Basic Shortest Path Algorithms

DIKU Summer School on Shortest Paths

Andrew V. Goldberg
Microsoft Research
Silicon Valley

http://research.microsoft.com/users/goldberg
Everything should be made as simple as possible, but not simpler
Shortest Path Problem

Variants

- Point to point, single source, all pairs.
- Nonnegative and arbitrary arc lengths.
- Integer lengths, word RAM model.
- Static, dynamic graphs, dynamic (arrival-dependent) lengths.
- Directed and undirected.

Unless mentioned otherwise, study directed graphs.

- Nonnegative len. undirected problem = symmetric directed.
- General undirected problem complicated (matching).
Single-Source Shortest Paths (SSSP) problem:

Input: Digraph $G = (V, A)$, $\ell : A \rightarrow \mathbb{R}$, source $s \in V$.
Goal: Find shortest paths and distances from s to all vertices.

Special case: Nonnegative lengths (NSSSP).

W.l.g. assume all vertices reachable from s.
(In linear time can find unreachable vertices.)

One of the most fundamental problems:

• A point-to-point problem is no harder.

• n SSSP problems give all pairs problem.
 (In fact, one SSSP and $n-1$ NSSSPs.)
Time Bounds

Bounds/currently best for some parameters

<table>
<thead>
<tr>
<th>year</th>
<th>bound</th>
<th>due to</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955</td>
<td>$O(n^4)$</td>
<td>Shimbel</td>
<td>$n =</td>
</tr>
<tr>
<td>1958</td>
<td>$O(nm)$</td>
<td>Bellman, Ford, Moore</td>
<td>$m =</td>
</tr>
<tr>
<td>1983</td>
<td>$O(n^{3/4}m \log U)$</td>
<td>Gabow</td>
<td>ℓ int. in $[-U,U]$</td>
</tr>
<tr>
<td>1989</td>
<td>$O(\sqrt{nm \log(nU)})$</td>
<td>Gabow & Tarjan</td>
<td>ℓ int. in $[-N,\infty)$</td>
</tr>
<tr>
<td>1993</td>
<td>$O(\sqrt{nm \log N})$</td>
<td>Goldberg</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$\tilde{O}(n^wU)$</td>
<td>Sankowski, Yuster & Zwick</td>
<td>$w \approx 2.38$ (matrix mult. exp.)</td>
</tr>
</tbody>
</table>

cover $O(nm)$ and $O(\sqrt{nm \log N})$ results.

Shortest path algorithms are 50 years old!
General Lengths: Outline

- Structural results.
- Scanning method.
- Negative cycle detection.
- Bellman-Ford-Moore (BFM) algorithm.
- Practical relatives of BFM.
- The scaling algorithm.
Definitions and Notation

- $G = (V, A)$, $n = |V|$, $m = |A|$, connected implies $n = O(m)$.
- $\ell : A \rightarrow \mathbb{R}$ is the length function.
 Sometimes integer, with range $[-U, U]$ or $[-N, \infty)$.
- $\text{dist}(v, w)$ denotes distance from v to w.
 dist_ℓ if the length function is ambiguous.
- $d(v)$ is the potential of v.
- Reduced cost: $\ell_d(v, w) = \ell(v, w) + d(v) - d(w)$.
- SSSP is feasible iff the graph has no negative cycles.
Potential Transformation

Replace \(\ell \) by \(\ell_d \).

Lemma (reduced cost of a path): For \(P = (v_1, \ldots, v_k) \),
\[
\ell_d(P) = \ell(P) + d(v_1) - d(v_k).
\]

Proof: Recall \(\ell_d(v_i, v_{i+1}) = \ell(v_i, v_{i+1}) + d(v_i) - d(v_{i+1}) \).

Corollary: Cycle cost unchanged.

Corollary: For a fixed \(s, t \) pair, all \(s-t \) path lengths change by the same amount, \(d(s) - d(t) \).

Equivalence Theorem: For any \(d : V \to \mathbb{R} \), \(\ell \) and \(\ell_d \) define equivalent problems.

Feasibility Condition: The problem is feasible iff
\[
\exists d : \forall (v, w) \in A, \ell_d(v, w) \geq 0 \text{ (feasible } d)\).
\]

Proof: Only if: no negative cycles (for \(\ell_d \) and thus for \(\ell \)).

If: negative cycle implies no feasible \(d \) exists.
Shortest Path Tree

- Naive SSSP representation: $O(n^2)$ arcs.
- Tree representation: rooted at s, tree paths corresponds to shortest paths.
- Only $n - 1$ arcs.

A shortest path tree T of a graph (V_T, A_T) is represented by the parent pointers: $\pi(s) = \text{null}$, $(v, w) \in A_T$ iff $\pi(w) = v$.

Can “read” the shortest path in reverse.

![Diagram of shortest path tree](image)
Shortest Path Tree Theorem

Subpath Lemma: A subpath of a shortest path is a shortest path.

SP Tree Theorem: If the problem is feasible, then there is a shortest path tree.

Proof: Grow T iteratively. Initially $T = (\{s\}, \emptyset)$. Let $v \in V - V_T$. Add to T the portion of the $s-v$ shortest path from the last vertex in V_T on the path to v.

![Diagram of a shortest path tree](attachment:image.png)

Correctness follows from the Subpath Lemma.
Zero Cycles

• Suppose G has a zero-length cycle U.
• Make all cycle arcs zero length by a potential transformation.
• Contract the cycle.
• Eliminate self-loops; may find a negative cycle.
• Solve the problem on contracted graph, extend solution to the full graph.

Contracting strongly connected components of zero-lengths arcs is an efficient way to contract all negative cycles.
Scanning Method

For every v maintain

- Potential $d(v)$: length of the best s-v path seen, initially ∞.
- Parent $\pi(v)$, initially null.
- Status $S(v)$, initially unreached.
- v is labeled after $d(v)$ decreases, scanned after a scan.
a-scan\((v, w)\) \{
 \text{if } (d(w) > d(v) + \ell(v, w)) \\
 \text{then } \{ d(w) = d(v) + \ell(v, w); \pi(w) = v; S(v) = \text{labeled}; \}
\}

\text{scan}(v) \{
 \forall(v, w) \in A \text{ do } \{
 \text{a-scan}(v, w); S(v) = \text{scanned}; \}
\}

\textbf{Intuition: } \text{try to extend a shorter path to } v \text{ to the neighbors.}

\textbf{Startup: } d(s) = 0; S(s) = \text{labeled};

\textbf{Main loop: } \text{while } \exists \text{ labeled } v \text{ pick and scan one; }

\textbf{Operation ordering unspecified!}
Path Lemma: \((d(v) < \infty) \Rightarrow \exists\) an \(s-v\) path of length \(d(v)\).

Proof: Induction on the number of a-scan operations.

Simple Path Lemma: no negative cycles \(\Rightarrow\) simple path.

Proof: Left as an exercise.

Termination Theorem: If there are no negative cycles, the method terminates.

Proof: Each time \(v\) becomes labeled, \(d(v)\) decreases and we “use” a new simple \(s-v\) path. The number of simple paths is finite. Each scan operation makes a vertex scanned, which can happen finitely many times.
Lemma: Vertex distances are monotonically decreasing.
Negative Reduced Cost Lemma: $v = \pi(w) \Rightarrow \ell_d(v, w) \leq 0.$

Proof: Last time $\pi(w)$ set to v, $d(w) = d(v) + \ell(v, w)$. After that $d(w)$ unchanged, $d(v)$ nonincreasing.

Tree Lemma: If there are no negative cycles, then G_π is a tree on vertices v with $d(v) < \infty$ rooted in s.

Proof: Induction on the number of a-scans. Consider a-scan(v, w), note $d(v) < \infty$. Nontrivial case $d(w) < \infty$. If we create a cycle in G_π, then before the scan w was an ancestor of v in G_π. The $w-v$ path in G_π has nonnegative reduced cost and $\ell_d(v, w) < 0 \Rightarrow$ negative cycle.
Correctness (cont.)

Lemma: $\ell_d(v, w) < 0 \Rightarrow v$ is labeled.

Proof: $d(v) < \infty$ so v is labeled or scanned. Immediately after $\text{scan}(v)$, $\ell_d(v, w) \geq 0$. $d(v)$ must have decreased.

Correctness Theorem: If the method terminates, then $d(v)$'s are correct distances and G_π is a shortest path tree.

Proof: No labeled vertices implies $\ell_d(v, w) \geq 0 \ \forall (v, w) \in E$. For (v, w) in G_π, we have $\ell_d(v, w) = 0$. Thus G_π is a shortest path tree. For the path P from s to v in G_π, $0 = \ell_d(P) = d(s) + \ell(P) - d(v)$. $d(s) = 0$ implies $d(v) = \ell(P)$.

Have termination and correctness if no negative cycles.
Negative Cycle Detection

Currency arbitrage.

Nontermination Lemma: If there is a negative cycle, the method does not terminate.
Proof: Negative with respect to ℓ_d for any d. Thus $\exists (v, w) : \ell_d(v, w) < 0$, and v is labeled.

Unbounded Distance Lemma: If there is a negative cycle, for some vertex v, $d(v)$ is unbounded from below.
Proof: Left as an exercise.

Lemma: If there is a negative cycle, then after some point G_π always has a cycle.
Proof: Let $-N$ be the most negative arc length. At some point, $d(v) < -N \cdot (n - 1)$. Follow parent pointers from v. Either find a cycle or reach s and $d(s) = 0$. The latter impossible because the tree path lengths is at most $d(v)$.
Shortest Paths in DAGs

PERT application.

Linear time algorithm:

1. Topologically order vertices.
2. Scan in topological order.

Correctness: When scanning \(i \), all of its predecessors have correct distances.
Running time: Linear.
The BFM algorithm processes labeled vertices in FIFO order. Use a queue with constant time enqueue/dequeue operations.

Definition: Initialization is pass zero. Pass $i + 1$ consists of processing vertices on the queue at the end of pass i.

Lemma: No negative cycles \Rightarrow termination in less than n passes.

Proof: By induction: if a shortest path to v has k arcs, then after pass k, $d(v) = \text{dist}(s, v)$.

Theorem: No negative cycles \Rightarrow BFM runs in $O(nm)$ time.

Proof: A pass takes $O(n + m)$ time as a vertex and an arc are examined at most once.

Remark: Can abort after $n - 1$ passes and conclude that there is a negative cycle.
Heuristics

• BFM performs poorly in practice.
• Many heuristics with poor time bounds have been proposed.
• These perform well on some, but not all, problem classes.
• Robust algorithms always competitive with heuristics, better in the worst case.

Pape’s Algorithm: Use dequeue Q. Remove vertices from the head. Add first-time labeled vertices to the tail, others to the head.

Exercise: Pape’s algorithm exponential in the worst case.
Immediate cycle detection: stop the first time G_π is about to get a cycle; throughout G_π is a tree.

\[\text{a-scan}(v, w) \text{ creates a cycle in } G_\pi \text{ iff } w \text{ is an ancestor of } v. \]

Naive implementation within BFM

- Walk to the root from v, stop if find w.
- Traverse the subtree rooted at w, stop if find v.

Needs augmented tree data structure.

Both methods increase a-scan complexity to $O(n)$, and BFM complexity to $O(n^2m)$.

With no negative cycle, cycle-checking operations are wasteful and dominate the work.

Tarjan 1981: a beautiful use of amortization. Aimed at a “free” immediate cycle detection; later discovered to drastically improve practical performance.
Tarjan’s Algorithm

Subtree disassembly: do subtree traversal; if \(v \) is not in the subtree, delete all vertices \(u \neq w \) of the subtree from \(G_\pi \), set \(\pi(u) = \text{NULL} \) and \(S(u) = \text{unreached} \).

Remark: This variation of the scanning method allows unreached vertices with finite \(d \).

Correctness: Since \(d(w) \) just decreased, removed vertices have \(d(u) > \text{dist}(s,u) \), so they will become labeled again.

Analysis: Similar to BFM, except note that subtree disassembly work can be amortized over the construction of the subtree. \(O(nm) \) time.

Practical improvement: Some labeled vertices \(u \) with \(d(u) > \text{dist}(s,u) \) become unreached and not scanned; direct and (potentially bigger) indirect savings.
[Goldberg & Radzik 93]

Idea: which scan first? An admissible graph G_A is the graph induced by $(v, w) \in E : \ell_d(v, w) \leq 0$.

GOR algorithm works in passes.

L: the set of labeled vertices at the beginning of a pass.

1. If G_A has a negative cycle, stop. Contract zero cycles in G_A.
2. $\forall v \in L$, if $\forall (v, w) \in E, \ell_d(v, w) \geq 0$, $L = L - \{v\}$.
3. W: the set of vertices reachable from L in G_A.
4. Topologically order W and scan in topological order.

All vertices in L processed in a pass, $O(n)$ passes, $O(nm)$ time. Build-in cycle detection, heuristic performance improvement.
Pallottino’s algorithm PAL is more robust than Pape’s PALT is PAL with subtree disassembly. SIMP is network simplex (ignore if unfamiliar).

<table>
<thead>
<tr>
<th></th>
<th>bfm</th>
<th>tarj</th>
<th>gor</th>
<th>simp</th>
<th>palt</th>
<th>pal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-SSSquare</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
</tr>
<tr>
<td>Grid-SSSquare-S</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Grid-PHard</td>
<td>●</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>●</td>
</tr>
<tr>
<td>Grid-NHard</td>
<td>●</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
</tr>
<tr>
<td>Rand-4</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
</tr>
<tr>
<td>Rand-1:4</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
</tr>
<tr>
<td>Acyc-Neg</td>
<td>●</td>
<td>●</td>
<td>⊘</td>
<td>⊘</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

○ means good, ○ means fair, ⊘ means poor, and ● means bad. GOR is $O(m)$ on acyclic graphs.
Square Grids

time (sec.) / scans per vertex

GOR scans include DFS scans.

<table>
<thead>
<tr>
<th>nodes/arcs</th>
<th>bfm</th>
<th>tarj</th>
<th>gor</th>
<th>simp</th>
<th>palt</th>
<th>pal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4097</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>12288</td>
<td>2.74</td>
<td>1.35</td>
<td>2.26</td>
<td>1.34</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>16385</td>
<td>0.21</td>
<td>0.09</td>
<td>0.08</td>
<td>0.10</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>49152</td>
<td>5.05</td>
<td>1.43</td>
<td>2.29</td>
<td>1.42</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td>65537</td>
<td>1.92</td>
<td>0.39</td>
<td>0.37</td>
<td>0.45</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>196608</td>
<td>9.66</td>
<td>1.48</td>
<td>2.28</td>
<td>1.46</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>262145</td>
<td>19.30</td>
<td>1.69</td>
<td>1.94</td>
<td>1.93</td>
<td>1.20</td>
<td>0.97</td>
</tr>
<tr>
<td>786432</td>
<td>19.68</td>
<td>1.52</td>
<td>2.29</td>
<td>1.50</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>1048577</td>
<td>165.57</td>
<td>7.50</td>
<td>7.52</td>
<td>8.52</td>
<td>5.16</td>
<td>4.08</td>
</tr>
<tr>
<td>3145728</td>
<td>41.78</td>
<td>1.57</td>
<td>2.30</td>
<td>1.54</td>
<td>1.27</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Compare BFM to TARJ.
Artificial source connects to s with a zero length arc, to all other vertices with very long arcs.

Ideally get an extra scan per vertex (two for GOR).

<table>
<thead>
<tr>
<th>nodes/arcs</th>
<th>bfm</th>
<th>tarj</th>
<th>gor</th>
<th>simp</th>
<th>palt</th>
<th>pal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4098</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.32</td>
<td>0.26</td>
</tr>
<tr>
<td>16385</td>
<td>4.78</td>
<td>2.37</td>
<td>4.51</td>
<td>2.37</td>
<td>29.10</td>
<td>38.14</td>
</tr>
<tr>
<td>16386</td>
<td>0.40</td>
<td>0.16</td>
<td>0.18</td>
<td>0.18</td>
<td>2.14</td>
<td>2.24</td>
</tr>
<tr>
<td>65537</td>
<td>9.19</td>
<td>2.48</td>
<td>4.57</td>
<td>2.46</td>
<td>39.21</td>
<td>71.31</td>
</tr>
<tr>
<td>65538</td>
<td>3.35</td>
<td>0.67</td>
<td>0.87</td>
<td>0.81</td>
<td>16.49</td>
<td>26.28</td>
</tr>
<tr>
<td>262145</td>
<td>17.43</td>
<td>2.52</td>
<td>4.59</td>
<td>2.50</td>
<td>71.46</td>
<td>166.50</td>
</tr>
<tr>
<td>262146</td>
<td>33.66</td>
<td>2.88</td>
<td>4.08</td>
<td>3.37</td>
<td>130.42</td>
<td>387.80</td>
</tr>
<tr>
<td>1048577</td>
<td>34.12</td>
<td>2.56</td>
<td>4.62</td>
<td>2.54</td>
<td>124.35</td>
<td>489.18</td>
</tr>
<tr>
<td>1048578</td>
<td>279.75</td>
<td>12.55</td>
<td>16.58</td>
<td>14.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4194305</td>
<td>70.97</td>
<td>2.62</td>
<td>4.62</td>
<td>2.58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pallottino's (and Pape's) algorithm is not robust.
These are most robust algorithms; really bad ones excluded

<table>
<thead>
<tr>
<th></th>
<th>tarj</th>
<th>gorc</th>
<th>palt</th>
<th>simp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand-5</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>SQNC01</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>⊘</td>
</tr>
<tr>
<td>SQNC02</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>SQNC03</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>SQNC04</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>SQNC05</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>PNC01</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>PNC02</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>PNC03</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>PNC04</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>PNC05</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>

★ means good, ⊘ means fair, and ⊘ means poor.

Table limited to better algorithms.
Lengths in \([-L, 32,000]\), \(L\) changes.
Similar performance except around \(L = 8,000\).
Experiments vs. Analysis

In theory, there is no difference between theory and practice.

- Both are important, complement each other.
- Worst-case analysis is too pessimistic, ignores system issues.
- Experimental analysis is incomplete, machine-dependent.
- Best implementations are robust, competitive on easy problems and do not get embarrassed on hard problems.
- 20% running time difference is not very important.
- Importance of machine-independent performance measures.
Scaling Algorithm

Finds a feasible potential function d in $O(\sqrt{nm} \log N)$ time.

Scaling loop:

- Integral costs $> -N$, $N = 2^L$ for integer $L \geq 1$.
- $\ell^i(v, w) = \left\lceil \frac{\ell(v, w)}{2^i} \right\rceil$.
- Note: $\ell^L \geq 0$, $\ell^0 = \ell$, no new negative cycles.
- Iteration i takes d feasible for ℓ^{L-i+1} and produces d feasible for ℓ^{L-i}.
- Terminate in L iterations.
- $\ell^{L-i+1}(v, w) + d(v) - d(w) \geq 0 \Rightarrow \ell^{L-i}(v, w) + 2d(v) - 2d(w) \geq -1$.
- Let $d = 2d$ and $c = \ell^{L-i}_d$, note $c \geq -1$.

Basic subproblem: Given integer $c \geq -1$, find a feasible potential function p.

DIKU Summer School on Shortest Paths 29
Basic Subproblem Solution

An arc with a negative reduced cost is a bad arc. Each iteration does not create new bad arcs and reduces their number, k, by \sqrt{k}.

Admissible graph G_A is induced by arcs (v, w) with $c_p(v, w) \leq 0$.

Initialize $p = 0$.

Main loop:

1. DFS admissible graph. Stop if a negative cycle found. Contract zero cycles.

2. Add an artificial source, connect to all vertices by zero arcs.

3. Compute shortest paths in the resulting (acyclic) G'_A.

4. **Case 1:** \exists a path P of length $\leq -\sqrt{k}$; $\text{fixPath}(P)$.
 - **Case 2:** \exists a cut C with $\geq \sqrt{k}$ bad arcs crossing it; $\text{fixCut}(C)$.

An efficient way to find P or C:

- Put vertices in buckets according to the distance d' in G'_A.
- If use $\geq \sqrt{k}$ buckets, s.p. tree yields P with \sqrt{k} bad arcs.
- Otherwise consider cuts $C_i = \{v : d'(v) \geq -i\}$. The number of different non-trivial cuts $\leq \sqrt{k}$.
- For each i, no admissible arc enters C_i.
- Each bad arcs crosses at least one non-trivial cut.
- There is a cut C with \sqrt{k} bad arcs exiting and no admissible arcs entering.

C or P can be found in $O(m)$ time.
Case 1: C is the cut as above.

$$\text{fixCut}(C): \forall v \in C, p(v) = p(v) + 1.$$

Bad arcs out of C are fixed, no bad arcs are created.

Preliminaries for path-fixing.

Dilworth Theorem: In a partial order on k elements, there is a chain or an antichain of cardinality \sqrt{k}.

Dial’s algorithm finds s.p. in linear time if ℓ is integral and $\forall v \in V$, $\text{dist}(s, v) \leq n$.
Path Fixing Ingredients

Shortest path arcs have zero reduced costs.

\[-1 \quad -1 \quad 0 \quad -1\]

\[0 \rightarrow -1 \rightarrow -2 \rightarrow -2 \rightarrow -3\]

\[x \geq 0, \ x - 1 \geq -1, \ no \ new \ bad \ arcs.\]
Shortest path arcs have zero reduced costs.

\[x \geq 0, \ x - 1 \geq -1, \text{ no new bad arcs.} \]
Shortest path arcs have zero reduced costs.

\[-1, -1+1, x-1\]

\[x \geq 0, \ x - 1 \geq -1, \text{ no new bad arcs.}\]
Case 2: P is the admissible path. Let α give distances on P.

1. Add s', arcs (s', v) with length $\alpha(v) + |\alpha(P)|$ if v on P and zero o.w.
 Add 1 to bad arc length.
2. Use Dial’s algorithm to compute shortest path distances p.
3. Subtract 1 from bad arc lengths.
4. Replace c by c_p.

No new negative arcs are created, either fix all bad arcs on P or find a negative cycle.
Analysis and Correctness

Using Dial’s Algorithm: All distances from \(s' \) are between 0 and \(-\alpha(P) < n\). Dial’s algorithm runs in linear time.

Lemma: \(\text{fixPath}(P) \) procedure does not create new bad arcs and either finds a negative cycle or fixes all bad arcs on \(P \).

Proof: Left as an exercise.

Theorem: The scaling algorithm runs in \(O(\sqrt{nm \log N}) \) time.

Proof: Enough to show \(\sqrt{n} \) main loop iterations. \(O(\sqrt{k}) \) iterations reduce the number of bad arcs by a factor of two. The total is bounded by

\[
\sum_{i=0}^{\infty} \sqrt{\frac{n}{2^i}} = \sqrt{n} \sum_{i=0}^{\infty} (\sqrt{2})^{-i} = O(\sqrt{n}).
\]
SSSP problem with negative arcs:

- Structural results (s.p. trees, potentials, subpaths).
- Scanning method (correctness, termination, negative cycles).
- Bellman-Ford-Moore (BFM) algorithm.
- Negative cycle detection (walk to root, subtree disassembly).
- Practical relatives of BFM (Tarjan’s and GOR algorithms).
- The scaling algorithm.
Nonnegative Lengths: Outline

• Dijkstra’s algorithm and priority queues.
• Dial’s algorithm, multilevel buckets, HOT queues.
• Expected linear-time algorithm.
• Experimental results.
• Point-to-Point shortest paths.
• Bidirectional Dijkstra algorithms.
• A^* Search.
• Use of landmarks.
• A demo.
Nonnegative Arc Lengths

\(\ell \geq 0 \) (NSSSP): a natural and important special case of SSSP.

[Dijkstra 59, Dantzig 63]

Minimum label selection rule: Pick labeled \(v \) with minimum \(d(v) \).

Theorem: If \(\ell \geq 0 \), each vertex is scanned once.

Proof: After \(v \) is scanned with \(d(v) = D \), all labeled vertices \(w \) have distance labels \(d(w) \geq D \), and \(v \) never becomes labeled.

Vertices scanned in the order of distances from \(s \), i.e., grow a ball of scanned vertices around \(s \).

Naive time bound: \(O(n^2) \).
Directed NSSSP Bounds

<table>
<thead>
<tr>
<th>date</th>
<th>discoverer</th>
<th>bounds</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Dijkstra</td>
<td>$O(n^2)$</td>
<td>min. selection</td>
</tr>
<tr>
<td>1964</td>
<td>Williams</td>
<td>$O(m \log n)$</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>Dial</td>
<td>$O(m + nU)$</td>
<td>2-heap</td>
</tr>
<tr>
<td>1977</td>
<td>Johnson</td>
<td>$O(m \log(2m/n)n)$</td>
<td>buckets</td>
</tr>
<tr>
<td>1978</td>
<td>Dinitz</td>
<td>$O(m + n(U/delta))$</td>
<td>d-heap</td>
</tr>
<tr>
<td>1979</td>
<td>Denardo & Fox</td>
<td>$O(m + n \log \frac{U}{\log U})$</td>
<td>non-min. selection</td>
</tr>
<tr>
<td>1987</td>
<td>Fredman & Tarjan</td>
<td>$O(m + n \log n)$</td>
<td>Fibonacci heap</td>
</tr>
<tr>
<td>1990</td>
<td>Ahuja et al.</td>
<td>$O(m + n\sqrt{\log U})$</td>
<td>MB</td>
</tr>
<tr>
<td>1996</td>
<td>Thorup</td>
<td>$O(m \log \log n)$</td>
<td>new heap</td>
</tr>
<tr>
<td>1996</td>
<td>Raman</td>
<td>$O(m + n \sqrt{\log n})$</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>Cherkassky et al.</td>
<td>$O(m + n (\log U)^{1/3} + \epsilon)$</td>
<td>HOT q.</td>
</tr>
<tr>
<td>1997</td>
<td>Raman</td>
<td>$O(m + n (\log U \log U)^{1/4} + \epsilon)$</td>
<td>HOT + impr. heap</td>
</tr>
<tr>
<td>2001</td>
<td>Meyer</td>
<td>$E(m) & O(nm \log n)$</td>
<td>expected</td>
</tr>
<tr>
<td>2001</td>
<td>Goldberg</td>
<td>$E(m) & O(m + n \log U)$</td>
<td>MB variant</td>
</tr>
<tr>
<td>2002</td>
<td>Han & Thorup</td>
<td>$E(m \sqrt{\log \log \min(n, U)})$</td>
<td>randomized</td>
</tr>
<tr>
<td>2004</td>
<td>Hagerup</td>
<td>$E(m) & O(m + n \log n)$</td>
<td>more distributions</td>
</tr>
<tr>
<td>2004</td>
<td>Thorup</td>
<td>$O(m + n \log \log \min(n, U))$</td>
<td>new heap</td>
</tr>
</tbody>
</table>

Bucket-based algorithms can work with real-valued lengths.
Use of Priority Queues

Priority queue operations: insert, decreaseKey, extractMin (also create, empty).

Examples: (with amortized operation times)

Binary heaps: [Williams 64] $O(\log n), O(\log n), O(\log n)$.

Fibonacci heaps: [Friedman & Tarjan 84] $O(1), O(1), O(\log n)$.

initialize as in the scanning method;
Q = create(); d[s] = 0; insert(s, Q);
while (!empty(Q)) {
 v = Extract-Min(Q);
 for each arc (v,w) { // a-scan
 if (d[w] > d[v] + l(v,w)) {
 d[w] = d[v] + l(v,w);
 if (pi[w] = NULL) insert(w, Q) else decreaseKey(w, Q);
 pi[w] = v;
 }
 }
}
Heap-Based Time Bounds

- Naive implementation: $O(n^2)$.
- Binary heaps: $O(m \log n)$. 4-heaps better in practice.
- Fibonacci heaps: $O(m + n \log n)$.
 Linear except for sparse graphs.

In practice, 4-heaps usually outperform Fibonacci heaps.

Monotone heaps: inserted elements no less than the last extracted one.
Sufficient for Dijkstra’s algorithm. Better bounds known.
Buckets and Dial’s Implementation

- Maintain an array $B[0 \ldots (n - 1)U]$ of buckets (vertex sets).
- Keep a labeled vertex v in $B[d(v)]$.
- The smallest-labeled vertex is in the first nonempty (active) bucket.
Dial’s Algorithm

- Maintain an array $B[0 \ldots (n-1)U]$ of buckets (vertex sets).
- Keep a labeled vertex v in $B[d(v)]$.
- The smallest-labeled vertex is in the first nonempty (active) bucket.

![Diagram of a graph with labeled vertices and edges.]

- s is labeled 0, a is labeled 1, c is labeled 2, e is labeled 3.
- The buckets are arranged vertically, with s at the bottom and e at the top.
Dial’s Algorithm

- Maintain an array $B[0 \ldots (n - 1)U]$ of buckets (vertex sets).
- Keep a labeled vertex v in $B[d(v)]$.
- The smallest-labeled vertex is in the first nonempty (active) bucket.
Dial’s Algorithm

- Maintain an array $B[0 \ldots (n - 1)U]$ of buckets (vertex sets).
- Keep a labeled vertex v in $B[d(v)]$.
- The smallest-labeled vertex is in the first nonempty (active) bucket.
Dial’s Algorithm

- Maintain an array $B[0 \ldots (n - 1)U]$ of buckets (vertex sets).
- Keep a labeled vertex v in $B[d(v)]$.
- The smallest-labeled vertex is in the first nonempty (active) bucket.
Dial’s Algorithm

- Maintain an array $B[0\ldots(n-1)U]$ of buckets (vertex sets).
- Keep a labeled vertex v in $B[d(v)]$.
- The smallest-labeled vertex is in the first nonempty (active) bucket.
Dial’s Algorithm

- Maintain an array $B[0\ldots(n-1)U]$ of buckets (vertex sets).
- Keep a labeled vertex v in $B[d(v)]$.
- The smallest-labeled vertex is in the first nonempty (active) bucket.
Dial’s Performance

- Call the first nonempty bucket active.
- The active bucket index is monotone.
- `insert`, `decreaseKey` take $O(1)$ time, `extractMin` takes $O(U)$.
- Time “wasted” scanning empty buckets.
- $O(m + nU)$ time, $O(nU)$ additional space.
 - Improve space bound to $O(U)$ by working $\mod (U + 1)$.
- Alternative time: $O(m + D)$ (D is the biggest distance).

Simple, works well for small values of U.
Two-Level Buckets

- Make (upper level) bucket width \sqrt{U}.
- If nonempty, expand the active upper-level bucket into \sqrt{U} low-level buckets by finding and scanning a minimum labeled vertex and bucket-sorting the remaining vertices.
- Scan the low-level buckets, then return to the upper level.
Two-Level Bucket Analysis

- Do not expand empty buckets.
- Vertices can move only down, bucket expansions charged to these moves; $O(n)$ work.
- At most \sqrt{U} consecutive empty buckets can be scanned without a vertex scan.
- Charge the bucket scans to the vertex scan. $O(\sqrt{U})$ charges per vertex.

$O(m + n\sqrt{U})$ time.
Multi-Level Buckets

MB algorithm [Denardo & Fox 1979]

- Generalization to k levels.
- Δ buckets at each level, $k = O(\log \Delta U)$ levels.
- Key to the analysis: Vertices can move only down in the bucket structure.
- $O((\log \Delta U + \Delta)n)$ data structure manipulation time. Number of levels + number of buckets in a level.
- The term-balancing value is $\Delta = \frac{\log U}{\log \log U}$.

$O(m + n\frac{\log U}{\log \log U})$ shortest path algorithm.
Low-Level Details

- Word RAM model, AC^0 word operations.
- $B(i, j)$: j-th bucket at level i.
- μ is the last extracted key value (initially zero).
- Bucket positions are w.r.t. μ, which is at the bottom (level 0).
- μ_t denotes μ base Δ with t lowest bits replaced by 0’s.

Computing positions in B:

- Consider values base Δ (power of two).
- Buckets correspond to value ranges:
 $B(i, j) \rightarrow [\mu_i + j\Delta^i, \mu_i + (j + 1)\Delta^i]$.
- Position of u: i is the index of the first digit u and μ differ in, j is the digit value.
- Can be computed in constant time.
Example

- Base $\Delta = 2$, $\mu = 00110$.
- $a = 00110$, $b = 00111$, $c = 01000$, $d = 01111$, $e = 10010$.
Insert: Find the position \((i, j)\) of \(u\) and insert \(u\) into \(B(i, j)\).

\textbf{decreaseKey}: Delete, insert with the new key.

\textbf{Both operations take constant time}.

\textbf{extractMin}:

- Find lowest nonempty level \(i\) (constant time).
- Set \(j\) to the \(i\)-th digit of \(\mu\), while \(B(i, j)\) empty increment \(j\).
- If \(i = 0\) delete \(u\) from \(B(i, j)\), set \(\mu = u\), return \(u\).
- Otherwise
 - Find and delete minimum \(u\) in \(B(i, j)\), set \(\mu = u\).
 - Expand \(B(i, j)\) by inserting \(v \in B(i, j)\) into new positions.
 - return \(u\).
- Positions change only for \(v \in B(i, j)\), vertex levels decrease.

Incrementing \(j\) charged to extracted vertex;
expand work charged to vertex level decreases.
HOT Queues

Heap On Top of buckets.

- Maintain active buckets with at most \(t \) elements as a heap.
- Can use “black-box” monotone heaps.
- Assume \texttt{extractMin} on the heap takes \(T(N) \) time, other operations take \(O(1) \) time.
- Hot queue operations \texttt{insert} and \texttt{decreaseKey} take \(O(1) \) time.
- \texttt{extractMin} takes \(O(k + T(t) + \frac{kU^{1/k}}{t}) \) amortized time.
- Work to find a nonempty bucket is charged to \(t \) elements; each element charged \(O(k) \) times.
Using Fibonacci heaps: \(T(N) = \log N \).

Set \(k = \sqrt{\log U} \), \(t = 2^{\sqrt{\log U}} = U^{1/\sqrt{\log U}} \).

\(O(m + n\sqrt{\log U}) \) time bound.

Better heaps lead to better bounds.

Real-world numbers: For \(U = 2^{36} \), we have \(t = 64 \), \(\sqrt{\log U} = 6 \)
(and \(\log \log U \approx 5 \)).

HOT queues are practical (without fancy heaps).
Dinitz Algorithm

- Special case with arc lengths at least $\delta > 0$.
- Use single-level buckets of width δ, scan any active vertex.
- Any vertex v in the first non-empty bucket has $d(v) = \text{dist}(s, v)$.
- Works for real-valued lengths; $O(m + n(U/\delta))$ running time.

Relaxed selection: may pick vertices with non-minimal, but exact label.
Calibers

Definition: A vertex *caliber* \(c(v) \) is the minimum length of its incoming arc.

Caliber theorem: Suppose that \(\ell \) is nonnegative, for any labeled \(v \), \(d(v) \geq \mu \), and for some \(u \), \(d(u) \leq \mu + c(u) \). Then \(d(u) \) is exact, i.e., \(d(u) = \text{dist}(s, u) \).

Proof: Replace \(d(u) \) by \(d(u) - c(u) \), \(\ell(x, u) \) by \(\ell(x, u) - c(u) \) and \(\ell(u, y) \) by \(\ell(u, y) + c(u) \) for all arcs in and out of \(u \), respectively. Get an equivalent problem with non-negative lengths, and \(u \) is the minimum-labeled vertex.

If we scan \(u \), we will never have to scan it again.
Smart Queue Algorithm

Early detection of vertices with correct distances.

SQ is MB with the **caliber heuristic:**

- Maintain a set F in addition to buckets B; a labeled vertex is either in F or in B. Recall positions in B are relative to μ.
- Initially F contains s.
- When inserting a labeled vertex u into $B \cup F$, insert into F if $d(u) \leq \mu + c(u)$ and into B otherwise.
- Select from F if not empty, otherwise select from B.

F contains vertices v with $d(v)$ equal to the distance from s.
Worst-Case Time

- Overhead for the caliber heuristic is amortized over the other work of the MB algorithm.

- The worst-case time bound is the same as for MB.

Caliber heuristic never hurts much. Does it help?

Yes in many cases.

Lemma: The MB and SQ algorithms run in time $O(m + n + \Phi_1 + \Phi_2)$, where Φ_1 is the number of empty bucket scans and Φ_2 is the number of vertex moves during bucket expansions. Φ's balance for $\Delta = \Theta(\frac{\log U}{\log \log U})$.
Average-Case Analysis

Probabilistic model: Assume that arc lengths are integers uniformly distributed on \([1, M]\). Similar analysis works for some other distributions, e.g., reals on \([0, 1]\).

Expected Time Theorem: The SQ algorithm with \(\Delta = 2\) runs in linear expected time. Compare to \(\Theta(m + n \log M)\) worst-case time \((\Delta = 2)\).

\(\Phi_1 = O(n)\) because \(\Delta = 2\).

\(E[\Phi_2] = O(m)\) due to the caliber heuristic.

High Probability Theorem: If arc lengths are independent, the SQ algorithm with \(\Delta = 2\) runs in linear time w.h.p.
Recall that the top level is k.

Lemma: vertex v never gets below level $\lfloor \log c(v) \rfloor$.

Definition: $w(u, v) = k - \lfloor \log c(u) \rfloor$; $w(v) = \max w(u, v)$.

$\sum_v(w(v))$ bounds the number of vertex down moves.

$\sum_V(w(v)) \leq \sum_A w(u, v)$.

$Pr[w(u, v) = t] = 2^{k-t}/M \leq 2^{k-t}/U \leq 2^{-t}$ for $t = 1, \ldots, k$.

$\sum_v(w(v)) = O(m)$.

This implies the theorem.
Experimental Evaluation

Address the following issues:

- How well MB performs?
- How much can the caliber heuristic save/cost?
- Worst-case behavior.
- Room for improvement?

Codes we compare:

- MB2D ($\Delta = 2$), MB2L ($k = 2$), MB-A (k adaptive).
- SQ2D ($\Delta = 2$), SQ2L ($k = 2$), SQ-A (k adaptive).
- H2 (2-heap), H4 (4-heap).
- PAL (Pallottino’s algorithm).
Careful coding to keep constants small.

Tuning. In MB-A and SQ-A, set asymptotic values of k and Δ so that $\Delta \approx 64k$. (Expanding a vertex is much more expensive than scanning an empty bucket.)

Explore locality: Place arcs out of each vertex in adjacent memory locations.

Measure time relative to breadth-first search (intuitive lower bound, machine-independent).
Problems with Uniform Lengths

Random graphs: degree 4, arc lengths independent and uniformly distributed on $[1, M]$.
Many labeled vertices most of the time.
- RAND-I: $M = n$, n grows.
- RAND-C: n fixed, M grows.

Long grids: Width 8, arc lengths independent and uniformly distributed on $[1, M]$.
Few labeled vertices at any time.
- LONG-I: $M = n$, n grows.
- LONG-C: n fixed, M grows.
RAND-I Data

Data: time (relative to BFS); empty scans /n; moves/n;

<table>
<thead>
<tr>
<th>$M = n$</th>
<th>BFS</th>
<th>MB2L</th>
<th>SQ2L</th>
<th>MB2D</th>
<th>SQ2D</th>
<th>MB-A</th>
<th>SQ-A</th>
<th>H2</th>
<th>H4</th>
<th>PAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{17}</td>
<td>0.15</td>
<td>1.55</td>
<td>1.56</td>
<td>3.86</td>
<td>2.26</td>
<td>1.88</td>
<td>1.63</td>
<td>4.33</td>
<td>3.60</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>sec.</td>
<td>3.01</td>
<td>1.09</td>
<td>0.74</td>
<td>0.01</td>
<td>2.05</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.09</td>
<td>1.04</td>
<td>7.14</td>
<td>1.56</td>
<td></td>
<td>2.00</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{18}</td>
<td>0.30</td>
<td>1.73</td>
<td>1.64</td>
<td>4.15</td>
<td>2.26</td>
<td>1.93</td>
<td>1.73</td>
<td>5.03</td>
<td>4.30</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>sec.</td>
<td>3.03</td>
<td>0.79</td>
<td>0.74</td>
<td>0.01</td>
<td>2.04</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.45</td>
<td>1.19</td>
<td>7.65</td>
<td>1.56</td>
<td></td>
<td>2.36</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{19}</td>
<td>0.62</td>
<td>1.68</td>
<td>1.63</td>
<td>4.41</td>
<td>2.31</td>
<td>1.89</td>
<td>1.71</td>
<td>5.58</td>
<td>4.60</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>sec.</td>
<td>3.34</td>
<td>1.12</td>
<td>0.74</td>
<td>0.00</td>
<td>2.36</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>1.01</td>
<td>8.15</td>
<td>1.58</td>
<td></td>
<td>1.96</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{20}</td>
<td>1.30</td>
<td>1.83</td>
<td>1.79</td>
<td>4.64</td>
<td>2.35</td>
<td>1.94</td>
<td>1.79</td>
<td>5.99</td>
<td>4.86</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>sec.</td>
<td>3.34</td>
<td>0.79</td>
<td>0.74</td>
<td>0.00</td>
<td>2.37</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.41</td>
<td>1.20</td>
<td>8.65</td>
<td>1.58</td>
<td></td>
<td>2.09</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^{21}</td>
<td>2.90</td>
<td>1.83</td>
<td>1.77</td>
<td>4.73</td>
<td>2.29</td>
<td>2.00</td>
<td>1.78</td>
<td>6.54</td>
<td>5.07</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>sec.</td>
<td>3.67</td>
<td>1.13</td>
<td>0.74</td>
<td>0.00</td>
<td>2.36</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.16</td>
<td>1.03</td>
<td>9.13</td>
<td>1.56</td>
<td></td>
<td>2.33</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: SQ2D vs. MB2D; “2L” codes work well: SQ-A is competitive: PAL similar to MB-A; heaps are not competitive.
LONG-I Data

Data: time (relative to BFS); empty scans /n; moves/n;

<table>
<thead>
<tr>
<th>$M = n$</th>
<th>BFS</th>
<th>MB2L</th>
<th>SQ2L</th>
<th>MB2D</th>
<th>SQ2D</th>
<th>MB-A</th>
<th>SQ-A</th>
<th>H2</th>
<th>H4</th>
<th>PAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{17}</td>
<td>0.08 sec.</td>
<td>1.71</td>
<td>1.71</td>
<td>2.71</td>
<td>2.14</td>
<td>1.86</td>
<td>1.71</td>
<td>2.50</td>
<td>2.50</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>8.59</td>
<td>4.77</td>
<td>1.00</td>
<td>0.29</td>
<td>4.88</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td>0.39</td>
<td></td>
<td>1.51</td>
<td>0.83</td>
<td>0.61</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2^{18}	0.17 sec.	1.66	1.61	2.80	2.13	1.81	1.68	2.35	2.35	1.58
	0.17	12.45	5.10	1.00	0.29	4.17	1.31			
	0.27	0.22		1.51	0.83	0.63	0.46			

2^{19}	0.35 sec.	1.65	1.65	2.74	2.17	1.73	1.61	2.29	2.29	1.51
	0.35	13.65	9.43	1.00	0.29	8.89	1.40			
	0.42	0.38		1.51	0.83	0.52	0.34			

2^{20}	0.75 sec.	1.59	1.60	2.72	2.10	1.64	1.60	2.09	2.08	1.41
	0.75	17.89	10.09	1.00	0.29	6.98	1.47			
	0.23	0.21		1.51	0.83	0.45	0.31			

2^{21}	1.61 sec.	1.60	1.63	2.65	2.06	1.62	1.59	1.96	1.94	1.34
	1.61	23.59	18.84	1.00	0.29	5.88	2.44			
		0.40	0.37	1.51	0.83	0.52	0.42			

Note: Easy problems, especially for PAL and heaps; SQ2D vs. MB2D; “2L” and SQ-A perform OK.
A hard problem instance; $k = 3$ and $\Delta = 16$. Arc lengths are given in hexadecimal. Arcs designed to manipulate vertex calibers omitted.
Caliber Heuristic Effect

<table>
<thead>
<tr>
<th>k</th>
<th>BFS</th>
<th>MB</th>
<th>SQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.63</td>
<td>1189.20</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>52428.94</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>0.63</td>
<td>10.66</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>1170.14</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>0.62</td>
<td>2.68</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>1.56</td>
<td>170.44</td>
<td>0.11</td>
</tr>
<tr>
<td>6</td>
<td>0.63</td>
<td>2.25</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>2.46</td>
<td>24.31</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>0.62</td>
<td>2.87</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>3.89</td>
<td>6.37</td>
<td>0.05</td>
</tr>
<tr>
<td>12</td>
<td>0.63</td>
<td>3.70</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>5.36</td>
<td>3.12</td>
<td>0.04</td>
</tr>
<tr>
<td>18</td>
<td>0.63</td>
<td>5.86</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>8.32</td>
<td>1.41</td>
<td>0.03</td>
</tr>
<tr>
<td>36</td>
<td>0.62</td>
<td>16.32</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>17.75</td>
<td>0.49</td>
<td>0.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>BFS</th>
<th>MB</th>
<th>SQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.62</td>
<td>1199.67</td>
<td>1201.13</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>52428.94</td>
<td>52428.94</td>
</tr>
<tr>
<td>3</td>
<td>0.62</td>
<td>9.38</td>
<td>9.39</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>1170.14</td>
<td>1170.14</td>
</tr>
<tr>
<td>4</td>
<td>0.63</td>
<td>2.67</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>1.56</td>
<td>170.44</td>
<td>170.44</td>
</tr>
<tr>
<td>6</td>
<td>0.62</td>
<td>2.25</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td>2.46</td>
<td>24.31</td>
<td>24.31</td>
</tr>
<tr>
<td>9</td>
<td>0.62</td>
<td>2.87</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>3.89</td>
<td>6.37</td>
<td>6.37</td>
</tr>
<tr>
<td>12</td>
<td>0.62</td>
<td>3.72</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td>5.36</td>
<td>3.12</td>
<td>3.12</td>
</tr>
<tr>
<td>18</td>
<td>0.63</td>
<td>5.86</td>
<td>6.05</td>
</tr>
<tr>
<td></td>
<td>8.32</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>36</td>
<td>0.63</td>
<td>16.24</td>
<td>16.43</td>
</tr>
<tr>
<td></td>
<td>17.75</td>
<td>0.49</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Hard problems; 36 bits; calibers large (left) and zero (right). **Best emp./exp. tradeoff: \(\times 10 \) to \(\times 100 \).** Adaptive codes use 6 levels.
Worst-Case Performance

<table>
<thead>
<tr>
<th>bits</th>
<th>(\log \Delta)</th>
<th>(k)</th>
<th>BFS</th>
<th>SQ-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0.62</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>0.33</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>0.63</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>1.60</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2</td>
<td>0.62</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>3.20</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>3</td>
<td>0.62</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>9.00</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>3</td>
<td>0.62</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>18.14</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>4</td>
<td>0.62</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>21.11</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>5</td>
<td>0.62</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>23.00</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>5</td>
<td>0.62</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>46.27</td>
</tr>
<tr>
<td>42</td>
<td>7</td>
<td>6</td>
<td>0.62</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>48.92</td>
</tr>
<tr>
<td>49</td>
<td>7</td>
<td>7</td>
<td>0.62</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sec.</td>
<td>50.87</td>
</tr>
</tbody>
</table>

Our hardest problems with 49-bit lengths took less then \(3 \times \text{BFS} \). Bigger costs cause distance overflows. Much harder problems are unlikely. Problems with 32 or fewer length bits should always stay under \(2.5 \times \text{BFS} \) and will often be below \(2 \times \text{BFS} \).
Remarks on Experiments

For typical problems, fetching the graph from memory dominates SQ data structure overhead.

- The gap between CPU speed and memory speed grows.
- A cache miss costs about 100 instructions. (1999 machine used.)
- SQ/MB data structure fits in cache (small number of levels with a moderate number of buckets each).
- Amortized cost of SQ operations is less than a 100 instruction per vertex scan.
- MB and SQ will look even better on current machines.
Point-to-Point Problem (P2P)

Input: Digraph $G = (V, A)$, $\ell : A \to \mathbb{R}^+$, source $s, t \in V$.
Goal: Find a shortest path from s to t.
Fundamental problem with many applications. For arbitrary lengths, little is known.

P2P Dijkstra’s algorithm: Run from s, stop when about to scan t. At this point t has correct distance label/path.

Do not need to look at the whole graph. Try to search as little as possible.

Reverse Algorithm: Run algorithm from t in the graph with all arcs reversed, stop when s is selected for scanning.
The algorithm grows a ball around s.
Bidirectional Algorithm

- Run forward Dijkstra from s and backward from t.
- Maintain β, the length of the shortest path seen (initially ∞): when scanning an arc (v, w) such that w has been scanned in the other direction, check the corresponding s-t path.
- Stop when about to scan a vertex x scanned in the other direction.
- Output β and the corresponding path.
- Easy to get wrong.
- Can alternate between the two searches in any way.
- Balancing the work is 2-competitive.
Bidirectional Example

Two balls meet.
Bidirectional Algorithm (cont.)

x need not be on a shortest path.

Alternative stopping criteria: Stop when the sum of the minimum d's for the two search queues is at least β.

Theorem: The alternative stopping condition is correct.

Proof: Left as an exercise.

May stop before the standard algorithm.
Use of Preprocessing

If expect many different s, t queries on the same graph, can pre-process the graph (e.g., map graph). May be unable to store all pairs of shortest paths.

Preprocessing with Bounded Space:

- Theoretical results: [Fakcharoenphol & Rao].
- Approximation algorithms: [Cowen & Wagner 00], [Thorup 01], [Klein 02].
- Using geometry: [Gutman 04], [Lauther 04], [Wagner & Willhalm 03].
- Hierarchical approach: [Schulz, Wagner, Weihe 02], [Sanders & Schultes 05].
- A* search (goal-directed, heuristic) search [Goldberg & Harrelson 04], [Goldberg & Werneck 05].
A* Search

AI motivation: search a small subset of a large space. [Doran 67], [Hart, Nilsson, Raphael 68].

Similar to Dijkstra’s algorithm but:

- Domain-specific estimates $\pi_t(v)$ on $\text{dist}(v, t)$ (potentials).
- At each step pick a vertex with min. $k(v) = d_s(v) + \pi_t(v)$.
- Scan a node on a path with the best length estimate.
- In general, optimality is not guaranteed.
Feasibility and Optimality

Potential transformation: Replace $\ell(v, w)$ by

$$l_{\pi_t}(v, w) = \ell(v, w) - \pi_t(v) + \pi_t(w).$$

Definition: π_t is feasible if $\forall (v, w) \in A$, the reduced costs are nonnegative. (Estimates are “locally consistent”.)

Optimality: If π_t is feasible, A* search is Dijkstra’s algorithm on the network with lengths replaced by reduced costs, which are nonnegative. In this case A* search is optimal.

Proof: $k(v) = d_s(v) + \pi_t(v) = d_{\ell_{\pi_t}}(v) + \pi_t(s)$, $\pi(s)$ is a constant for fixed s.

Different order of vertex scans, different subgraph searched.

Lemma: If π_t is feasible and $\pi_t(t) = 0$, then π_t gives lower bounds on distances to t.

Proof: Left as an exercise.
Bidirectional A* search

Forward reduced costs: \(l_{\pi_t}(v, w) = l(v, w) - \pi_t(v) + \pi_t(w) \).

Reverse reduced costs: \(l_{\pi_s}(v, w) = l(v, w) + \pi_s(v) - \pi_s(w) \).

Fact: \(\pi_t \) and \(\pi_s \) give the same reduced costs iff \(\pi_t + \pi_s = \text{const.} \).

Need consistent \(\pi_t, \pi_s \) or a new stopping criteria.

Consistent potentials: [Ikeda et al. 94]
\[
p_t(v) = \frac{\pi_t(v) - \pi_s(v)}{2}, \quad p_s(v) = -p_t(v).
\]

Compromise: in general, \(p_t \) gives worse lower bounds than \(\pi_t \).
Geometric bounds:
[folklore], [Pohl 69], [Sedgewick & Vitter 86].
For graph embedded in a metric space, use geometric distance.
Limited applicability.

The use of triangle inequality (applies to any graph!)

\[
\text{dist}(v, w) \geq \text{dist}(a, w) - \text{dist}(a, v); \quad \text{dist}(v, w) \geq \text{dist}(v, b) - \text{dist}(w, b).
\]

\(a\) and \(b\) are landmarks \((L)\).
Lemma: Potentials based on a landmark are feasible.

Proof: \(\pi_t(v) = \text{dist}(v, L) - \text{dist}(t, L) \); \(\pi_t(w) = \text{dist}(w, L) - \text{dist}(t, L) \)

\(\ell(v, w) - \pi_t(v) + \pi_t(w) = \ell(v, w) - \text{dist}(v, L) + \text{dist}(w, L) \geq 0 \).

Lemma: Maximum (minimum, average) of feasible potentials is feasible.

Proof: Left as an exercise.

ALT algorithms: A* search with landmark/triangle inequality bounds.

- Select landmarks (a small number).
- For all vertices, precompute distances to and from each landmark.
- For each \(s, t \), use max of the corresponding lower bounds for \(\pi_t(v) \).
Bidirectional ALT Example

Note landmarks and active landmarks.
Active Landmarks

• For a given s, t, most landmarks are useless.
• Dynamic selection is better than static selection.
• Start with two landmarks what give the best in and out bounds on the s-t distance.
• When made sufficient progress, check if there are better landmarks and add the best (if any).
• Restart the computation as potentials changed.
Landmark Selection

- The problem is probably NP-hard in any formulation.
- Landmarks can be general or domain-specific.
- Many possible heuristics, even more combinations.
- Iterative improvement, e.g., using local search.
- For very large graphs, preprocessing needs to be fast.
 - Ours takes a few minutes on 1,000,000 vertex graph,
 - several hours on a 30,000,000 vertex graph.
- See the paper for details.
- Better selection may be possible.
Demo
Memory-Efficient Implementation

• Challenge: compute shortest paths in NA on a palmtop. Solution: ALT + 4GB flash memory card.

• Toshiba 800e Pocket PC, 128 MB Ram (but ≈ 48 MB used by OS), 400 MHz Arm processor.

• Limitations:
 ◦ Small RAM for the task.
 ◦ Cannot read less than 512 bytes from flash.
 ◦ Slow random access read from flash (DSL speed).
Implementation (cont.)

- Input graph and landmark distances on flash.
- In RAM mutable nodes (visited vertices) with
 - ID,
 - parent,
 - distance,
 - heap position index.
- Use hashing to access mutable nodes.

Footprint: 15 MB for 200,000 mutable nodes, 78 MB for 2,000,000.
Nonnegative Lengths: Summary

- Dijkstra's algorithm and priority queues.
- Dial's algorithm, multilevel buckets, HOT queues.
- Relaxed selection rules and expected linear-time algorithm.
- Experimental results.
- Point-to-Point shortest paths.
- Bidirectional Dijkstra algorithms.
- Preprocessing, A* search, use of landmarks.
Remarks

• NSSSP almost solved in theory and in practice.
• Big open question: linear-time algorithm (like [Thorup 99] for undirected graphs).
• Preprocessing may help locality.
• P2P problem with preprocessing: significant recent progress in algorithms for special graph classes. Theoretical work trails behind.
• SSSP problem: widely studied but open questions remain, even for worst-case bounds: e.g., BFM is still the best strongly-polynomial algorithms.
• Other topics include dynamic and all pair algorithms, sophisticated data structures, special networks (planar, small lengths, ...), etc.