined

in a weak form, as the action of the shape on a test vector field w from a space

of possible vector fields W . The current of a curve C(ω) is defined by the path

integral along the curve through the test vector field w,

C(ω) =

∫
C
w(x)τ(x)dx. (3.1)

And the current of a surface S(ω) is defined by the flux of the vector field w

trough the surface,

S(ω) =

∫
S
w(x)n(x)dx. (3.2)

The space W of test vector fields is a space of square integrable vector fields con-

volved with a Gaussian kernel with standard deviation λW [97, 94]. The norm of

the current, μ(C), is defined in the dual space W ∗, as the maximum action of the

current among all possible test vector fields ||μ(C)||∗W = sup||w||W≤1 C(w). The

scale λW controls matching accuracy, for example, curves or structures located

within the scale size are considered similar, and their shapes should be matched

with accuracy proportional to the scale size.

3.2.2 Lung structures as currents

In this chapter we used distinctive anatomical lung structures such as vessels

and lung surfaces as features for registration. Figure 3.1a shows an example

of segmented lung structures. The lung fields and vessels are segmented with

the algorithm described in [87]. A sparse triangulation of the lung surfaces was

computed via the marching cube algorithm [73]. For each face, the corresponding

normals were computed and oriented to point outwards of the surface. Figure 3.1b

shows an example of the constructed current for a lung surface.
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(a) Example of segmented lung
surface and lung vessel tree

(b) Current corresponding to a lung surface.

(c) Current corresponding to a vessel tree centerlines.

Figure 3.1: Example of segmented lungs surface and vessel tree (a); triangulation
of the lungs surface (black mesh) with the corresponding current (red vectors) (b);
current corresponding to the vessel tree centerlines (red vectors) with a zoom-in
(c).

Vessel tree was segmented as follows: a lung image was thresholded with a

fixed intensity value tv = −600HU , then a local analysis of Hessian matrix was

performed in order to remove non-tube like structures. Large vessels segmented

near the hilum area were omitted from the vessel tree segmentation. For more

details on vessels segmentation algorithm we refer the reader to [87]. Centerlines

were extracted from the segmented vessel tree using a 3D thinning algorithm [89].

The tangential direction of a centerline was computed via local principal com-

ponent analysis. For each centerline point we extracted neighboring centerline

points, applied PCA to the point cloud, and assigned the first principal compo-

nent to the tangential direction at the centerline. For centerlines sufficiently far
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from vessel bifurcation and neighboring vessel, the principal direction points to

a tangential direction of the centerline. For centerlines close to the bifurcation

the principal direction points between the two splitting vessel centerlines. This is

consistent with the framework of currents, were the action of each vessel direction

results in a joint action at the bifurcation point. The orientation for the positive

direction was set to point outwards from the center of the image. Figure 3.1c

shows an example of the constructed current for a segmented vessel tree and a

zoom-in into a bottom part of the image.

3.2.3 Current-based Image Registration

In this chapter, we combine the previous work on matching curves [94] and sur-

faces [93] via currents. The similarity measure between two curves Cf , Cm or

two surfaces Sf , Sm is defined as the squared norm of the difference in μ for

corresponding currents with respect to the test vector field w ∈ W :

E(Cf ;Cm) = ||μ(Cf )− μ(φ · Cm)||2W ∗ , (3.3)

for fixed and moving curves Cf and Cm respectively. And

E(Sf ;Sm) = ||μ(Sf )− μ(φ · Sm)||2W ∗ , (3.4)

for fixed and moving surfaces Sf and Sm respectively, where φ is a diffeomorphic

transform function. Combining two similarity terms for curves (3.3), surfaces

(3.4) and a regularisation term with trade-off coefficients γC , γS , γφ in a final cost

function gives:

E(Cf , Sf ;Cm, Sm) = γC ||μ(Cf )− μ(φ · Cm)||2W ∗ + γS ||μ(Sf )− μ(φ · Sm)||2W ∗

+ γφReg(φ). (3.5)

Diffeomorphic transformation φ of curves and surfaces was modeled in the frame-

work of large deformation diffeomorphic matching [92, 94], where deformation of

each feature is defined by a velocity vector field vt = φ′
t. The smooth velocity field

vt is described via Gaussian kernel with standard deviation λV , where λV deter-

mines the typical scale of the deformations [97, 94]. To guarantee smoothness of

the final diffeomorphism, we defined the regularisation term as in [97],

Reg(φ) =

∫ 1

0
||vt||2V dt. (3.6)

3.3 Experiments

In order to quantify the accuracy of the proposed registration method with a

ground truth, we used images from a publicly available dataset [39]. For each
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image pair, 300 manually placed corresponding landmarks were provided [39].

Five pairs of images, where each pair consists of images extracted at end exhale

and end inhale phases of 4D CT image, were used in our experiments. In-plane

resolution of the images varied from 0.97× 0.97 mm to 1.16× 1.16 mm and slice

thickness was 2.5 mm.

3.3.1 Parameter Settings

Vessel tree were segmented using the algorithm as in [87] with the intensity

threshold −600 HU, ratio of Hessian eigenvalues was set to m1 = 0.75, m2 = 0.5.

For every centerline point we extracted a neighboring centerline points from the

cube neighborhood of 7× 7× 7 voxels size and computed the principal direction

of the centerlines. All the direction vectors were normalized to 1. Figure 3.1c

shows an example of the extracted currents for vessel centerlines with a zoom-in

to a lower part of the lungs. A regular surface triangulation was constructed with

a marching cube algorithm with further simplification of the mesh [73]. Normal

directions to each of the face were normalized to 1.

In our experiments, end inhale phase of 4D-CT image was registered to end

exhale phase. The following internal parameters of image registration were se-

lected manually. The accuracy of feature alignment λW was set to 5 mm for

curves and 10 mm for surface features. The parameter λV for spatial variability

of deformation velocity field was set to 25 mm for both types of features. The

weight coefficients in the cost function (3.5) were set to γC = 1 for the curve

matching term, γS = 0.01 for the surface matching term and γφ = 10−4 for the

regularizer. The cost function was minimized with a standard gradient descent

approach.

3.3.2 Results

We evaluated four registration methods, as follows: combined curve- and surface-

based registration with cost function (3.5); curve-based registration with cost

function (3.3); surface-based registration with cost function (3.4); and a free-form

B-Spline intensity-based method as in [29]. We compared registration accuracy of

the four methods based on the alignment of 300 landmarks distributed uniformly

in lung area, Figure ?? shows an example of the spatial distribution of landmarks

within the lungs.

The overall accuracy of the image registration methods was defined as the

mean Euclidean distance between landmarks, target registration error (TRE), in

millimeters. The mean and the standard deviation of TRE for the four methods

is reported in Table ??. We performed Wilcoxon rank-sum test on TRE distri-

bution to compare the combined curve- and surface-based registration with the

curve-based and surface-based methods individually. Results are reported in the



3.4. DISCUSSION 43

Table 3.1: Registration error at the landmark positions in [mm] for the four reg-
istration methods. The mean (m) and the standard deviation (sd) are reported.
Statistical comparison of combined curve- and surface-based registration method
was performed against the surface-based and curve-based methods. The notations
of statistical significance level are as follows: ∗ corresponds to p ≤ 0.05 and ns to
p > 0.05. The most right column indicates percentage of landmarks, where the
combined curve- and surface-based registration outperforms the intensity-based
registration.

Image Registration Accuracy in mm [m ± sd]

N Before Combined Surface Curve Intensity %

1 3.89± 2.78 1.47 ± 0.72 2.45 ± 1.56∗ 2.24 ± 1.41∗ 1.23 ± 0.61 37.7

2 4.34± 3.90 2.19 ± 1.98 3.63 ± 2.94∗ 2.32 ± 2.06ns 1.26 ± 0.67 39.0

3 6.94± 4.05 3.30 ± 3.05 5.31 ± 3.26∗ 3.03 ± 2.79∗ 1.86 ± 1.11 25.0

4 9.83± 4.86 3.34 ± 2.67 5.98 ± 3.74∗ 5.28 ± 4.52∗ 2.15 ± 1.48 36.0

5 7.48± 5.51 3.83 ± 3.54 5.80 ± 4.37∗ 4.40 ± 4.42∗ 2.32 ± 1.82 40.0

All 5 cases

6.50± 4.83 2.83 ± 2.72 4.63 ± 3.58∗ 3.45 ± 3.48∗ 1.76 ± 1.31 35.5
Mdn 5.13 1.85 3.53 2.37 1.44

Table ??. Box-plots in Figure ?? show the overall accuracy of the four image

registration methods on a complete set of landmarks over all five cases.

Correlation between TRE for the intensity-based and combined curve- and

surface-based registration was ρ = 0.5, varying from 0.17−0.59 for the five cases.

Overall, for 35.5% cases of landmarks the combined curve- and surface-based

registration method performed better than intensity-based method.

Figure 3.2: Target registration errors (TRE) is shown in (a), as follows, be-
fore registration was applied (Initial), after surface-based (Suface), after curve-
based (Curve), after combined curve- and surface-based (Combined) and after
intensity-based registration (Intensity). Example (b) shows the spatial distribu-
tion of landmarks in the lungs. The landmarks, better aligned with the combined
feature-based method are shown in red and with the intensity-based method in
blue.

3.4 Discussion

Figure ?? shows that the curve-based method alone provides good registration

accuracy for the majority of landmarks. However, there are many outliers present



44
CHAPTER 3. CURVE- AND SURFACE-BASED REGISTRATION OF LUNG CT

IMAGES VIA CURRENTS

with errors of up to 2.5 cm. Within the framework of currents, points located

further than the typical scale of deformations λV are not affected by deformations

of the features, which might cause landmarks distant to the vessel centerlines to

be misaligned. Surface-based registration result in a slight overall improvement

in TRE compare to the initial configuration. In contrast, incorporating both

surfaces and curves into feature-based registration results in more accurate reg-

istration (1.85 mm) compared to both curve-based (2.37 mm) and surface-based

(3.53 mm) methods.

The median of TRE for the combined curve- and surface-based registration

was 1.85 mm compared to 1.44 mm for the intensity-based method. Several rea-

sons may lead to larger TRE for the combined curve- and surface-based method,

such as inconsistency in segmentations of vessels in the two images. Ambiguous

segmentation of lung surface near the hilum may leads to large missregistration

errors in this area. Figure 3.3b shows a difficult case in the data with irregular

centerlines in the back of the lungs. Registration of lung images based on such

geometrical structures as vessels centerlines and lung surfaces can be naturally

improved by including airways and lung fissures into the presented framework.

In order to understand where are the main differences between the feature-

based and intensity-based method, we visualized discrepancy between the two

deformation fields in Figure 3.3a. For illustration purpose, we sparsely selected

points, where the orientation between deformation vectors were above 60◦ and

with the magnitude of discrepancy vectors more than 3 mm and plotted inside the

lung area. Interestingly, the discrepancy between the feature- and intensity-based

methods were localized.

We further investigate image slices located at the areas, where the discrep-

ancy between the two methods was the largest (blue cut planes in Figure 3.3a).

Figure 3.4 shows the difference image with the moving image subtracted from

the fixed image for both registration methods. Overall, lung surfaces and small

vessels were aligned more accurately with the feature-based registration method.

Another important component of currents is the length or the weight of the

direction vector. For the task of registration of repeated lung CT images, the

current for a small vessel could be given more weight than for a large vessel,

leading to more accurate registration of small vessels. This is an important

advantage of current-based registration over intensity-based method, where small

vessels with low contrast to surrounding lung tissue have negligible impact on the

overall cost function. In this chapter we used equal weights for all currents and

normalized the length to 1.

On average, 35.5% of landmarks were aligned better with the curve- and

surface-based registration. The low correlation coefficient (0.5) suggests that the

two registration methods align landmarks differently and may be combined into

a more robust registration method.
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(a) Deformation vectors for the combined
curve- and surface-based (magenta) and
intensity-based (green) methods methods
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(b) Example of irregular current

Figure 3.3: (a) An example of discrepancy in deformation fields between the
feature-based and intensity-based registration methods. (b) An example of an
ambigious current for the back of the lung.

3.5 Conclusion

In this chapter, a curve- and surface-based registration method is presented,

where lung surfaces and vessel tree centerlines are built-in into the framework

of current-based registration. Incorporating both centerlines and surfaces results

in more accurate registration than curve- or surface-based registration method

alone. The proposed combined curve- and surface-based registration method

achieves slightly lower accuracy than intensity-based registration but for 35.5%

of landmarks outperformed the intensity-based method. A natural extension of

the presented work will be incorporating more anatomical lung structures, such

as airways and fissures, to improve the feature-based method.

Results show that the proposed feature-based registration method is robust

to inconsistent segmentation and outliers in segmented features and capable of

handling imperfect segmentations. In applications where importance of different

features varies, the prior weight of a feature may be encoded into the presented

registration framework. Results suggest that a natural improvement of registra-

tion would be obtained by combining the feature- and intensity-based methods.

I would like to thank Juan Eugenio Iglesias, Medical Imaging Informatics

UCLA, for useful suggestion.
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Intensity−based IR Feature−based IR

(a)

Intensity−based IR Feature−based IR

(b)

Figure 3.4: Visual comparison of the combined feature-based and intensity-based
registration methods. Slice cuts (a), (b) from the difference image between fixed
and deformed image for the intensity- and combined feature-based registration
methods were extracted on the same level as the plane cuts in Figure 3.3a. In
general, the currents-based registration aligns the vessels and lung surface better,
as can be seen in the areas indicated with the red circles and arrows.



Chapter 4

Lung CT Registration Combining

Intensity, Curves and Surfaces

Take a chance and you may lose. Take not a chance

and you have lost already.

— Søren Kierkegaard.

This chapter is based on the publication ”Lung CT Registration Combining

Intensity, Curves and Surfaces”, Gorbunova V., Durrleman S., Lo P., Pennec X.,

de Bruijne M., in proceedings of IEEE International Symposium on Biomedial

Imaging 2010.

4.1 Introduction

The ultimate goal of an image registration algorithm is to establish dense point-

to-point correspondence between two images. Generally, registration of lung CT

images is a difficult problem due to the possible large variation between the scans.

Scans of the same patient taken at maximum inspiration, can have more than

a liter difference in lung volume. The registration of end exhale and end inhale

phases of 4D-CT lung images is an even more difficult problem due to the large

and non-uniform deformations during the breathing cycle [53].

Image registration methods can be divided into two groups of methods: intensity-

based and feature-based. Feature-based methods establish deformations based

47
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on low-dimensional features derived from the original images, e.g. points, curves

or surfaces, while intensity-based methods consider intensity information over

complete image. Several feature-based registration methods were developed for

lung CT scans [37, 76, 25, 99]. However intensity-based registration methods are

prevalent for the general purpose registration of lung CT scans [36, 48, 53, 52,

81, 29, 28, 39].

Intensity-based registration methods generally produce more accurate re-

sults [37, 24, 46]. Major drawback of the feature-based registration methods is

the necessity to extract reliable features, e.g., landmark-based registration meth-

ods [39, 99, 25] require manually selected landmarks, and methods similar to the

iterative closest point algorithm [37] require a good parameterization of the seg-

mented structures. Recently, a current-based registration method was proposed

for registration of surfaces [93] and curves [97, 94], where no point correspon-

dence is required. We previously adapted the current-based registration for lung

CT scans and showed that the accuracy of the current-based registration was

slightly worse than the accuracy of the intensity-based registration [46], although

in 35 % of the landmarks, the current-based registration resulted in smaller target

registration error.

While feature-based method can more accurately estimate deformation fields

of the features, the intensity-based method can benefit from its results and im-

prove the overall accuracy of alignment further away from the features. The

direct combination of two different registration methods is usually not possible,

particularly if the underlying deformation models are different. For example, in

parametric non-rigid registration, deformation fields are commonly modeled with

spline functions [36, 61, 44], while in non-parametric methods deformation fields

are usually modeled using partial differential equations [62].

We propose a combined registration method, where the deformation field of an

intensity-based registration is constrained with the results from a feature-based

method. This constrained registration method is alternated with the feature-

based registration method in an iterating scheme. A similar solution was pre-

viously proposed by Hellier et al. [100] where the deformation field between the

corresponding sulcus lines was incorporated into the optic-flow based registra-

tion of the brain MRI scans. In the work [100], sulci in the two images were

parameterized and deformations were obtained from corresponding points in the

two curves. In contrast, in our feature-based registration curves and surfaces are

represented without direct point correspondence, therefore consistent segmenta-

tion of the curves or surfaces in the two images is not required for the combined

registration.

Our previous work [60] presented a combined registration method, where the

intensity information was combined with the anatomical lung structures, e.g.,

vessel centerlines and lung surfaces. In this chapter we give a detailed description
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of the proposed combined registration algorithm and evaluate performance on a

publicly available set of 10 lung CT image pairs [39] with manually annotated

landmarks.

4.2 Background and Previous Work

Generally, simple geometrical structures, e.g., points, curves and surfaces, which

corresponds to distinct anatomical structures, are used as features in the feature-

based registration. However more advanced features such as attribute vector [101]

or filter response [102, 103] are also used in feature-based registration. Growing

number of papers propose to combined geometrical features with intensities in

registration framework [90, 104, 105, 106, 58, 100, 100, 76, 59, 103].

K. Rohr et al. [104] and H.J. Johnson et al. [90] proposed to combine land-

marks with intensity based registration via an alternating approach. Minimiza-

tion of the target registration error was alternated with the minimization of dis-

similarity measure between images, thus achieving an optimal transformation.

Methods that combine curves and surfaces with intensities for registration

purposes are common in magnetic resonance imaging field for analysis of brain

MRI scans. Sulci and cortical surfaces were successfully combined with the in-

tensity information [105, 58, 100, 106]. P. Cachier et al. [105] and P. Hellier [100]

presented similar methods, where sulci were represented with a set of points

and deformations between the corresponding sulci and intensity-based similarity

measure were both incorporated into a cost function. D.L. Collins et al. [106] in-

vestigated different approach, where chamfer distance between the corresponding

sulci was introduce into the registration framework. T. Liu et al. [58] proposed

a multi-step registration algorithm where volumetric mapping was further im-

proved by sequential surface alignment.

On contrary, combined feature-based and intensity-based registration of lung

CT scans is not well investigated topic [76, 59, 103, 60, 107]. Recently, Li et

al. [76] developed an image registration algorithm for lung CT images, where the

intensity-based registration was improved with the subsequent bio-mechanical

simulation of lung inflation obtained from lung surface deformations. The study [59]

presents another hybrid method, where the registration algorithm integrates

intensity-based and feature-based methods. The cost function incorporates dif-

ference in intensities and difference in the distances to the annotated surfaces.

Similar approach was proposed in [107], where cost function incorporates dissim-

ilarity between the original images and between the vessel probability images.

A hybrid approach where features of lung CT scans were determined from an

eigenvalue analysis and further considered along with the intensities in the reg-

istration procedure [103]. In all the above studies, results showed improvement

of the combined registration methods compare to the registration methods based
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on the intensity alone.

4.3 Method

Section 4.3.1 briefly repeats the feature-based registration method from the Chap-

ter 3. The non-rigid intensity-based registration method from the Chapter 2 is

described in the Section 4.3.2. Detailed description of the proposed registration,

where the intensity is constrained with the deformations of anatomical lung struc-

tures, is given in the Section 4.3.3. Finally, the details of an iterating scheme,

where the combined registration is alternated with the feature-based registration

is described in the Section 4.3.4.

4.3.1 Current-based Registration

In our previous work, we developed a feature-based registration, where vessel cen-

terlines and lung surfaces, were used to establish spatial correspondence between

lung CT scans [46]. Both vessel centerlines and lung surfaces were represented in

a framework of currents and aligned using the metric on currents. The current

μ for a vessel centerline C is represented by tangential vectors attached to the

centerline points, and for a triangulated surface S it is represented by normal di-

rections attached to the centers of each face. Figure 4.1a show an example of the

currents for the vessel centerlines, and the lung surfaces is shown in Figure 4.1b.

Norms of a currents for curves and surfaces, μ(C) and μ(S), are defined via

a path integral along the curve or a flux integral through the surface [94]. The

cost function between anatomical lung structures in a fixed image Cf and Sf

and a moving image Cm and Sm is defined as a weighted sum of the similarity

measures between currents for the vessel centerlines Cf and Cm, the similarity

between currents for surfaces the Sf and Sm, and a regularization term:

E(Cf , Sf ;Cm, Sm) =γC ||μ(Cf )− μ(φ · Cm)||2W ∗ + γS ||μ(Sf )− μ(φ · Sm)||2W ∗

+γφ

∫ 1

0
||vt||2V dt. (4.1)

Diffeomorphic transformation φ of curves and surfaces was modeled in the frame-

work of large deformation diffeomorphic matching [94], where deformation of each

feature point is defined by a velocity vector field vt = φ′
t. The smooth velocity

field vt is described via a Gaussian kernel with standard deviation λV , where

λV determines the typical scale of the deformations [97]. The smoothness of the

currents is determined by the parameter λW [97].

4.3.2 Intensity-based Registration via B-Splines

In this chapter we used a multi-resolution B-Spline image registration frame-

work [61] for the intensity-based registration. First, lung regions were extracted
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(a) (b)

Figure 4.1: Example of currents constructed for the segmented vessel centerlines
(a) and the lung surfaces (b), both seen from the side.

from the CT images and the background value was set to 0 HU. Images were

aligned with affine transform TA. Subsequently, a series of N B-Spline trans-

forms T i=1..N
B-Spline with decreasing grid size was applied to the affinely registered

images. Thus, the final deformation is a composition of the affine transform and

N levels of the B-Spline transforms:

Tfinal(x) = TN
B-Spline ◦ ... ◦ T 1

B-Spline ◦ TA(x), (4.2)

where x is a point in the fixed image domain Ωf . We use the sum of squared

intensity differences as the similarity measure between the images,

Eint(If , Im;T ) =
1

|Ωf |
∫
Ω
[If (x)− Im(T (x))]2dx, (4.3)

where If (x) is the fixed image, defined in the fixed image domain Ωf , Im(y) is

the moving image, defined in the moving image domain Ωm. After each level of

transform the moving image Im(y), where y = T (x), is deformed, interpolated

using linear interpolation and provided for the next level of transform.

4.3.3 Constrained Registration

We propose to constrain the intensity-based registration of Section 4.3.2 with the

deformation field obtained from the current-based registration of Section 4.3.1.

We constrain B-Spline deformation field �DB-Spline(x) to match the given defor-

mation field �Dcurr(x) by minimizing the L2 distance between the deformations.

Since the current-based registration uses anatomical lung features to establish the

correspondence, the deformation field in locations close to the extracted features

is expected to be more reliable than further away from the features. Thus, we

propose to incorporate a spatially varying weight w(x) ∈ [0; 1],x ∈ Ωf into the

constraint between the deformation fields, which defines the trade off between
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matching intensity and deformations for every voxel x. The combined cost func-

tion then consists of the sum of squared intensity differences similarity function

and constraint on the deformation field:

E(If , Im;T ) = Eint + λEdef =

=
1

|Ω|
∫
Ω
(1− w(x)) [If (x)− Im(T (x))]2dx

+
λ

|Ω|
∫
Ω
w(x)|| �DB-Spline(x)− �Dconstr(x)||2dx, (4.4)

where the constraining deformation field is �Dconstr(x) = �Dcurr(x) and the coeffi-

cient λ compensates for the difference in units of the two terms. The deformation

field �DB-Spline(x) is a vector field defined as �DB-Spline(x) = T (x)−x. Using vector

notation, the gradient of the cost function (4.4) can be computed explicitly:

DaE(If , Im;T ) =− 2

|Ω|
∫
Ω
(1− w(x)) [If (x)− Im(T (x))] · [DxIm DaT ] dx

− 2λ

|Ω|
∫
Ω
w(x)( �DB-Spline(x)− �Dcurr(x))

TDaTdx. (4.5)

Where the symbol Dx denotes the spatial gradient vector operator Dx(·) =

( ∂
∂x1

(·); ∂
∂x2

(·); ∂
∂x3

(·)), and the symbol Da denotes the gradient vector operator

with respect to the transform coefficients Da(·) = ( ∂
∂a1

(·); ... ∂
∂aN

(·)).
In the multi-level framework of the intensity-based image registration de-

scribed in Section 4.3.2, each level of the transform is constrained separately.

The initial affine transform is not constrained, and for the subsequent N levels

of the B-Spline transform the deformation field at a given point is constrained

with the remaining deformation field, as follows:

�Dlevel
constr(x) = �Dcurr(x)− �Daff(x)− �D1

B-Spline(Taff(x))− ...−
− �D3

B-Spline(T
2
B-Spline ◦ T 1

B-Spline ◦ Taff(x)). (4.6)

4.3.4 Iterative Scheme

The described combined registration method is naturally extended to an iterative

approach where registration alternates between the combined method from the

Section 4.3.3 and the current-based registration from Section 4.3.1. The inter-

action of the two registration algorithm presented in the Figure 4.2. After an

iteration i of the combined registration, the vessel centerlines currents μ(Cf ) and

lung surfaces currents μ(Sf ) extracted from the fixed image are deformed with

the obtained complete transform T i and a new iteration of the current-based

registration of Equation (4.1) restarted on the deformed currents, defined as:

μi+1(Cf ) =μ(Cf ◦ T i) (4.7)

μi+1(Sf ) =μ(Sf ◦ T i) (4.8)
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Figure 4.2: The workflow of the iterative image registration. The combined
registration from Section 4.3.3 is applied between the original fixed image If (x)
and the original moving image Im(y) with the constrain on the deformation
field �Dconstr(x). The subsequent current-based registration from Section 4.3.1
is applied between the deformed currents of the fixed image μ(Cf ), μ(Sf ) and
the currents of the moving image μ(Cm), μ(Sm). Detailed description of the
algorithm is given in Algorithm 4.1.

Since the current is a set of vector points, the deformed current is obtained from

the deformation of the start and the end points of each vector. Details on the

initialisation and step-by-step description of the iterative process is summarised

in Algorithm(4.1). Using the described scheme we can iterate the current-based

and the combined registration gradually improving the result.

4.4 Experiments

4.4.1 Data

We conducted experiments on ten publicly available image pairs extracted at the

end exhale and end inhale phases of 4D-CT scans [39]. The study also provides

300 manually placed landmarks for each image pair. The landmarks were uni-

formly distributed over the lungs. In-plane resolution of the images varied from

0.97×0.97 mm to 1.16×1.16 mm and slice thickness was 2.5 mm. For each pair,

the image extracted at end inhale phase of 4D CT image was registered to the

image extracted at end exhale phase.
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Algorithm 4.1: Algorithm describes the iterating scheme illustrated in Figure 4.2.

Problem Statement: For every point x ∈ Ωf find the corresponding point

y = x+ �D(x) in the moving image domain Ωm.

Initialization: Initial constraining deformation field �D0
constr = 0, the weight

image w(x) = 0, transform parameters c0 = 0 and
the fixed image currents μ0(Cf ) = μ(Cf ), μ

0(Sf ) = μ(Sf ).
for i = 0...N do

1: Run combined image registration with the constraining deformation

field �Di
constr and initial guess on transform coefficients ciini,

2: Compute the deformation field �Di+1
B-Spline of the complete transform T i

and deform the fixed image currents μi+1(Cf , Sf ) = μ(Cf ◦ T i;Sf ◦ T i),
3: Run current-based image registration between μ(Cm, Sm) and

μi+1(Cf , Sf )

4: Update the deformation field �Di+1
constr =

�Di
constr + �Di+1

B-Spline and

the transform coefficients ci+1
ini = ciconvereged.

end for

4.4.2 Setup of the Current-based Registration

Lung fields and main bronchi were segmented as described in [108]. From the

segmented lung regions, the lung surfaces triangulation were constructed using

the marching cube algorithm and further simplified in order to decrease the num-

ber of faces [73]. The normal directions were attached to the center of each facet,

the length was normalized to 1 mm and the orientation was set to point outwards

from the lung surface. Figure 4.1b shows an example of the constructed current

for the lung surfaces.

Vessel tree was segmented using the algorithm as in [87] with the intensity

threshold −600 HU. The internal parameters of the segmentation algorithm such

as ratios of the Hessian eigenvalues were set to m1 = 0.75 and m2 = 0.5. Vessel

centerlines were extracted using a 3D thinning algorithm [89]. Finally, tangential

directions of the vessel centerlines were computed via local principal component

analysis in a 7 × 7 × 7 voxel size cube. The orientation and the length of the

tangential direction is important in the current-based registration, therefore we

normalized the length of the first principal vector to 1 mm and the orientation

was set to point outwards from the image center. Figure 4.1a shows an example

of the constructed currents for the vessel tree segmented from the right lung.

We applied the current-based registration from Section 4.3.1 to register vessel

trees and lung surfaces. The internal parameters of the current-based registration

were set to λW = 5 mm for the vessel currents, λW = 10 mm for the surface

currents, λV = 25 mm, γC = 1, γS = 0.01 and the regularization parameter
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γφ = 10−4.

4.4.3 Setup of the Intensity-based Registration

For the intensity-based registration Section 4.3.2, three levels of B-Spline trans-

formN = 3 were applied in the multi-resolution strategy. The size of the B-Spline

grid at each level was set to 3×3×3 (approx. 94×73×87 mm), 6×6×6 (approx.

47 × 36 × 43 mm), and 12 × 12 × 12 (approx. 23 × 18 × 22 mm), respectively.

After each level of the transform, the moving image was deformed with respect

to the sum of the deformation fields from the previous levels. We used linear

interpolation method to reconstruct intensity values in non-grid point voxels.

Each level of the transformation was optimized separately using a stochastic

gradient descent algorithm [51]. The numbers of the voxel samples Ns in the opti-

misation process were chosen proportional to the number of optimized parameters

at each level and at least 104. For the Affine transform the Ns = 104 and for

the three sequential levels of the B-Spline transform Ns = (104, 104, 5 · 104) voxel
samples respectively. The maximum number of iterations was set to Ni = 1000

for every level of the transform.

4.4.4 Setup of the Combined Registration

The proposed iterative registration method from the Section 4.3.4 was iterated for

the total number of iterations N = 10. The internal parameters of the intensity-

based module were fixed as described in the Section 4.4.3, whereas the parameters

of the current-based module were set differently from registration method in

Section 4.3.1. The current-based module was applied after the intensity-based

registration, therefore the major deformations were captured by the intensity-

based registration thus the remaining deformations were expected to be smaller

than the full deformations. Therefore, we decreased the internal parameters of

the subsequent current-based registration module to λW = 2.5 mm for both vessel

and surface currents, λV = 25 mm and γφ = 10 for all the subsequent iterations.

The coefficient λ from (4.3) was set to 5× 103 for all the iterations.

The weight image w(x) was constructed as follows, first the lung surfaces were

extracted from the segmented lung regions. Reliable segmentation of vessels and

lung surfaces near the hilum area is a difficult task, therefore we erased the lung

surfaces and vessel centerlines near the hilum area by first dilating the left and

right main bronchus with a disk element of radius 20 voxels in axial plane and then

deleting the constructed dilation from the lung surfaces and vessel centerlines.

We computed the distance map to the lung surfaces and vessel centerlines and

evaluated the Gaussian kernel with the size κw = 5.0 mm on the distance image.

Figure 4.3 shows an axial, a coronal and a sagittal slice of a weight image.
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Figure 4.3: An example showing from left to right axial, sagittal and coronal
slices of a spatially varying weight image w(x).

4.5 Results

The overall accuracy of a registration method was defined as the average Eu-

clidean distance between the landmarks, target registration error (TRE), in mil-

limeters. For each image pair 300 manually placed landmarks were available in

the study [39].

Table 4.2: The target reg-

istration error (TRE) in

[mm] is reported.

It TRE [mm]

1 2.39 ± 2.16

2 1.91 ± 1.79

3 1.79 ± 1.56

4 1.79 ± 1.46

5 1.74 ± 1.36

6 1.73 ± 1.29

7 1.72 ± 1.27

8 1.72 ± 1.25

9 1.71 ± 1.24

10 1.71 ± 1.23

The average and the standard deviation of the

TRE was obtained from the complete set of 3000

landmarks. Evaluation of the combined image regis-

tration approach at each iteration averaged over the

complete set of images is reported in the Table 4.2.

Figure 4.5a shows the evolution of the mean TRE for

each case individually and Figure 4.5b shows box-

plots of the TRE for each iteration of the proposed

combined registration algorithm.

The TRE of the three registration methods

with only the intensity term, described in the Sec-

tion 4.3.2, the current-based registration, described

in the Section 4.3.1, and the proposed iterative

combined registration, described in Section 4.3.3

are compared in the Table 4.3. The overall mean

and standard deviation before the registration was

8.69± 5.99 mm. The TRE after the image registra-

tion procedure was reduced to 1.71 ± 1.23 mm, 2.39 ± 2.16 mm and 3.45 ± 3.91

mm for the proposed combined registration, the intensity-based and the current-

based registration respectively. The decrease of the average target registration

error with the proposed combined registration ranged from −17.8% to 55.4% or

−0.21 mm to 2.78 mm compared to the average TRE of the intensity-based regis-

tration. The average improvement of the proposed registration method over the

intensity-based registration method was 28.5% or 0.68 mm.

Figure 4.4 illustrates how the vessel centerlines were deformed during the

iterations of the proposed combined registration method. Vessels in the upper

part of the lungs were correctly matched already after the first iteration of the

algorithm however alignment of the vessels in the lower part was inaccurate. The

proposed combined registration gradually improved alignment of the vessels in

the lower part of the lungs.

Visual comparison of the intensity-based registration with the proposed com-

bined registration is presented in the Figures 4.6-4.7. Images were first masked
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Figure 4.4: Vessel centerlines of the moving image (blue curves) are overlaid
with the deformed vessels centerlines of the fixed image (yellow to red curves).
Deformed vessel centerlines are displayed in colors ranging from yellow to red
with respect to the iteration number of the iterative registartion algorithm.

Table 4.3: The mean and standard deviation of target registration error at the
landmark positions in [mm] before the registration (Original); after the current-
based registration (Curr); after the proposed combined registration (Comb It#);
and after the intensity-based registration (Intensity).

N Original Combined at It#10 Intensity-based Current-based

1 3.89 ± 2.78 1.39 ± 0.96 1.18 ± 0.57 1.47 ± 0.72

2 4.34 ± 3.90 1.17 ± 0.56 1.26 ± 0.68 2.19 ± 1.98

3 6.94 ± 4.05 1.39 ± 0.75 1.91 ± 1.15 3.30 ± 3.05

4 9.83 ± 4.86 1.70 ± 1.03 2.12 ± 1.52 3.34 ± 2.67

5 7.48 ± 5.51 1.87 ± 1.45 2.23 ± 1.79 3.83 ± 3.54

6 10.89 ± 6.97 1.98 ± 1.07 1.98 ± 1.11 2.85 ± 1.67

7 11.03 ± 7.43 1.85 ± 1.11 2.99 ± 2.09 3.61 ± 4.05

8 14.44 ± 7.16 2.24 ± 2.18 5.02 ± 3.96 5.59 ± 7.01

9 9.24 ± 3.54 1.85 ± 1.06 2.05 ± 1.06 2.89 ± 2.07

10 7.63 ± 6.04 1.72 ± 1.12 2.50 ± 2.11 5.47 ± 5.66

All 8.69 ± 5.99 1.71 ± 1.23 2.39 ± 2.16 3.45 ± 3.91

using the segmented lung regions and background value was set to 0HU. Then

the moving image was deformed with respect to the obtained deformation field,

interpolated using linear interpolation and subtracted from the fixed image. Fig-

ure 4.6 shows the only example where the proposed registration algorithm resulted

in the larger TRE 1.39±0.96 mm than the intensity-based registration algorithm

1.18 ± 0.57 mm. Figure 4.7 shows another extreme case, where the proposed

registration algorithm resulted in the largest decrease of the TRE 2.24±2.18 mm

compared to the 5.02± 3.96 mm.
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Figure 4.5: Average target registration error [mm] evolution during the iterations
of the combined registration method for every image pair in the study, plot (a).
Overall distribution of the TRE [mm] showed in the box-plot (b).

Figure 4.6: The difference images of the intensity-based registration (first row)
and the corresponding difference images of the combined registration (second row)
for the case #1. The TRE of the intensity based registration was 1.18±0.57 mm
and 1.39± 0.96 mm for the two registration methods respectively. The difference
images are displayed in the intensity range [−300; 300]HU.

4.6 Discussion

Recently, Hub et al. [47] showed that an intensity-based registration of lung CT

scans is more reliable in areas with clearly defined vessels, while areas without

distinctive features were registered generally less accurate. Since an optimization

process of sum of square difference similarity function is driven by gradient of the

moving image, intensity-based registration method will result in less certain align-
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Figure 4.7: The difference images of the intensity-based registration (first row)
and the corresponding difference images of the combined registration (second row)
for the case #8. The TRE of the intensity based registration was 5.02±3.96 mm
and 2.24± 2.18 mm for the two registration methods respectively. The difference
images are displayed in the intensity range [−300; 300]HU.

ment of small, peripheral vessels. Conversely feature-based registration methods

rely less on the original intensities and generally include additional information

such as connectivity, filter responses, or shape models. In the current-based reg-

istration method, described in Section 4.3.1, the segmented vessel tree and lung

surfaces are represented with the set of unit vectors regardless of the original

image intensities. Thus large and small vessels are assigned the same weight in

the feature-based registration and are equally important in the registration.

Assuming that the feature-based registration aligns unclear structures like

peripheral vessels better than the intensity-based registration we incorporated

the deformations of the segmented features into the intensity-based registration

via a spatially varying weight. The maximum weight of 1 is at the lung borders

and the vessel centerlines and decays elsewhere, thus implies the perfect fit of

the deformation fields at the location of the segmented structures. However, the

actual effect of the constraint propagates within the support of the closest B-

spline basis functions. Thus final solution brings minimum both to the sum of

squared intensity differences far from an anatomical structure and the differences

in the deformation fields close to it.

The proposed combined approach resulted in more accurate registration as-

sessed via the set of manually selected landmarks. The average target registration

error was 1.71 ± 1.23 mm for the proposed combined method compared to the

intensity-based registration alone 2.39± 2.16 mm and the current-based registra-

tion of features 3.45 ± 3.91 mm. The registration errors were comparable with

the results reported in another study [56], where the registration procedure was
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applied to only the first three cases and the final accuracy was computed on an

extended set of landmarks. The reported average target registration error was

1.59 mm.

In nine out of ten cases, the proposed combined method outperformed the

intensity-based registration. The case where the average target registration er-

ror increased after the combined registration is displayed in Figure 4.6. Al-

though the increase in TRE was statistically significant, there were no major

mis-registrations in the final difference images. While in the another extreme

case in Figure 4.7, where the combined registration significantly decrease TRE

compared to the intensity-based method, alignment of the vessels was visibly

better.

Several reasons may lead to a significantly higher TRE for the current-based

registration alone. First, appearance of the vessels in the end inhale and the end

exhale phases of the 4D-CT scans varies significantly therefore reliable segmen-

tation with a fully-automatic method is difficult to obtain. Furthermore, center-

line extraction is difficult to reproduce with the voxel size accuracy. Figure 4.8

shows an example where the segmented vessel centerlines did not resemble vessels

because of the apparent motion artifacts and abnormalities presented in the im-

age. Second, current-based registration alone was performed on twice larger scale

than the current-based registration in the combined approach. A more consistent

comparison should be performed where a current-based registration is applied in

multi-resolution strategy.

The registration task of lung CT scans, where intensity abnormalities pre-

sented only in one of the images could be one of the potential applications of

the proposed combined registration. Another application could be registration of

lung vasculature with attached nodules, where accurate registration of vessels is

a key issue in nodule growth analysis.

To conclude, in this chapter we presented a general framework for combin-

ing feature-based and intensity-based registration methods via incorporating a

constraint on deformation field. We combined the previously developed current-

based registration of anatomical lung structures with an intensity-based registra-

tion method and applied it to ten image pairs of end inhale and end exhale phases

extracted from 4D-CT images. The proposed registration method performs bet-

ter than the feature-based method and the intensity-based method alone. The

improvement assessed using a set of manually selected landmarks was on average

28.5% or 0.68 mm compare to the intensity-based method and 50.4% or 1.74 mm

compare to the current-based registration methods.
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(a)

(b)

Figure 4.8: An example of a difficult case (#6), where the vessel centerlines were
unreliable. Plot (a) shows an axial, a sagittal and a coronal slices of the original
image, plot (b) shows the corresponding vessel centerlines of the right lung and
zoom with the constructed currents.





Chapter 5

Evaluation of Methods for

Pulmonary Image Registration

2010: Challenge Results

This chapter is based on the publication ”Mass Preserving Image Registration:

Results of Evaluation of Methods for Pulmonary Image Registration 2010 Chal-

lenge”, Gorbunova V., Sporring J., Lo P., Dirksen A., de Bruijne M., to ap-

pear in proceedings of Grand Challenges in Medical Image Analysis Workshop

in conjunction with Medical Image Analysis and Computer Assisted Intervention

Conference 2010.

5.1 Introduction

The EMPIRE challenge was organized in conjunction with the Grand Challenges

in Medical Image Analysis Workshop at Medical Image Analysis and Computer

Assisted Intervention Conference (http://empire10.isi.uu.nl/). The goal of the

challenge was two-fold, first to compare existing registration methods from dif-

ferent research groups on exactly the same dataset; and second to investigate

common problems of the existing registration methods.

We applied the mass preserving registration algorithm, described in Chapter 2

for the challenge. Since the challenge was conducted during the last month of

my PhD study, further improvements of the mass preserving method are not in

the scope of the thesis and should be considered as recommendations to those

researchers who decided to work with the similar registration method.
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5.2 Evaluation

The goal of this section is to describe evaluation methodology which has been used

in the EMPIRE challenge. The methodology was developed by challenge organiz-

ers and analysis was performed also by challenge organizers. Here I provide brief

overview of the evaluation methodology in order to facilitate understanding of

the final results. For details please check the web-page http://empire10.isi.uu.nl.

Evaluation procedure consisted of four main components: alignment of lung

boundaries; alignment of major fissures; target registration error between manu-

ally annotated point pairs; and analysis of singularities in the deformation field.

5.2.1 Lungs Boundary Alignment Scores

Lung fields were segmented using an automatic hybrid method based on the

conventional regional growing technique with an additional error detection step,

where an advanced multi-atlas segmentation algorithm was applied for final cor-

rections [109]. Once the lung fields were segmented and lung borders were ob-

tained, two regions in the images were defined. The first region Ωout was the

outer region outside the lung fields but within 2 to 20 mm distance from the lung

borders; the second inner region Ωin was inside the lung fields also within 2 to

20 mm distance from the lung borders. This procedure was applied for both the

fixed and the moving images, thus resulting in total of four regions Ωin
f , Ωout

f

and Ωin
m , Ωout

m . Given the deformation field �D from a registration procedure, all

voxels within the two regions in the fixed image were deformed with respect to

the deformation field. Voxels which were placed in the opposite region in the

moving region were considered as the wrongly matched voxels. An example of a

wrongly matched voxel is a voxel in the inner region v = (x, y, z) ∈ Ωin
f , which

was positioned in the outer region in the moving image (v + �d(x, y, z)) ∈ Ωout
m

after applying the deformation �d(x, y, z). Final error score was the percentage

of the wrongly matched voxels that belongs to one region in the fixed image but

positioned into the opposite region in the moving image.

5.2.2 Major Fissures Alignment Scores

Fissures are important anatomical lung structures which separate lungs into

lobes. Human right lung contains three lobes including the upper, middle and

lower lobes, while left lung contains only two lobes upper and lower lobes. Both

lungs have the major (or oblique) fissures, which separate the upper lobe from

the lower lobe in the left lung and upper and middle lobe from the lower lobe in

the right lung. Lung lobes can slide along the fissures and result in discontinuous

deformations at the lung fissures. Furthermore, fissures are very thin structures

and it is particularly difficult to match the fissures accurately. Fissures were seg-
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mented using an automatic segmentation algorithm [110] and further inspected

and corrected manually if needed. The horizontal fissure which separates upper

lobe from the middle lobe in the right lung was not included into the analysis.

To assess accuracy of a registration algorithm near the major fissures the same

analysis was done as for the lung borders. Inner and outer regions were defined in

the fixed and the moving lungs, and the final fissure alignment score was defined

as the overall percentage of lung voxels inside the outer or inner regions in the

fixed image, which were positioned in the wrong region in the moving image.

5.2.3 Point Correspondence Scores

Lungs boundaries alignment and fissures alignment scores only assessed registra-

tion accuracy in the limited area of lung fields. In order to investigate regis-

tration accuracy inside the lung fields, corresponding points or landmarks were

annotated in the two images. Analysis of the target registration errors between

the corresponding landmarks remains the most widely used quantitative mea-

sure of accuracy of an image registration algorithm. For the EMPIRE challenge,

landmarks were identified semi-automatically as in [23]. For each image pair 100

landmarks well distributed inside the lung fields were annotated. The maximum,

minimum and average Euclidean distance between the corresponding landmarks

were computed for each image pair in left, right or both lungs. Additionally,

average distance between the landmarks in anterior-posterior direction (AP), in

superior-inferior direction (SP), and in left-righ (LR) directions was computed

for both lungs.

5.2.4 Singularity of Deformation Field Scores

Singularity points in the lung fields were defined as points where determinant

of the Jacobian of the transform was below or equal to 0. Determinant of the

Jacobian characterizes local deformations, if det(J(x)) > 1 then expansion of

the fixed image space is observed in the point x which corresponds to the con-

traction of the moving image space in the transformed point y = T (x). Vice

verse, det(J(x)) < 1 is contraction of the fixed image space at the point x or

expansion of the moving image space in the point y. The percentage of points

where det(J(x)) ≤ 0 was defined as the final singularity score of the registration

algorithm.

5.3 Results

Registration was applied on a set of 20 image pairs where each pair was obtained

from the same subject. Two image pairs were sheep chest CT scans, the remaining

18 were human lung CT scans. Dataset included images acquired from different
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Table 5.1: Table presents total scores of the evaluation procedure for each case,
and an average over the complete dataset. Absolute difference between the lung
volumes, ΔTV = Vf − Vm, and relative lung volume difference 100 · 2 · Vf−Vm

Vf+Vm

are given in the table for reference. Symbol * marks sheeps lung CT scan image
pairs.

ΔTV Total scores averaged over both lungs
ID [%] [L] Fiss.[%] Rnk Bound.[%] Rnk Sing.[%] Rnk Point[mm] Rnk
1 -61.66 -2.86 0.0487 11 0.2261 24 0 11.5 5.20 22
2 0.32 0.04 0 15 0.0003 26 0 12.5 0.62 24
3 8.20 0.60 0.0040 27 0.0016 24 0 12 0.76 28
4* -21.61 -0.42 0 16.5 0.0006 8 0 14 1.11 13
5 2.39 0.11 0 16 0 13 0 13.5 0.35 25
6 -2.29 -0.08 0.0043 15 0 16 0 14 0.36 14
7 -43.92 -3.39 0.7549 11 0.2187 22 0 10 5.08 23
8 -21.72 -1.27 0.0812 18 0.0213 21 0 12.5 1.88 24
9 3.70 0.28 0.0002 16 0.0023 26 0 13 0.94 27
10* -30.12 -0.62 0 15 0.0055 16 0 13 1.56 12
11 -23.49 -1.39 0.2693 21 0.0896 20 0 11.5 2.27 25
12 0.46 0.03 0.0378 31 0 10 0 14.5 1.32 30
13 8.13 0.35 0.1106 21 0.0030 25 0 13 1.26 24
14 -43.93 -3.00 3.0189 12 0.1691 21 0 9.5 5.42 20
15 5.20 0.29 0 7 0.0003 25 0 12.5 0.77 22
16 19.45 0.47 0.4048 26 0.0010 18 0 13.5 1.34 18
17 4.76 0.25 0.0551 19.5 0 6.5 0 14 1.16 23
18 -46.44 -2.91 5.1067 23 0.0954 21 0 10.5 5.14 22
19 -1.10 -0.06 0 12 0 14 0 14.5 0.65 25
20 -45.63 -2.66 9.9041 28 0.1233 24 0.012 26 6.76 22
All -14.47 -0.81 0.9900 18 0.0479 19 0.0006 13 2.19 22

phases of 4D-CT and 3D scans, images acquired at maximum inspiration and

maximum expiration breathholds. Subjects with severe lung disease as well as

relatively healthy subjects were included into the study. In-plane spacing varied

from 0.4688× 0.4688 mm to 0.9766× 0.9766 mm, and slice thickness varied from

0.6 mm to 2.5 mm. Lung masks were provided along with the image pairs by

challenge organizers.

Table 5.1 presents total evaluation scores averaged over both left and right

lung regions, for reference we included lung volume difference between the fixed

and the moving images. For every evaluation score in the Table 5.1, the rank

of our registration method is given. The rank indicates the final placement of

out mass preserving registration method compare to the other 33 participants.

Correlation of the relative lung volume difference with the landmark alignment

score was −0.87 (p < 10−6); with the lung boundary alignment score was −0.85

(p < 10−5); with the fissure alignment score was −0.52 (p = 0.02); and with the

singularity score = 0.31 (p = 0.18).

Elaborate results for every case in the study are reported in the Appendix 5.4.
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Figure 5.1: Each subplot shows overall rank versus the relative volume difference.

Table 5.2 presents details on the landmark alignment score, the target registration

error, computed in only the left or the right lung regions, in the upper or the lower

regions of both lungs or over the both right and left lung regions. Additionally, the

minimum, maximum and average of target registration error and average distance

in anterior-posterior (AR), superior-inferior (SI) and left-right (LR) directions is

reported in the Table 5.2. Table 5.3 presents details on the segmentation-based

scores computed for only the left or the right lung regions; for only the upper or

the lower regions of both lungs or over the both right and left lung regions.

Figure 5.1 displays relationship between the ranking of the mass preserving

registration and the relative lung volume difference between the fixed and the

moving images.

In order to investigate spatial properties of the mass preserving registration

method, we performed Student’s t-test between the scores for the right and the

left lung regions, between the scores for the top and the bottom regions of both

lungs and between the three spatial directions AP, SI and LR. The following

scores differ significantly:

• Alignment of the upper part of lung boundaries 0.0033% is significantly
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better than the alignment of the lower part of lung boundaries 0.0826%,

the corresponding p-value 0.014;

• Landmark alignment in the upper part 1.92 mm is significantly smaller than

landmark alignment in the lower part 2.49 mm, p = 0.030;

• Landmark alignment in the LR direction 0.75 mm is significantly smaller

than both alignment in AP 1.24 mm and SI 1.13 mm directions, with the

corresponding p-values 0.0034 and 0.0097 respectively.

5.4 Discussion

Data analysis showed clear asymmetry in the fixed and the moving images. Lung

CT scan with smaller lung volume in the image pair were usually set as the fixed

image in the registration framework. The relative volume difference between the

lungs of the fixed and the moving images was on average ΔTV = 100· Vf−Vm

(Vf+Vm)/2 =

−14.47%. This potentially leads to a more difficult registration problem than if

the image with the bigger lung volume is chosen as the fixed image. In the mass

preserving registration, the moving image is being deformed and interpolated

after every level of the transform. Shrinkage of the moving image results in

the increase of the density of lung parenchyma thus making lung parenchyma

less distinguishable from the vessels. In the opposite case, the moving image is

expanded and intensity of lung parenchyma decreases potentially leading to a

more accurate alignment of vessels.

In 19 out of 20 cases, the proposed method produced invertible deformations.

In the remaining case only for negligible percentage of voxels 0.01 % singular-

ities occurred. Since we did not include the regularizer as a part of the cost

function, we can conclude that with the multi-level transform strategy and the

current setup of the optimization procedure we almost achieved invertibility of

the transformation.

Overall mass preserving registration achieved an average landmark alignment

score of 2.19 ± 2.05 mm and the median was 1.29 mm. The average ranking for

this score 22.15 was larger than average ranking for the remaining scores, ranging

from 13.28 to 19.03. One of the reasons for large landmark alignment score could

be in a large B-Spline grid, the average size of the B-Spline grid at the final

transform level was 2.4 × 1.8 × 2.3 cm3. Although it could be further improved

by applying additional levels of B-Spline transform with smaller grid size, it will

also lead to the increase of the complexity of the image registration algorithm.

In all the 5 cases, where the average landmark alignment score was above 5

mm, optimization procedure was stopped because of the maximum number of

iterations 1000 was reached. This could be improved by increasing the number

of maximum iterations.
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Figure 5.1 shows weak trend between the rank of the mass preserving regis-

tration algorithm and the relative lung volume difference for the fissure alignment

and singularity scores. For the scan pairs with large lung volume difference, the

mass preserving image registration method was generally ranked higher.

The mass preserving registration method was ranked 20th out of 34 partici-

pants. Consider the fact that number of degrees of freedom in the transformation

function was relatively small, we conclude that our registration algorithm was

able to capture lung deformations with a relatively simple deformation model

with acceptable spatial accuracy of 2.19 mm.
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Chapter 6

Mass Preserving Image

Registration For Monitoring

Emphysema Progression

This chapter is based on the publication ”Weight Preserving Image Registration

For Monitoring Emphysema Progression”, Gorbunova V., Lo P., Ashraf H., Dirk-

sen A., Nielsen M., de Bruijne M., in proceedings of Medical Image Computing

and Computer Assisted Intervention Conference in 2008.

6.1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is the fourth leading cause of

death in the world [5]. COPD encompasses both small airway disease and emphy-

sema which is characterized by the destruction of lung parenchyma. The current

gold standard for diagnosing COPD is based on lung function tests (LFT) such

as the forced expiratory volume in one second (FEV1) and forced vital capacity

(FVC). These methods are well suited for diagnosing COPD but lack the sensi-

tivity and reproducibility to detect mild emphysema or small changes in disease

status.

CT analysis allows the quantification of emphysema with a higher accu-

racy, even in early stages. Emphysematous regions appear as areas with low-

attenuation in CT scans of the lungs, suggesting that CT image intensities can

be used to quantify the severity of emphysema. Averaged lung density, n-th

percentile density, and relative area with attenuation below, e.g., -910HU (em-

73
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physema index, RA-910HU) have all been successfully applied as emphysema

measures. However, current CT emphysema measures have two major draw-

backs: measurements are averaged over the complete lung region, which makes it

difficult to detect small and localized differences, and they are strongly influenced

by variations in the inspiration level [17]. For accurate monitoring of disease de-

velopment and progression one should be able to analyze regional changes. We

propose to use image registration for this purpose. Non-rigid image registration

of lung CT scans has previously been used as an aid in determining growth of

lung nodules [74], but to our knowledge has not been applied to longitudinal

studies of emphysema.

There exist two fundamentally different approaches to analyzing regional

changes in longitudinal studies or image sequences using registration. One ap-

proach considers an almost perfect registration and subsequently analyzes the

deformation field. This approach has for example been applied to lung SPECT

and CT scans to analyze breathing motion [53]. The second approach aims at

compensating for gross deformation caused by other factors not related to the

disease process, and subsequently analyzes the differences in local appearance or

intensity between the target and the registered image as a measure of disease

progression. The second approach is taken in this chapter: registration is used to

correct for expected normal lung deformation and differences in inspiration level

between scans, whereas the finer scale disease process of growing and merging

emphysema bullae is revealed in the difference images.

In repeated breath-hold scans of the same subject, the difference in total lung

volume between scans is often more than a half liter, even if the subjects are

instructed to hold their breath at maximum inspiration. This has a large effect

on the density of lung tissue in the CT scan and on common density derived

measures of emphysema [17]. To correct for differences in inspiration level we

used an assumption of total lung mass preservation throughout the respiratory

cycle which was discussed previously in [82]. We propose to constrain the image

registration to preserve local and global mass of lungs during deformation and

adjust voxel intensity values with respect to local volume changes. A composition

of affine and multi-level free-form registration was applied to align the baseline

scan with the follow up and the obtained difference maps were analyzed for local

tissue loss. The main advantages of the proposed method are: (a) it is robust to

significant difference in total lung volume between baseline and follow-up scans;

(b) it is capable of estimating regional destruction of lung tissue.
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6.2 Method

6.2.1 Mass Preserving Image Registration

First baseline image was registered to the system of the coordinates of the follow

up image using the mass preserving image registration presented in Chapter 2.

Because experiments in this Chapter were conducted in the beginning of my PhD

study, the set-up of the registration framework here differs from the Chapter 2.

The essential differences are: regions outside of the lung fields were included in

the fixed and the moving image regions; a limited memory algorithm for bound

constrain optimization [111] was used to minimize the dissimilarity function; and

complete set of image voxels in the image was used in the optimization procedure.

Once the correspondence between the two images was obtained, baseline im-

age was deformed and intensities of the baseline image were adjusted with respect

to the local volume change measured from the determinant of Jacobian of the

transformation.

6.2.2 Measure of disease progression

We first subtracted the registered baseline image from the follow up, thus forming

an intensity difference image, where negative areas indicate local loss of lung

tissue and thus progression of emphysema. To reduce the effect of noise and

interpolation artifacts around vessel boundaries, the resulting difference maps

were filtered with a median filter of size 3 × 3 × 3 and masked with the dilated

vessel masks and segmented lung regions from both images.

We assumed only voxels x = (x, y, z) with intensity difference within the

interval (−500;−50) are disease-related. The reason for this is to remove artifacts

due to interpolation and inaccurate registration and reduce the influence of noise.

We compute an average density loss measure μ over overlapping lungs volume V ,

by summing the disease-related intensity differences, given as:

μ =
1

V

∑
ΩD

If (x)− Ib(T (x)), (6.1)

where the symbol ΩD = {x|If (x) − Ib(T (x)) ∈ (−500;−50)} denotes the set of

voxels with intensity difference within the (−500;−50) HU range.

6.3 Experiments and results

We evaluated the method on a set of 29 low dose CT image pairs collected from

the Danish Lung Cancer Screening Trial. The images are selected such that they

have a considerable difference in total lung volume (0.6± 0.5L) between baseline

and follow up scans. The in-plane resolution was 0.78×0.78 mm and the slice
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Figure 6.1: A difference image illustrating an example of mass-preserving image
registration, showing the deformed baseline image subtracted from the follow up
image. From left to right the mid-axial, coronal and sagittal slice is shown.

thickness was 1 mm. Image pairs have a time interval between baseline and

follow up of approximately one year. Of these, at baseline 11 subjects had no

COPD according to the GOLD guidelines [5], 5 were classified as having mild

COPD, and 3 as moderate (FEV1/FVC = 66± 10). At follow up, 5 subjects are

healthy, 11 have mild COPD and 3 have moderate COPD. 10 Image pairs were

collected with a 3 month interval, of these 9 subjects had no COPD and 1 had

mild COPD (FEV1/FVC = 74± 4).

To save computation time, the original CT lung scans were cropped according

to the segmented lungs before image registration. A gradient descent algorithm

was used for optimizing the parameters of the affine transform. The multi-level

B-Spline transform was optimized using the L-BFGS method [36]. The first

level was performed on a grid resolution of 3 × 3 × 3 grid points on the image

domain, the second level on a resolution of 6 × 6 × 6 grid points and the finest

level on a 12 × 12 × 12 or 2.5 × 2.5 × 2.5 cm3 grid. The first two levels of the

B-Spline transform were applied to smoothed and sub-sampled versions of the

images whereas the finest level was applied to the original images. The image

registration framework was implemented with ITK [69].

Figure 6.1 shows the result of described image registration technique for an

arbitrary subject. Differences in subject positioning within the CT scanner and

part of the changes in lung volume were corrected via affine registration. The

first level of the B-Spline transformation aligned global lung structures such as

the lobes and diaphragm. The second level performed on the same resolution

as pulmonary segments and adjusted internal lung deformations. Finally, the

finest level corrects for deformations in the subsegmental level. Figure 6.1 shows

clearly that the majority of internal lung structures is aligned with about 2-

3 voxels accuracy; only a few misalignments near the lung and bronchial tree

borders remain.

To verify the preservation of mass during the registration procedure, we com-

pute the lung mass for standard and mass-preserving registered images and com-

pare it with corresponding original image characteristics. The mean squared
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difference between the lung mass of the original baseline image and the regis-

tered image for standard image registration is 1.18 ·10−2kg, two times more than

for the proposed mass-preserving registration technique (5.09 · 10−3kg).

Examples of obtained local disease progression maps for four subjects with

various values of differences in total lung volume and LFT are shown in Figure 6.2.

The areas outside the lung and the vessel masks were excluded from the difference

maps. Representative axial slices were chosen close to the carina point.

(a) Patient with ΔTLV = 0.64L, mean FEV1/FVC = 69 and decrease in FEV1/FVC
= −9.3

(b) Patient with ΔTLV = 0.48L, mean FEV1/FVC = 68 and decrease in FEV1/FVC
= −7.5

(c) Patient with ΔTLV = 1.06L, mean FEV1/FVC = 65 and decrease in FEV1/FVC
= −11.2

(d) Patient with ΔTLV = 0.39L, mean FEV1/FVC = 69 and decrease in FEV1/FVC
= −0.3

Figure 6.2: Left most column shows an axial slice of a baseline scan; second col-
umn shows the most corresponding slice on the follow up scan with notable regions
of emphysema progression indicated by arrows; third column shows the corre-
sponding slice in difference image for the standard image registration technique;
most right column shows difference image for mass-preserving image registration.
The original scans were both thresholded at -910HU to reveal emphysematous
areas; the difference images were median filtered and viewed at intensity window:
0 to -200.
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Figure 6.3: Relationship between annual difference in FEV1, difference in RA-
910HU, and averaged mass loss in HU computed for the mass-preserving image
registration for a group with 1 year time interval.

The resulting measure of disease progression is correlated to changes in RA-

910HU and difference in FEV1 between baseline and follow up visits. Scattered

plots are shown in Figure 6.3 We expect a positive correlation between our mea-

sure of disease progression and annual difference in FEV1 but not perfect, since

this measure is known to vary substantially [14]. The correlation coefficient be-

tween annual difference in FEV1 and the registration based measure for stan-

dard registration ρdiffFEV1,μ = 0.1 (p = 0.69) and for mass-preserving registration

ρdiffFEV1,μ = 0.47 (p = 0.04). The correlation coefficient between RA-910HU and

registration based measurement for standard case ρRA-910,μ = 0.82 (p < 0.01)

and for mass-preserving registration ρRA-910,μ = 0.73 (p < 0.01). The correlation

coefficient between RA-910HU and annual difference in FEV1 ρdiffFEV1,RA-910 =

0.04 (p = 0.87).

To estimate influence of the inspiration level for the standard and mass-

preserving image registration techniques we computed the correlation coefficients

between difference in total lung volume and proposed disease progression measure

for subjects scanned with 3 month interval. The correlation coefficient between

the difference in total lung volume and the registration based measure for stan-

dard registration ρdiffTV,μ = 0.92 (p < 0.01) and for mass-preserving registration

ρdiffTV,μ = 0.51 (p = 0.14).

6.4 Discussion and Conclusions

The proposed image registration method performed well for cases with consider-

able total difference in lung volume between baseline and follow up scans, both

mass-preserving and standard registration generally align internal lung structures

within 2mm.

The proposed mass-preserving image registration maintained the total mass

of the lungs better than a standard registration approach. Remaining deviation

between the original and registered image mass occurred due to natural limita-

tions of the image registration technique such as the smoothing effect caused by
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linear interpolation and B-spline transformation.

The first three subjects in Figure 6.2 had a substantial increase in total lung

volume from baseline to follow up, causing RA-910HU as well as standard regis-

tration to overestimate the changes in emphysema. The mass-preserving differ-

ence maps appear less dark in areas where there is no apparent disease progression

in the original images. The darker areas in the mass-preserving difference maps

correspond to localized areas of local emphysema progression clearly visible in

the original images, while the difference maps based on standard image regis-

tration suggest a more diffuse tissue loss in the entire lung region. In the fourth

case, where the difference in total lung volume was relatively small, both methods

performed similar.

Comparison of the average local tissue loss with RA-910HU revealed a good,

but not perfect correlation which indicates that the two measures may carry

different information. Although we found low correlations with annual difference

in FEV1 in this small sample, the measure based on mass preserving registration

does seem to agree better with annual difference in FEV1 than do RA-910 and

local progression measured using standard registration. This suggests that the

proposed method may be more sensitive to subtle changes in disease status. It

should be noted that the annual loss of tissue in most subjects with emphysema

is very low, especially among normal smokers and mild COPD subjects, which

constituted the majority of our test population. In future work we will investigate

the proposed measures in a larger sample and with longer follow-up times.

To conclude, we propose an image registration based method for quantifica-

tion of COPD disease progression which can estimate local destruction of lungs

tissue and is less effected by differences in inspiration level than currently avail-

able methods.





Chapter 7

Early Detection of Emphysema

Progression

None of us is as smart as all of us.

— japanese proverb.

This chapter is based on the publication ”Early Detection of Emphysema Pro-

gression”, Gorbunova V., Jasobs S., Lo P., Dirksen A., Nielsen M., Bab-Hadiashar

A., de Bruijne M., to appear in proceedings of Medical Image Computing and

Computer Assisted Intervention Conference in 2010.

7.1 Introduction

Emphysema is one of the most common chronic obstructive pulmonary dis-

eases [5]. It is characterized by irreversible destruction of the lung parenchyma

and usually caused by smoking [112].

In clinical practice, the severity of emphysema is commonly assessed using dif-

ferent lung function tests. Along with the lung function tests chest CT scans has

been used for diagnosis of emphysema and detection of emphysema progression.

The standard CT density scores, such as relative area (RA) below certain thresh-

old, e.g. -950 HU or -910 HU, and the n-th percentile density (nPD) of the lungs,

were applied to estimate the emphysema progression [17, 16]. CT densitometry

81
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scores have shown to be more sensitive measures of emphysema progression than

lung function tests [16].

One of the major drawbacks of the standard CT density scores is their depen-

dency on the inspiratory level [31, 29]. Another important drawback is the lack

of sensitivity, since the emphysema progression could only be measured once the

intensity of lung tissue decreases below the standard threshold. Texture analysis

may resolve this problems. This issue was investigated in a recent study, where a

texture-based classification approach was proposed as alternative to the standard

emphysema scores [113]. The results showed that the texture-based approach

outperforms the RA scores in differentiating diseased from healthy subjects.

Several studies proposed how to estimate disease progression from longitu-

dinal CT scans [31, 29]. Authors proposed a method where CT scans are first

registered to a common framework and then emphysema progression is estimated

based on the average intensity decrease between the two successive scans.

In this chapter, we propose a more general way of assessing emphysema pro-

gression between a pair of images. Firstly, images are registered to a common sys-

tem of coordinates. Secondly, local image histograms at a given location are ob-

tained and dissimilarity measures between the histograms are computed. Thirdly,

a measure of progression at the given location is derived from the dissimilarity

measures. Finally, an overall disease progression score between the two images

is computed. In this chapter, the proposed method is applied to detect emphy-

sema progression in a longitudinal study of patients with Alpha-1 antitrypsin

deficiency [16].

7.2 Method

In this section we describe in details the workflow of the algorithm. The first

subsection 7.2.1 briefly recalls the image registration method that is applied to es-

tablish the spatial correspondence between images. The following subsection 7.2.2

presents how local dissimilarities are constructed. The last subsection 7.2.4 de-

scribes how the local disease progression score on subject level is derived from

the set of local dissimilarity measures.

7.2.1 Registration

The image registration framework presented in Chapter 2 is used to register

the follow up images I2..5 to a system of coordinates of the baseline image I1.

The framework starts with a preprocessing step, where the lung fields are ex-

tracted from the CT scans and the background value is set to 0 HU. First, an

affine transform is applied to correct for global deformations. Then a series of

multi-resolution B-Spline transforms with decreasing grid resolution is applied to
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the affinely registered images. Each transform is optimized using the stochastic

gradient descent method.

Finally, the moving image is deformed based on the obtained deformation

field. To minimize the intensity differences in the fixed and moving images caused

by the difference in inspiratory level, the intensities of the deformed image are

adjusted with respect to the Jacobian determinant of the deformation field as

proposed in Chapter 2.

7.2.2 Local Image Features

The registration algorithm results in dense spatial correspondence, but small

misregistrations in the order of 1 mm remain. To minimize the impact of the

misregistration, we propose to compare points in the different images using a

simplified version of locally orderless images (LOI) [114], where the inner, outer

and tonal scales where fixed. A local histogram is constructed using a weighted

window function centered around a point x0. Given an image I(x0, σ) that is

observed under the fixed inner scale σ, the LOI at a point x0 is defined as follows:

hI(i;x0, α) =
1

(
√
2πα)3

∫ x

0
A(x,x0, α)e

−(I(x,σ)−i)2dx, (7.1)

where α is the outer scale, which corresponds to the size of the window function

A(x,x0, α) = e
(x−x0)·(x−x0)

2α2 and i is an intensity value.

In order to capture different features, in addition to the original image I,

LOIs are also computed from the blurred image and the gradient magnitude.

The feature images are all observed under the same scale, which is achieved by

blurring the images using a Gaussian kernel with a standard deviation of σ.

7.2.3 Dissimilarity Measures

Given the two histograms h1(i;x) and ht(i;x) obtained in the same anatomical

point x from the two images I1 and It respectively, we compute a set of dissimilar-

ity measures D(I1, It)(x) = {di(h1(i;x), ht(i;x))} between the histograms. Later

in text we denote the histograms using shorter notations h1 and ht.

In this paper, we use two classes of dissimilarity measures. First class consists

of L1-norm and Kullback-Leibler divergence between the two histograms d1 =

||h1 − ht||L1 , d2 = ||h1 − ht||L2 , d3 = DKL(h1, ht). In the second class, the

dissimilarity between the local histograms is computed as difference between the

individual measures of each of the histograms di = mi(h1)−mi(ht) [115]: the first

four moments, the mode, the energy; and the maximum of difference between the

cumulative distribution functions of the histograms dn = max(cdf(h1)− cdf(ht)).
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7.2.4 Disease Progression Measure

Since LOIs have a certain region of influence, it is not required to compare each

and every point in the images. Therefore, a sparse representation of the image

is used for comparison instead, where comparison is only performed on a fixed

number of regions, Ns, sampled randomly within the lung regions.

For every sample xi we compute the set of dissimilarity measures DI =

D(I1, It) between the images I1 and It, and the filtered versions of the images

DG = D(I1,σ, It,σ), DGM = D(|∇I1,σ|, |∇It,σ |). The subscripts I,G,GM denote

the original image and response to the Gaussian and Gaussian magnitude filters

respectively. Therefore dissimilarity between the two images at the location xi is

defined by the dissimilarity vector �D1,t = {DI ,DG,DGM}1,t.
The dissimilarity measures from the first class assess the distance between the

corresponding local histograms. The dissimilarity measures from the second class

assess the change in the histogram characteristics. If two histograms differ, dis-

similarity measures from the first class are strictly positive while the dissimilarity

measures from the second class result in both positive and negative values. We

are interested in local changes regardless of the sign therefore only the magnitude

of the dissimilarity measures is considered. Finally, the measure of local changes

p1,t(xi) at the sample xi between the images I1 to It is computed as the L1-norm

of the dissimilarity vector, as follow, p1,t(xi) = || �D1,t||L1 .

7.3 Experiments

7.3.1 Data

We conducted experiments on subjects with Alpha 1-antitrypsin deficiency

monitored during a period of 30 months. A total of 27 subjects were included

into the experiments. For each subject low-dose CT images were acquired at five

time points: at baseline, after 3, after 12, after 21, and after 24 or 30 months.

Out of 27 subjects 11 were scanned after 24 months. The scans were acquired

using a tube voltage of 140 kVp, exposure 40 mAs, in-plane resolution 0.78 mm

and slice thickness 2 mm without overlap.

Lung function tests were acquired along with the CT scans, of which we used

the forced expiratory volume in 1 second (FEV1). At baseline all the patients

performed lung function tests and average FEV1 for all the subjects was 1.54 ±
0.68 L, and TLC was 8.02 ± 1.57 L, the ratio FEV1/TLC was 20.27 ± 10.38 %.

For the last visit there are 2 missing lung function tests, and the average over the

remaining 25 subjects is FEV1 1.29±0.71L, TLC 7.45±2.51 and ratio FEV1/TLC

17.93 ± 9.04 %.
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7.3.2 Measuring Local Emphysema Progression

The four follow up CT scans I2, I3, I4, I5 were first registered to the baseline

image I1. The segmented lung fields from the baseline image I1 were eroded with

a cubic structuring element of size of 3 × 3 × 3 voxels and Ns = 2000 positions

were randomly sampled from the eroded lung fields. In our experiments we chose

the Gaussian scale of the filters σ = 1 voxel. The radius of the aperture function

A was set to α = 20 voxels, and the weights were truncated at 3α radius. For

the intensity-based histograms the bin width was set to 1 HU resulting in 1000

bins in total in the intensity range from −1000 to 0 HU. For the histograms of

the filtered images, the number of bins was set to 1000 and the bin edges were

placed uniformly covering the full range of filter responses.

Within a 3 month period changes are expected to be relatively small, there-

fore the dissimilarities observed in this period reflects mostly image dissimilarity

caused by misregistration and interpolation. From these pairs of images we ob-

tained the mean and the standard deviation of the dissimilarity vector �D1,2.

Further we normalized all the dissimilarity vectors �D1,t=2,3,4,5 with respect to the

obtained mean and standard deviation and then computed the corresponding

progression measures p1,t=2,3,4,5.

7.4 Results

Table 7.1 reports the summary of the conventional emphysema progression

measurements, the decline in FEV1 (ΔFEV1 in L) and increase of relative area

below the 950HU(ΔRA950 in [%]). The conventional measures were compared

with the proposed feature-based disease progression measures. Disease progres-

sion measure (PM) on a subject level was computed as the average of dissimilarity

measures for all spatial locations. We tested the complete set of dissimilarities

(PM (all)); only Kullback-Leibler divergence between the local histograms of the

smoothed images as the local dissimilarity measures (PM (KL)); and only local

increase in RA950HU (PM (locΔRA950)). Table 7.1 presents the average disease

progression measures for all consecutive follow up visits. A time trend analysis

was performed for the disease progression measurements using a linear mixed

model with the time between the baseline and a follow up visit as the fixed effect.

For the FEV1 we did not conducted time trend analysis because 9 out of 27 sub-

jects had missing FEV1 measurement at least at one of the visits. The t-values

are reported in the Table 7.1. Additionally, correlation coefficients between the

progression measured at the last visit assessed by either the proposed methods or

by the conventional emphysema score or the lung function are presented in the

Table 7.2.

Figure 7.1 shows samples locations, indicated with circles, overlaying on the

2D-slices extracted from the baseline and the registered follow up images. Radius
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Table 7.1: Summary of the disease progression measures. Left part presents the
average of the progression measures over all subjects for the follow up visits and
the t-value of the time-trend analysis.

Average Progression Time-trend
# mnths 3 12 21 30(24) t-value

ΔFEV1 -0.03 0.01 -0.01 -0.13 NA
ΔRA950 -1.27 0.08 1.33 1.91 6.37
PM (all) 0.75 0.76 0.89 0.93 3.09
PM (KL) 0.25 0.27 0.30 0.31 7.80
PM (locΔRA950) 0.0 0.46 0.77 1.03 8.80

Table 7.2: The correlation coefficients between the progression measures obtained
from the last visit with the corresponding p-values in brackets.

Average Progression Correlation coefficients
at 30(24) months ΔRA950 ΔFEV1

ΔFEV1

ΔRA950 -0.18(0.48)
PM (all) 0.51(0.007) 0.11(0.59)
PM (KL) 0.45(0.02) -0.18(0.39)
PM (locΔRA950) 0.87(< 0.001) 0.11(0.59)

Table 7.3: Comparison of the local dissimilarity measures. Table presents the
overall percentage of samples with dissimilarity measure above the threshold T ;
in brackets the relative percentage of sampled which increased or preserved the
dissimilarity measure above the threshold in all the successive follow up scans.

Overall percentage [%] (confirmed [%])
# mnths 3 12 21 30(24)

PM (all) 5.24(41.61) 5.68(61.48) 9.01(75.87) 10.49
PM (KL) 1.19(38.73) 1.75(56.07) 3.72(78.12) 4.93
PM (locΔRA950) 2.86(9.07) 4.38(33.94) 8.88(60.54) 11.48

of a circle in the follow up images is proportional to the dissimilarity measure

computed from the complete set of dissimilarities. Each row displays different

subject.

In order to investigate local consistency of the local disease progression mea-

sures, we tested the simple hypothesis that samples with dissimilarity measure

above a threshold T at the previous follow up visit should not decrease the dis-

similarity measure in the consecutive visits. The threshold on the dissimilarity

measure was selected based on the 25th- and 75th- percentiles, p25 and p75, of the

dissimilarity measures after the 3 months follow up visit, T = p75+1.5(p75−p25),

which corresponds to ∼ 2.7 standard deviations. The total number of samples

with dissimilarity above the threshold T and the relative percentage of those sam-
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Figure 7.1: Rows show mean intensity projection over a stack of 9 sequen-
tial slices, selected from different volumetric images. The left most column shows
slices extracted from the baseline image, the remaining columns show correspond-
ing slices extracted from the registered 3, 12, 21 and 30(24) months follow up
visits, respectively from left to right. All the slices are displayed in the intensity
range [-1000,-900]HU. Locations of the random samples (blue and red markers)
in the corresponding stack were projected to the image slice. In the follow up
images the marker size is proportional to the local dissimilarity measure obtained
from the complete set of dissimilarities.

ples that increase or preserve the same dissimilarity measure in all the successive

visits is reported in the Table 7.3.

Examples of the samples with disease progression measure above the threshold

T are presented in the Figure 7.2. Plot in Figure 7.2a displays a subject where

most of the samples with the large dissimilarity measure after 3 months were

confirmed with all the consecutive follow up scans. Plot in Figure 7.2b displays

a subject where the samples did not show consistent dissimilarity measure over

time.

7.5 Discussion

In this chapter we presented a framework for detection of local emphysema

progression. The overall disease progression measure showed significant correla-
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(a) (b)

Figure 7.2: All selected random samples marked in blue color. Locations with
the significantly large dissimilarity measure obtained from the complete set of
features at the 3, 12, 21, 30(24) months follow up visits are indicated in green,
yellow, orange and red markers respectively.

tion (p < 0.01) with increase in the standard CT score, the relative area below

−950HU, between the baseline and the last follow up visit. The correlation with

the decline in FEV1 was not significant for neither the proposed measures nor

for the standard CT score. In our dataset the average FEV1 at baseline was very

low, indicating the severity of emphysema already at the baseline visit. This can

explain the lack of sensitivity to disease progression of the FEV1 measurement.

We analyzed time trend based on the conventional emphysema measurements

and the proposed dissimilarity-based measurements. The time trend was ap-

proximately equally significant for the conventional RA950 disease progression

measure, local increase in RA950 and the measure derived from the Kullback-

Leibler divergence between local histograms of the smoothed images. The time

trend was less significant for the measurement obtained from the complete set of

dissimilarities. One of the possible explanations could be sensitivity of the partic-

ular dissimilarity measure to the change in image appearance not related to the

emphysema progression, for example inflammation or change in local topology

like collapsing or appearing bullae. Another possible explanation could be in the

construction of the overall combined disease progression score from the complete

vector of dissimilarities.

The current drawback of the proposed method is the simplification of the

complete dissimilarity vector by its norm. The emphysema is usually charac-

terized by the destruction of the lung tissue thus decreasing image intensities,

while inflammation should result in increase of image intensities. In the current

framework the two phenomena could result in equal dissimilarity measures. The

specific dissimilarity measures such as difference in means of the local histograms

is capable of differentiating between the two processes, therefore a careful inves-

tigation of the dissimilarity measures should be done. Furthermore an automatic
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classification approach could be adapted for this problem, where samples from

the image pairs with the 3 months follow up scan represent stable group while

samples from the image pairs with the 30(24) months follow up scan represents

the progressed group.

To conclude, we proposed a method for estimating local disease progression.

Results suggested that emphysema progression can be detected before the tissue

intensity decreases below the standard CT threshold of -950HU.

7.6 Appendix

This section presents four interesting cases in our dataset. For each case the figure

displays snap shots of the baseline and the deformed follow up images and the

table presets lung function test (FEV1), global emphysema index (RA950), and

averaged local dissimilarity measures computed from the complete set of features

(PM (all)); from Kullback-Leibler divergence of the smoothed image histograms

(PM (KL)); and local emphysema index, (PM (locΔRA950)).

Each row in the top figure shows mean intensity projection over a stack of 9

sequential slices, uniformly sampled from the volumetric image. The left most

column shows slices extracted from the baseline image, the remaining columns

show corresponding slices extracted from the registered 3, 12, 21 and 30(24)

months follow up visits, respectively from left to right. All the slices are displayed

in the intensity range [-1000,-900]HU. In the bottom part of the figure, three plots

show locations of all random samples (blue color) and locations that were marked

as outliers based on the progression measure computed from the complete set of

features (the left plot); from the Kullback-Leibler divergence of the smoothed

image histograms (the middle plot); and from the local area below -950HU (the

right plot). Locations marked as outliers in the 3, 12, 21 and 30(24) months

follow ups are indicated in green, yellow, orange and red colors respectively.
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Case A 3mnths 12mnths 21mnths 30(24)mnths

RA950 44.15 42.60 40.96 45.13 46.22
FEV1 1.41 1.50 1.57 1.44 1.36

PM (all) 0.96 1.10 1.13 1.47
PM (KL) 0.70 0.78 0.93 1.16

PM (locΔRA950) -0.18 -0.62 0.45 0.91

(a)

(b) (c) (d)
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Case B 3mnths 12mnths 21mnths 30(24)mnths

RA950 40.52 34.24 36.80 37.90 43.69
FEV1 1.51 1.43 1.38 1.36 1.13

PM (all) 0.99 0.97 0.95 0.77
PM (KL) 0.67 0.75 0.82 0.89

PM (locΔRA950) -1.18 -0.38 -0.27 0.43

(a)

(b) (c) (d)
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Case C 3mnths 12mnths 21mnths 30(24)mnths

RA950 62.00 59.82 61.57 70.50 69.94
FEV1 1.08 1.03 1.06 NA NA

PM (all) 1.08 1.09 3.47 3.49
PM (KL) 0.84 0.92 1.60 1.64

PM (locΔRA950) -0.04 0.40 2.73 2.95

(a)

(b) (c) (d)
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Case D 3mnths 12mnths 21mnths 30(24)mnths

RA950 28.33 24.46 30.30 30.92 31.29
FEV1 2.64 2.64 2.57 2.48 2.40

PM (all) 0.78 0.68 0.79 0.86
PM (KL) 0.46 0.60 0.61 0.66

PM (locΔRA950) -0.73 1.04 1.16 1.42

(a)

(b) (c) (d)





Chapter 8

Summary and Discussion

Science is always wrong. It never solves a problem

without creating ten more.

— George Bernard Shaw

In this thesis, the problem of image registration for monitoring disease pro-

gression was investigated. Provided the point correspondence between the two

longitudinal CT lung scans, the changes between the scans is revealed in the dif-

ference image. Image registration is a powerful tool and capable of establishing

point correspondence with an accuracy of just 1 voxel. For monitoring disease

progression such an accurate registration could be unfavourable, because then the

deformed image will appear exactly the same as the fixed image and the differ-

ence between the two will be completely eliminated. An example illustrating the

performance of the registration method was presented in the Chapter 1, where

bulla expanded over the time and bullas borders was not matched. The change

in bulla size was apparent in the difference image.

We started with a conventional image registration method, where multi-level

B-Spline transform function and sum of squared differences dissimilarity function

were used. The size of the B-Spline grids were conditioned upon the scale of lung

lobes, segments and sub-segments. Human lungs contains 5 lobes and 18 lung

segments. With an average lung volume of 5 liters, the linear scale of a lung lobe

is approximately 10 cm and the linear scale of a lung segment is approximately

6.5 cm. We wanted to establish an accurate correspondence but not to overfit

the images and eliminate the difference between the two images, thus size of the

smallest B-Spline grid was about 2.5 cm. Whereas size of the smallest B-Spline

95
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grid in our registration algorithm was generally larger than the size used in other

B-Spline-based registration algorithms, the accuracy of the proposed registration

method was comparable with the existing registration algorithms. Authors in

[38, 50, 109] reported the size of the smallest B-Spline grid of approximately 8

voxels; K. Murphy et al. [78] reported 10 mm; Z. Wu et al. [48] reported the size

of 50 mm.

Registration of lung CT scans is a complex problem, because lung appear-

ance significantly depends on the inspiration level. Although subjects in this

study were scanned at the maximum inspiration level, the variation in lung vol-

ume between the longitudinal scans was up to one liter leading to the complex

and non-homogeneous deformations of lungs. Additional inspiration resulted in

lower intensities of lung parenchyma in CT scans. This could be confused with

the emphysema progression since emphysema is a destruction of lung tissue and

also results in intensity decrease of lung parenchyma. The change in inspiration

affects all the conventional densitometric measurements, e.g., relative area below

950HU, 15th percentile density and average lung density thus making it unreliable

measures of emphysema progression. We proposed a novel solution - the mass

preserving model of lungs, where lung density is inversely proportional to the local

volume change in lungs. This model allows to compensate the regional change in

intensity related to the regional change in the inspiration level. In Chapter 2 we

investigated the mass preserving model and showed that incorporation mass pre-

serving model directly into the image registration improves registration accuracy.

Recently, the mass preserving model of lungs was also studied by other research

groups and also showed better registration accuracy and more feasible deforma-

tions of lungs [38, 116, 56, 107]. The recent study [107] showed correlation of 0.9

between the lung ventilation estimated from the Xe-CT images and estimated

from the mass preserving image registration. The mass preserving model was

successfully applied in pilot experiments on monitoring emphysema progression

presented in the Chapter 6 and in [31].

After spending numerous hours looking at the registration results, I was con-

vinced that intensity-based registration could not register peripheral area ac-

curately. Therefore we developed a feature-based algorithm dedicated to match

vessels centerlines in Chapter 3. The algorithm was based on the existing current-

based registration where no point correspondence was required. Question of how

to combine information from the current-based registration in Chapter 3 and

the intensity-based registration in Chapter 2 was addressed in Chapter 4. We

proposed a novel registration method, where intensity-based registration was con-

strained with the deformations of the vessel centerlines obtained from the current-

based registration. The important result was that by incorporating information

from the feature-based registration into the intensity-based registration we were

able to improve the accuracy of the registration using the same transformation
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model. The recent study [107] showed that incorporating dissimilarity between

vesselness filter responses along with the dissimilarity between the original im-

ages significantly improves registration accuracy. The downside of the proposed

approach was its computational complexity. Therefore we returned to the image

registration method from Chapter 2 in the following experiments.

Finally, we revisited the emphysema progression problem and this time we de-

veloped a framework which compensates for small mis-registrations. Alignment

of longitudinal images was a first step towards analysis of regional emphysema

progression. Although image registration provides point-to-point correspondence

with accuracy of few millimeters, the direct point-to-point comparison of lung

CT images has critical drawbacks. First, intensity of lung CT image only par-

tially related to the true density of the tissue, because of the noise and partial

volume effect. Secondly, different regions in lungs are registered with different ac-

curacy, therefore in regions with lower registration accuracy direct point-to-point

comparison is affected more by mis-registrations. Instead of the direct point-

to-point comparison of image intensities, we proposed to adapt the concept of

locally orderless images. Local image histograms at the corresponding locations

in the baseline and deformed follow up images were compared by means of sev-

eral dissimilarity measures. Along with the original images, we computed local

histograms from the filtered versions of the images, e.g., gaussian blur and gra-

dient magnitude filters. Dissimilarity measures included both distance measure

between histograms and differences in individual measurements, e.g., moments of

histograms. This framework is both robust to noise presented in the images and

to small mis-registrations. Experiments showed promising results however more

detailed investigation should be performed.

To conclude, four main contributions were made in this thesis:

• mass preserving registration was proposed and justified on a large amount

of data;

• current-based registration framework was adapted for registering lung CT

scans;

• combined feature-based and intensity-based registration method was pro-

posed and validated via manually annotated landmarks;

• framework for monitoring emphysema progression was developed and tested

on patients with Alpha-1 Antitrypsin Deficiency.

8.1 Discussion

The proposed mass preserving model is a simple model, where density of lung

tissue is assumed to be inverse proportionally to the volume. With the mass



98 CHAPTER 8. SUMMARY AND DISCUSSION

preserving model, intensities are linearly transformed with the fixed point at the

intensity of air, -1000HU. Generally, if we observe uniform expansion of lungs, we

believe that for lung parechyma mass preservation is correct, but for expanding

vessel the mass preservation is not applicable. If a vessel expands/contracts inten-

sity or density should remain constant. This leads to a second fixed point in the

intensity adjustment model at 0 HU. Since there is no linear intensity adjustment

model with two fixed points, e.g., at the value -1000HU and 0HU, the intensity

adjustment should be applied locally only for voxels from lung parenchyma.

If an image registration algorithm provides feasible deformations of lungs

caused by additional inspiration, the mass preserving model will then compen-

sate lung tissue density change imposed by the deformations. The physiologically

correct and plausible deformations are critical issues for the mass preserving lung

model. Recent study by Kabus S. et al. [24], compared deformation fields of

several registration algorithms. Even with comparable registration accuracy, dif-

ferent algorithms resulted in significantly different deformation fields. Therefore

a thorough inspection of the deformation field is needed before applying mass

preserving intensity correction.

Another question that should be investigated is the range of lung volume

changes where mass preservation holds. For example, during tidal breathing the

range of possible lung volumes is significantly smaller than variations in lung

volume from maximum expiration to maximum inspiration. In those extreme

cases preservation of lung mass may not hold. Another case when inflammation

is observed only in one of the scans, the mass preserving model of lungs does not

hold. In those cases a more advanced model of lungs should be developed.

An interesting research topic addressed in this thesis was the problem of moni-

toring disease progression. With the proposed local image comparison framework

several questions could be further investigated, e.g., how the emphysema progres-

sion in a region affects the surrounding regions and how we could predict disease

development.

An interesting question that could be investigated in the future, is local anal-

ysis of deformation fields. Assuming that registration provides physiologically

correct deformations of lungs, one could investigate if there is a difference in

the deformations of healthy and diseased tissues. Since emphysema is character-

ized by decrease of lung tissue elasticity this phenomena may be reflected in the

deformation fields.

Several research questions emerged along the past three years were not inves-

tigated in the thesis. With the rapidly increasing number of longitudinal lung CT

studies and many research groups working on the topic, those questions definitely

will be solved in foreseeable future.
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