Edmonds-Karp Algorithm

- Use breadth-first search!!!
- This variant of Ford-Fulkerson algorithm runs in $O(nm^2)$.
Lemma 1

- $\Delta_f(v) = \text{minimum number of edges that have to be traversed from } s \text{ to a vertex } v \text{ in } G_f.$
- Claim: $\Delta_f(v)$ increases monotonically with each flow augmentation for every v in $G_f.$
Proof of Lemma 1

- By contradiction.
- Let f' denote the flow after the first Δ-decreasing flow augmentation. Let v denote the vertex with the smallest decreased Δ_f value and let (u,v) be the edge on the edge-minimal path to v in $G_{f'}$. Let f denote the flow just before f'. We know that $\Delta_f(v) < \Delta_f(v)$, and

- $\Delta_f(u) = \Delta_f(v) - 1$
- $\Delta_f(u) \geq \Delta_f(u)$
- Assume that (u,v) is in G_f
- $\Delta_f(v) \leq \Delta_f(u) + 1 \leq \Delta_f(u) + 1 = \Delta_f(v)$
Proof of Lemma 1 - Continued

- Hence \((u,v)\) is in \(G_{f'}\) but not in \(G_f\)
- This is only possible if the augmentation of \(f\) increased the flow from \(v\) to \(u\).
- Edmonds-Karp algorithm augments along shortest paths. Therefore
- \(\Delta_f(v) = \Delta_f(u) - 1 \leq \Delta_{f'}(u) - 1 = \Delta_{f'}(v) - 2\)
- This contradicts our assumption that \(\Delta_{f'}(v) < \Delta_f(v)\)
Lemma 2

• An edge \((u,v)\) on the augmenting path \(P\) in \(G_f\) is **critical** if the residual capacity of \(P\) is equal to the residual capacity of \((u,v)\).

• Claim: An edge \((u,v)\) can be critical at most \(n/2 - 1\) times.

• Proof: When \((u,v)\) is critical on an augmenting path \(P\), we must have \(\Delta_f(v) = \Delta_f(u) + 1\).

• When the flow is augmented along \(P\), \((u,v)\) disappears from the residual network.

• It reappears when \((v,u)\) is on the augmenting path for some flow \(f'\) and \(\Delta_{f'}(u) = \Delta_{f'}(v) + 1\)

• \(\Delta_{f'}(u) = \Delta_{f'}(v) + 1 \geq \Delta_f(v) + 1 = \Delta_f(u) + 2\)

• \(\Delta_f(u)\) is at most \(n-2\) \(((u,v)\) being critical implies that \(u \neq t)\)

• \((u,v)\) can be critical at most \((n-2)/2\) times
Bipartite Graphs

- A graph $G = (V,E)$ is **bipartite** if its vertices can be partitioned into two subsets X and Y such that every edge connects a vertex in X with a vertex in Y.
Maximum Matching in Graphs

- A **matching** is a subset of edges M in E such that each vertex v in V is incident with at most one edge of M. A **maximum matching** is a matching with the maximum number of edges.
Relating Flow to Matching in Bipartite Graphs

- Add source vertex and connect it to all vertices in X.
- Add sink vertex and connect all vertices in Y to it.
- Unit capacities for all edges.
Matching Defines Integral Flow

- Bipartite graph $G = (V, E)$.
- Flow network $G' = (V', E')$.
- If M is a matching in G then there is an integral flow f in G' of value $|f| = |M|$.
- Proof: For every edge (u, v) in M, let $f(s, u) = f(u, v) = f(v, t) = 1$ and $f(u, s) = f(v, u) = f(t, v) = -1$. For all other edges (u, v) in E', let $f(u, v) = 0$.
- Check that f satisfies skew symmetry, capacity constraints and flow conservation.
- The paths through the edges of matching are vertex disjoint (apart from s and t). It is obvious that $|f| = |M|$ and there is integer flow through each edge.
Flow Defines Matching

- Integral flow network $G' = (V', E')$.
- Bipartite graph $G = (V, E)$.
- If f is a flow in G' of value $|f|$ then M is a matching in G, $|M| = |f|$.
- Proof. Unit capacities and integrality of flow ensures that only one unit of flow can enter a vertex of X. Hence this unit of flow must leave such a vertex through exactly one edge.
- Similarly only one unit of flow can leave a vertex of Y. Hence this unit of flow can enter such a vertex through exactly one edge.
- Let M be the edges from X to Y with unit flow.
- M is a matching.

$$|M| = f(X, Y) = f(X, V') - f(X, X) - f(X, s) - f(X, t) = 0 - 0 + f(s, X) - 0 = f(s, V') = |f|$$
Max Matching Defines Max Flow
Max Flow Defines Max Matching

- Follows immediately if we can show that max flow algorithm returns integral flow when capacities are integer.
- Easy induction proof, see exercise 26.3-2
Push-Relabel Methods

- Work on one vertex at a time rather than entire residual network.
- Do not maintain flow conservation property until at the very end.
- Run in $O(n^2m)$. Can be improved to $O(n^3)$. Edmonds-Karp algorithm runs in $O(nm^2)$.
Preflow

- **Preflow**: Real-valued function $f : V \times V \rightarrow R$ satisfying:
 - Capacity constraint: $f(u,v) \leq c(u,v)$ for all $u, v \in V$
 - Skew symmetry: $f(u,v) = -f(v,u)$ for all $u, v \in V$
 - Flow conservation: $\sum_{v \in V} f(v,u) \geq 0$ for all $u \in V - \{s, t\}$

- **Excess flow into vertex u**: $e_f(u) = \sum_{v \in V} f(v,u)$
- **Vertex u is overflowing** if $e_f(u) > 0$
Let $G = (V,E)$ be a flow network with source s and sink t. Let f be a preflow in G.

Height function: Integer-valued function $h : V \rightarrow \mathbb{N}$ satisfying:
- $h(s) = |V|$, $h(t) = 0$
- $h(u) \leq h(v) + 1$ for every residual edge (u,v).

![Diagram of flow network with height function values](image)
Initialization

- Initial preflow:

\[
f[u, v] = \begin{cases}
 c(u, v) & \text{if } u = s \\
 -c(v, u) & \text{if } v = s \\
 0 & \text{otherwise}
\end{cases}
\]

- Initial height function:

\[
h[u] = \begin{cases}
 |V| & \text{if } u = s \\
 0 & \text{otherwise}
\end{cases}
\]
Push

• Consider an edge \((u,v)\) such that

 \[e_f(u) > 0, \quad c_f(u,v) > 0, \quad h(u) = h(v) + 1 \]

• Push \(\min \{ e_f(u), c_f(u,v) \} \) units of flow from \(u\) to \(v\).

 – Update \(f(u,v)\) and \(f(v,u)\), \(e_f(u)\) and \(e_f(v)\)

![Graph with nodes s, 1, 2, 3, 4, and t with edges and labels showing the flow and height functions.](image-url)
Relabel

- Consider a vertex \(u \) such that
 - \(e_f(u) > 0 \)
 - \(h(u) \leq h(v) \) for all edges from \(u \in E_f \).

- Let \(h(u) = 1 + \min \{ h(v) : (u,v) \in E_f \} \)
Push Relabel - Example
Push Relabel - Example