Numeral systems & data structures

Jyrki Katajainen1)

Amr Elmasry2) and Claus Jensen3)

1) University of Copenhagen
2) Max-Planck-Institut für Informatik
3) The Royal Library
Can you see the problem?

The decimal numeral system was introduced to the west through Muhammad ibn Mūsā al-Khwārizmī’s book [al-Khwārizmī 825].

\[
\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\downarrow & \downarrow \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
\downarrow & \downarrow \\
+ & & & & & & & & & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

The binary numeral system has the same problem.
Why is this a problem?

An addition of two bits can be a heavy operation!
Goal

Let \(d \) be a positive integer.

\[\text{rep}(d) : \langle d_0, d_1, \ldots, d_{k-1} \rangle \quad (d_0 \text{ is the least significant digit}) \]

\[\text{value}(d) : \sum_{i=0}^{k-1} d_i \times w_i \quad (\text{in our case } w_i = 2^i) \]

Develop a numeral system for which

- \(\max \{d_i \mid i \in \{0, 1, \ldots, k - 1\} \} \) is as small as possible for all \(d \);
- an increment at any position \(i \) (\(\text{increment}(d, i) \)) generates as few digit changes as possible in the worst case; and
- a decrement at any position \(i \) (\(\text{decrement}(d, i) \)) generates as few digit changes as possible in the worst case.
Strictly-regular system

Digits: \(d_i \in \{0, 1, 2\} \)

Strict regularity: The sequence from the least-significant to the most-significant digit is of the form \((1^+ \mid 01^2)^* (\varepsilon \mid 01^+)\).

Extreme digits: 0 and 2.

Which of the following representations are strictly regular?

a) 1111111

b) 11011211101

c) 1201

d) 1110101
Increment example

Notation: Digit d_i to be increased is displayed in **red**. d_a is the first extreme digit after d_i, k is a positive integer, α denotes any combination of 1^+ and 01^*2 blocks, and ω any combination of 1^+ and 01^*2 blocks followed by at most one 01^+ block.

Initial configuration: $\alpha 01^*11^*21^k\omega$

Action:
- $d_i \leftarrow 2$
- $d_a \leftarrow d_a - 2$
- $d_{a+1} \leftarrow d_{a+1} + 1$

Final configuration: $\alpha 01^*21^021^k\omega$
General algorithm

Subroutine \textit{fix-carry}(d, i): Assert that $d_i \geq 2$. Perform $d_i \leftarrow d_i - 2$ and $d_{i+1} \leftarrow d_{i+1} + 1$.

Algorithm \textit{increment}(d, i):

1: \texttt{++d}_i
2: Let d_b be the first extreme digit before d_i, $d_b \in \{0, 2, \text{undefined}\}$
3: Let d_a be the first extreme digit after d_i, $d_a \in \{0, 2, \text{undefined}\}$
4: \textbf{if} $d_i = 3$ \textbf{or} ($d_i = 2$ \textbf{and} $d_b \neq 0$)
5: \textit{fix-carry}(d, i)
6: \textbf{else if} $d_a = 2$
7: \textit{fix-carry}(d, a)
One of our results

Theorem: Given a strictly-regular representation of d, $\text{increment}(d,i)$ and $\text{decrement}(d,i)$ incur at most three digit changes.

Proof: By a case analysis. For $\text{increment}(d,i)$ we must consider 19 cases and for $\text{decrement}(d,i)$ 15 cases.
Some related systems

Regular system: A regular sequence is of the form \((0 \mid 1 \mid 01*2)^* \). Allows increments at any position with \(O(1) \) digit changes [Clancy & Knuth 1977].

Extended regular system: \(d_i \in \{0, 1, 2, 3\} \). Every 3 is preceded by at least one \(\{0, 1\} \) before the next 3 or running out of digits, and every 0 is preceded by at least one \(\{2, 3\} \) before the next 0 or running out of digits. Allows increments and decrements at any position with \(O(1) \) digit changes [Clancy & Knuth 1977; Kaplan & Tarjan 1996].
Full repertoire of operations

increment(d, i): Assert that $i \in \{0, 1, \ldots, r\}$. Perform $+d_i$ resulting in d', i.e. $\text{value}(d') = \text{value}(d) + w_i$. Make d' valid without changing its value.

decrement(d, i): Assert that $i \in \{0, 1, \ldots, r - 1\}$. Perform $-d_i$ resulting in d', i.e. $\text{value}(d') = \text{value}(d) - w_i$. Make d' valid without changing its value.

cut(d, i): Cut $\text{rep}(d)$ into two valid sequences having the same value as the numbers corresponding to $\langle d_0, d_1, \ldots, d_{i-1} \rangle$ and $\langle d_i, d_{i+1}, \ldots, d_{r-1} \rangle$.

concatenate(d, d'): Concatenate $\text{rep}(d)$ and $\text{rep}(d')$ into one valid sequence that has the same value as $\langle d_0, d_1, \ldots, d_{r-1}, d'_0, d'_1, \ldots, d'_{r-1} \rangle$.

add(d, d'): Construct a valid sequence d'' such that $\text{value}(d'') = \text{value}(d) + \text{value}(d')$.
Conclusions

- We got the strictly-regular system from God; it was not invented by us.
- It is still open whether the system can be extended for ternary numbers ($w_i = 3^i$).
- Also, it is open whether there exists an equally economical system that allows increments and decrements in $O(1)$ worst-case time (we talked about the number of digit changes, not actual running time).
Further reading
