Lecture 2

Revised simplex algorithm, bounded variables

Taha sections
- 7.1, 7.2, 7.3
- all examples can be read briefly

Terminology

<table>
<thead>
<tr>
<th>j' th column in A</th>
<th>Taha</th>
<th>INTOPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>basis</td>
<td>P_j</td>
<td>A_j</td>
</tr>
<tr>
<td>reduced cost</td>
<td>z_j - c_j</td>
<td>\tau_j</td>
</tr>
</tbody>
</table>

Linear Programming (Taha example 3.2.1)

maximize \[2x_1 + 3x_2 \]
subject to \[2x_1 + x_2 \leq 4 \]
\[x_1 + 2x_2 \leq 5 \]
\[x_1, x_2 \geq 0 \]

Add slack variables

maximize \[2x_1 + 3x_2 + x_3 \]
subject to \[2x_1 + x_2 + x_3 = 4 \]
\[x_1 + 2x_2 + x_4 = 5 \]
\[x_1, x_2, x_3, x_4 \geq 0 \]

The set of constraints form a polyhedral.

<table>
<thead>
<tr>
<th>Non-basic</th>
<th>Basic</th>
<th>Basic Solution</th>
<th>Corner Point</th>
<th>Feasible</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1, x_2)</td>
<td>(x_1, x_4)</td>
<td>(x_2, x_4)</td>
<td>(x_1, x_3)</td>
<td>(x_1, x_2)</td>
<td>(x_3, x_4)</td>
</tr>
<tr>
<td>(x_1, x_3)</td>
<td>(x_2, x_3)</td>
<td>(x_2, x_4)</td>
<td>(x_1, x_4)</td>
<td>(x_1, x_3)</td>
<td>(x_2, x_4)</td>
</tr>
<tr>
<td>(x_1, x_4)</td>
<td>(x_2, x_1)</td>
<td>(x_2, x_3)</td>
<td>(x_1, x_4)</td>
<td>(x_2, x_1)</td>
<td>(x_2, x_3)</td>
</tr>
<tr>
<td>(x_2, x_3)</td>
<td>(x_1, x_2)</td>
<td>(x_2, x_4)</td>
<td>(x_1, x_3)</td>
<td>(x_1, x_2)</td>
<td>(x_2, x_3)</td>
</tr>
<tr>
<td>(x_2, x_4)</td>
<td>(x_1, x_1)</td>
<td>(x_2, x_3)</td>
<td>(x_1, x_4)</td>
<td>(x_2, x_1)</td>
<td>(x_2, x_3)</td>
</tr>
<tr>
<td>(x_3, x_4)</td>
<td>(x_1, x_2)</td>
<td>(x_3, x_4)</td>
<td>(x_1, x_3)</td>
<td>(x_3, x_4)</td>
<td>(x_1, x_2)</td>
</tr>
</tbody>
</table>

Basis, basis feasible solution

Since we have added slack variables, the number of variables \(n \) is larger than the number of constraints \(m \).

maximize \[cx \]
subject to \[Ax = b \]
\[x \geq 0 \]

Choose \(m \) linearly independent columns from \(A \). The corresponding set \(B = \{ i_1, i_2, \ldots, i_m \} \) is called a basis.

Reformulation

maximize \[c_B x_B + c_N x_N \]
subject to \[A_B x_B + A_N x_N = b \]
\[x \geq 0 \]

A Basis feasible solution is obtained by setting \(x_N = 0 \).

\[A_B x_B + A_N 0 = b \]
\[x_B = A_B^{-1} b \]

\(x_B \) is well defined since \(A_B \) is an \(m \times m \) matrix and columns are linearly independent.
Algorithm Search through all corner points
Basis can be chosen in \(C_m^n = \frac{n!}{m!(n-m)!} \) ways

Adjacent basis feasible solutions Two basis feasible solutions \(x^1 \) and \(x^2 \) are adjacent if \(B^1 \) and \(B^2 \) have \(m-1 \) common elements.
(one entering, one leaving variable)

Simplex algorithm is a greedy algorithm which works as follows: Move from basis feasible solution to adjacent basis feasible solution such that objective function is “increased most possible” in each step.

Canonical form (Taha notation)

Objective function \(\bar{c}x \) expressed in nonbasis variables only (canonical form)

\[
\bar{c}_B = 0
\]

This can be obtained by considering the objective function as an ordinary constraint

\[
\begin{align*}
z - cx &= 0 \\
Ax &= b \\
x &\geq 0
\end{align*}
\]

Multiplying any constraint \(i \) by a real number \(\pi_i \) and adding it to some other constraint \(j \) does not change the problem. In particular, we can add any constraint to the objective function.

\[
z - cx + \pi_i(Ax - b) = 0
\]

\[
z + (\pi_iA - c)x = \pi_i b
\]

\[
z + (\bar{\pi}_A - c_B)x_N + (\pi A_N - c_N)x_N = \pi b
\]

To have a canonical form \(\bar{c}_B = 0 \) so we must have \(\pi A_B - c_B = 0 \). From this we can determine \(\pi \) as

\[
\pi = c_B A_B^{-1}
\]

Thus the objective function becomes

\[
z - (c_B A_B^{-1} A_N - c_N) x_N = (c_B A_B^{-1}) b
\]

\[
z + \bar{c}_N x_N = z_0
\]

where \(\bar{c}_N = c_B A_B^{-1} A_N - c_N \) are the reduced costs.

Simplex, example 3.2.1

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>1 2 -3 0 0</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0 0 1 0 0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x_4)</td>
<td>0 0 1 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Entering variable \(x_2 \)
maximum value of entering variable \(\min \{\frac{4}{7}, \frac{5}{7}\} = \frac{5}{7} \)
leaving variable is \(x_4 \)

Pivot row 3 with \(\left(\frac{2}{7}, -\frac{1}{7}, \frac{1}{7} \right) \)

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>1 -\frac{2}{7} 0 0</td>
<td>0</td>
<td>\frac{5}{7}</td>
<td>\frac{15}{7}</td>
<td>\frac{5}{7}</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0 \frac{2}{7} 0 1 -\frac{1}{7}</td>
<td>\frac{1}{7}</td>
<td>\frac{3}{7}</td>
<td>\frac{5}{7}</td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>0 \frac{2}{7} 1 0 1</td>
<td>\frac{3}{7}</td>
<td>\frac{5}{7}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entering variable \(x_1 \)
maximum value of entering variable \(\min \{\frac{3}{7}, \frac{5}{7}\} = 1 \)
leaving variable is \(x_3 \)

Pivot row 2 with \(\left(\frac{4}{7}, -\frac{2}{7}, -\frac{1}{7} \right) \)

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>1 0 0 \frac{1}{7}</td>
<td>\frac{2}{7}</td>
<td>\frac{3}{7}</td>
<td>\frac{8}{7}</td>
<td>\frac{8}{7}</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0 1 0 \frac{3}{7} -\frac{1}{7}</td>
<td>1</td>
<td>\frac{3}{7}</td>
<td>\frac{8}{7}</td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>0 0 1 -\frac{1}{7} \frac{2}{7}</td>
<td>2</td>
<td>\frac{3}{7}</td>
<td>\frac{8}{7}</td>
<td></td>
</tr>
</tbody>
</table>

All reduced costs in objective are positive, hence stop

Canonical form (Cormen notation)

The objective function \(\bar{c}x \) is in canonical form if

\[
\bar{c}_B = 0
\]

This can be obtained by considering the objective function as an ordinary constraint

\[
\begin{align*}
z &= cx \\
Ax &= b \\
x &\geq 0
\end{align*}
\]

Multiplying any constraint \(i \) by a real number \(\pi_i \) and adding it to some other constraint \(j \) does not change the problem. In particular, we can add any constraint to the objective function.

\[
z - cx + \pi_i(Ax - b) = 0
\]

\[
z + (\pi_iA - c)x = \pi_i b
\]

\[
z + (c_B - \pi_i A_B)x_N + (\pi A_N - c_N)x_N = \pi b
\]

To have a canonical form \(\bar{c}_B = 0 \) so we must have \(c_B - \pi A_B = 0 \). From this we can determine \(\pi \) as

\[
\pi = c_B A_B^{-1}
\]

Thus the objective function becomes

\[
z - (c_B A_B^{-1} A_N - c_N) x_N = (c_B A_B^{-1}) b
\]

\[
z + \bar{c}_N x_N = z_0
\]

where \(\bar{c}_N = c_B A_B^{-1} A_N - c_N \) are the reduced costs.
Current solution value

The basis feasible solution is found by setting \(x_N = 0 \). In this case the objective value becomes:

\[z + \bar{c}_N x_N = z_0 \]

Reduced costs

The reduced costs \(\bar{c}_j \) represent the gain by increasing the value of a non-basis variable.

Iterative step

Choose the variable \(s \in N \) with largest negative value of \(\bar{c}_s \) to enter basis.

Optimality criteria

If all the reduced costs \(\bar{c}_j \geq 0 \) for a given basis feasible solution \(x \), then \(x \) is an optimal solution.

<table>
<thead>
<tr>
<th>basic</th>
<th>(z)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>1</td>
<td>(-\frac{1}{2})</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(-\frac{1}{2})</td>
<td>(1)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>1</td>
<td>(-\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Iteration 1:

Most promising variable \(x_1 \)

Keeping all other nonbasic variables at 0, constraints

\[x_3 \geq 0, \quad x_3 = \frac{3}{4} - \frac{3}{4} x_1 \Rightarrow \frac{3}{4} \geq \frac{3}{4} x_1 \geq 0 \]

implying \(x_1 \leq 1 \).

When \(x_1 = 1 \) we have \(x_3 = 0 \) (\(x_3 \) leaves basis)

Revised simplex algorithm, maximization (Taha 7.2.2)

0) Construct a starting basis feasible solution and let \(A_B \) and \(c_B \) be its associated basis and objective.

1) Compute the inverse \(A_B^{-1} \).

2) For each nonbasis variable \(j \in N \) compute

\[\bar{c}_j = z_j - c_j = c_B A_B^{-1} A_j - c_j \]

if \(\bar{c}_j \geq 0 \) for all nonbasis \(j \in N \) stop; optimal solution

\[x_B = A_B^{-1} b, \quad z = c_B x_B \]

Else, apply optimality condition to find entering variable \(s \)

\[s = \arg \min_{j \in N} \{ \bar{c}_j \} \]

3) Compute \(\bar{A}_s = A_B^{-1} A_s \).

If \(\bar{A}_s \leq 0 \) the problem is unbounded, stop.

Else, compute \(\bar{b} = A_B^{-1} b \).

Feasibility check

\[k = \arg \min_{i=1,...,m} \left\{ \frac{\bar{b}_i}{a_{is}} \middle| a_{is} > 0 \right\} \]

Leaving variable: basis variable corresponding to row \(k \), \(r = B_k \).

4) New basis is \(B := B \cup \{ s \} \setminus \{ r \} \). Go to step 1.

When Simplex terminates

Assume that problem is bounded and feasible. When simplex terminates we have

- solution value

\[z^* = c_B A_B^{-1} b \]

- objective function

\[z - (c_B A_B^{-1} A_N - c_N) x_N = (c_B A_B^{-1}) b \]

- reduced costs

\[\bar{c} = c_B A_B^{-1} A_N - c_N \geq 0 \]

- basis equations

\[x_B + A_B^{-1} A_N x_N = A_B^{-1} b \]

- nonnegativity of all variables

\[x \geq 0 \]
Advantages of revised simplex

- Simplex table expressed in original variables
- Valuable interpretation of all terms in simplex table
- Can avoid to write A explicitly (e.g. delayed column generation)

All commercial simplex algorithms use revised simplex

- Fewer calculations needed, since only maintain A_B^{-1} and right-hand side
- Less storage, due to same arguments
- Rest of A can be stored in compact form (only storing non-zero elements, low precision)
- Calculations made on A_B^{-1} with high precision

Bigger example, The Reddy Mikks Company

Problem formulation in standard form

\[
\begin{align*}
\text{maximize} & \quad 5x_1 + 4x_2 \\
\text{subject to} & \quad 6x_1 + 4x_2 \leq 24 \\
& \quad x_1 + 2x_2 \leq 6 \\
& \quad -x_1 + x_2 \leq 1 \\
& \quad 2x_1 + x_2 \leq 2 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

Add slack variables x_3, x_4, x_5, x_6

\[
\begin{align*}
\text{maximize} & \quad 5x_1 + 4x_2 \\
\text{subject to} & \quad 6x_1 + 4x_2 + x_3 = 24 \\
& \quad x_1 + 2x_2 + x_4 = 6 \\
& \quad -x_1 + x_2 + x_5 = 1 \\
& \quad x_2 + x_6 = 2 \\
& \quad x_1, x_2, x_3, x_4, x_5, x_6 \geq 0
\end{align*}
\]

Revised simplex algorithm

Example, Reddy Mikks.

\[
\max \ z = (5, 4, 0, 0, 0, 0)(x_1, x_2, x_3, x_4, x_5, x_6)^T
\]

subject to

\[
\begin{pmatrix}
6 & 4 & 1 & 0 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6
\end{pmatrix}
= \begin{pmatrix} 24 \\ 6 \\ 1 \\ 2 \end{pmatrix}
\]
Iteration 0

\[B = \{3, 4, 5, 6\}\]
\[N = \{1, 2\}\]
\[c_B = (0, 0, 0, 0)\]
\[A_B = (A_3, A_4, A_5, A_6) = I\]
\[A_B^{-1} = I\]

Thus
\[x_B = A_B^{-1}b = (24, 6, 1, 2)^T\]
\[z = c_Bx_B = 0\]

Optimality computation

\[c_BA_B^{-1} = (0, 0, 0, 0)\]
\[\{\overline{e}_j\}_{j \in N} = c_BA_B^{-1}(A_1, A_2) - (c_1, c_2) = (-5, -4)\]

entering variable
\[s = \arg\min_{j \in N} \{\overline{e}_j\} = \arg\min_{j = 1, 2} \{-5, -4\} = 1\]

Feasibility computation

\[\overline{b} = A_B^{-1}b = (24, 6, 1, 2)^T\]
\[\overline{A}_s = A_B^{-1}A_s = (6, 1, -1, 0)^T\]

Feasibility computation

\[\overline{b} = (x_1, x_2, x_3, x_4, x_5, x_6)^T = (4, 2, 5, 2)^T\]
\[\overline{A}_s = A_B^{-1}A_s = (\frac{2}{3}, \frac{4}{3}, \frac{5}{3}, 1)^T\]

leaving variable

\[k = \arg\min_{i = 1, \ldots, m} \left\{ \frac{e_i}{\overline{a}_{ii}} \right\} a_{ii} > 0 \]
\[= \arg\min \left\{ \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 1 \right\} \]
\[= \arg\min \{6, \frac{3}{2}, 3, 2\} = 2\]

hence, leaving variable is second element in \(B = \{1, 4, 5, 6\}\), so leaving variable is \(r = 4\).
Iteration 2

\[B = \{1, 2, 5, 6\} \]
\[N = \{3, 4\} \]
\[c_B = (5, 4, 0, 0) \]
\[A_B = (A_1, A_2, A_5, A_6) = \begin{pmatrix}
6 & 4 & 0 & 0 \\
1 & 2 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix} \]

we find
\[
A_B^{-1} = \frac{1}{8} \begin{pmatrix}
2 & -4 & 0 & 0 \\
-1 & 6 & 0 & 0 \\
3 & -10 & 8 & 0 \\
1 & -6 & 0 & 8
\end{pmatrix}
\]

thus
\[x_B = A_B^{-1} b = (3, 3, 5, 1)^T \]
\[z = c_B x_B = 21 \]

Optimality computation
\[c_B A_B^{-1} = \begin{pmatrix}
(3, 1, 5, 0, 0) \\
\{\tilde{e}_j\}_{j \in N} = c_B A_B^{-1} (A_3, A_4) - (c_3, c_4) = (\frac{3}{4}, \frac{1}{2})
\end{pmatrix} \]

Thus \(B \) is optimal, stop.

Optimal solution
\[
\begin{align*}
x_1 &= 3 \\
x_2 &= \frac{3}{4} \\
z &= 21
\end{align*}
\]

Applications of OR

Example 6.3.2

- weighted graph \(G = (V, E) \)
- each edge \((i, j)\) has probability of success \(p_{ij} \)
- find most reliable route \(s \to t \)

Introduce \(x_{ij} = 1 \) iff edge \((i, j)\) is used

- flow conservation: \(\sum_{j \in V} x_{ij} - \sum_{j \in V} x_{ji} = 0 \)
- one edge leaving \(s \), one edge entering \(t \)
- objective

\[
\max \prod_{x_{ij}=1} p_{ij}
\]

<table>
<thead>
<tr>
<th>(x_{12})</th>
<th>(x_{13})</th>
<th>(x_{23})</th>
<th>(x_{24})</th>
<th>(x_{34})</th>
<th>(x_{35})</th>
<th>(x_{45})</th>
<th>(x_{46})</th>
<th>(x_{57})</th>
<th>(x_{67})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[s \]
\[t \]
\[1 \]
\[2 \]
\[3 \]
\[4 \]
\[5 \]
\[6 \]

Applications of OR

Objective
\[
\max \log \prod_{x_{ij}=1} p_{ij} = \max \sum_{(i, j) \in E} \log p_{ij} x_{ij} = \min \sum_{(i, j) \in E} -\log p_{ij} x_{ij}
\]

Size of input
- \(V \) nodes, \(E \) edges with cost

Size of model
- \(E = O(V^2) \) variables
- \(O(V) \) constraints
- Size of \(A \)-matrix \(O(V^3) \)

Revised simplex
- Only store \(A_B \) of size \(O(V^2) \)
- Columns in \(A \) can be generated “on the fly” from graph

Note

Cormen is using a better LP-formulation of shortest-path
Advanced comments

Pivot operation corresponds to multiplying current A_B^{-1} with

$$E = \begin{pmatrix}
1 & \nu_1 \\
\vdots & \vdots \\
1 & \nu_r \\
\vdots & \vdots \\
1 & \nu_m
\end{pmatrix}
$$

If current basis inverse is A_B^{-1} and right-hand side is \bar{b} then new basis and right-hand side is

$$EA_B^{-1} \quad \bar{b}
$$

If initial basis is I and operations E_1, E_2, \ldots, E_k then

$$A_B^{-1} = E_k \ldots E_2 E_1 I \quad \bar{b} = E_k \ldots E_2 E_1 b$$

Advanced algorithms

- Maintain A_B^{-1} in product form
- Only column v_1, \ldots, v_m is stored from E
- When $A_B^{-1} = E_k \ldots E_2 E_1$ becomes too complex to calculate, store result, start over again.

Simplex, example 3.2.1

<table>
<thead>
<tr>
<th>Iteration 0:</th>
<th>basic</th>
<th>z</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z</td>
<td>1</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>x_3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>x_4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Entering variable x_2

maximum value of entering variable $\min\{4, 5\} = 5$

leaving variable is x_4

Pivot row 3 with $(\frac{3}{2}, -\frac{1}{2}, \frac{1}{2})$

<table>
<thead>
<tr>
<th>Iteration 1:</th>
<th>basic</th>
<th>z</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z</td>
<td>1</td>
<td>$\frac{4}{2}$</td>
<td>0</td>
<td>$\frac{5}{2}$</td>
<td>$\frac{3}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_3</td>
<td>0</td>
<td>$\frac{7}{2}$</td>
<td>0</td>
<td>$\frac{7}{2}$</td>
<td>$\frac{7}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_2</td>
<td>0</td>
<td>$\frac{7}{2}$</td>
<td>1</td>
<td>$\frac{7}{2}$</td>
<td>$\frac{7}{2}$</td>
<td></td>
</tr>
</tbody>
</table>

Entering variable x_1

maximum value of entering variable $\min\{\frac{3}{2}, \frac{5}{2}\} = 1$

leaving variable is x_3

Pivot row 2 with $(\frac{1}{3}, \frac{2}{3}, -\frac{1}{3})$

<table>
<thead>
<tr>
<th>Iteration 2:</th>
<th>basic</th>
<th>z</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\frac{4}{3}$</td>
<td>$\frac{3}{3}$</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$\frac{2}{3}$</td>
<td>$-\frac{1}{3}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{2}{3}$</td>
<td>2</td>
</tr>
</tbody>
</table>

All reduced costs in objective are positive, hence stop

Example

iteration 1

$$E_1 = \begin{pmatrix}
1 & -\frac{1}{2} \\
0 & 1/2
\end{pmatrix}
$$

iteration 2

$$E_2 = \begin{pmatrix}
2 & 0 \\
-\frac{1}{3} & 1
\end{pmatrix}
$$

we have

$$A_B^{-1} = E_2 E_1 = \begin{pmatrix}
\frac{2}{3} & 0 \\
-\frac{1}{3} & 1
\end{pmatrix} \begin{pmatrix}
1 & -\frac{1}{2} \\
0 & 1/2
\end{pmatrix} = \begin{pmatrix}
\frac{2}{3} & -\frac{1}{2} \\
\frac{1}{3} & \frac{1}{2}
\end{pmatrix}
$$

Bounded variables

In production planning, branch-and-bound we frequently have

$$\ell \leq x \leq u$$

Lower bound

$$x \geq \ell$$

substitute

$$x = \ell + x'$$

$$x' \geq 0$$

solve problem in terms of x'. Back-substitute original variables $x = x' + \ell$
Bounded variables

Upper bound
Handle when computing max value of entering variable.

\[x_j \leq \arg \min_{i=1,\ldots,m} \left\{ \frac{b_i}{a_{is}} \mid a_{is} > 0 \right\} \]

New constraints
We need to ensure \(x_i \geq 0 \) for \(i \in B \)

\[x_j \leq \theta_j^i = \min_{i=1,\ldots,m} \left\{ \frac{b_i - u_i}{a_{is}} \mid a_{is} > 0 \right\} \]

and to ensure that \(x_i \leq u_i \) for \(i \in B \)

\[x_j \leq \theta_j^i = \min_{i=1,\ldots,m} \left\{ \frac{b_i - u_i}{a_{is}} \mid a_{is} > 0 \right\} \]

combining the three restrictions

\[x_j = \min(\theta_j^1, \theta_j^2, u_j) \]

Complexity of Simplex

Klee and Minty (1975) proved that the Simplex algorithm may use exponential time

\[
\begin{align*}
\text{maximize} & \quad 2^{n-1}x_1 + 2^{n-2}x_2 + \ldots + 2x_{n-1} + 1x_n \\
\text{subject to} & \quad 1x_1 + \ldots + 1x_n \leq 5 \\
& \quad 4x_1 + 1x_2 + \ldots + 1x_n \leq 5^2 \\
& \quad 8x_1 + 4x_2 + 1x_3 + \ldots + 1x_n \leq 5^3 \\
& \quad \vdots \\
& \quad 2^nx_1 + 2^{n-1}x_2 + \ldots + 4x_{n-1} + 1x_n \leq 5^n \\
x_i \geq 0, i = 1, \ldots, n
\end{align*}
\]

The problem has
\begin{itemize}
\item \(n \) variables
\item \(n \) constraints
\item \(2^n \) extreme points
\item Simplex, starting at \(x = (0, \ldots, 0) \), visits all extreme points
\item optimal solution \((0, 0, \ldots, 0, 5^n)\)
\end{itemize}

Pitfalls:
\begin{itemize}
\item Since upper bounds \(x_j \leq u_j \) are handled implicit, no dual variable are calculated corresponding to the constraint
\item Duality theorem, complementary slackness seem to not work
\end{itemize}

Only use bounds if you know what you are doing, otherwise use explicit constraint

Complexity of Simplex

For \(n = 3 \) simplex visits \(2^3 = 8 \) extreme points

Assume \((s_1, s_2, s_3)\) slack variables:

<table>
<thead>
<tr>
<th>basis</th>
<th>nonbasis x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>-4</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(s_1)</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>8</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>basis</th>
<th>nonbasis x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>-4</td>
<td>2</td>
<td>-1</td>
<td>30</td>
</tr>
<tr>
<td>(s_1)</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>8</td>
<td>4</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>basis</th>
<th>nonbasis x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>-4</td>
<td>2</td>
<td>-1</td>
<td>75</td>
</tr>
<tr>
<td>(s_1)</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>8</td>
<td>4</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>basis</th>
<th>nonbasis x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>-4</td>
<td>2</td>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>(s_1)</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>8</td>
<td>4</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>basis</th>
<th>nonbasis x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>-4</td>
<td>2</td>
<td>1</td>
<td>125</td>
</tr>
<tr>
<td>(s_1)</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>8</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>
Complexity of Simplex

- Worst-case complexity is exponential (instances have been constructed which "fools" the greedy strategy to visit nearly all corner points).
- Several heuristics are used in commercial simplex implementations

<table>
<thead>
<tr>
<th>m \ n</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.4</td>
<td>14.2</td>
<td>17.4</td>
<td>19.4</td>
<td>20.2</td>
</tr>
<tr>
<td>20</td>
<td>25.2</td>
<td>30.7</td>
<td>38.0</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>44.4</td>
<td>52.7</td>
<td>62.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>67.6</td>
<td>78.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>95.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Avis and Chvatal (1978).