Capacity Planning

Sales and Operations Planning
- Forecasting
- Capacity planning
- Inventory optimization
- How much capacity assigned to each production unit?
- Realistic capacity estimates
- Strategic level
- Moderately long time horizon
- Larger time buckets
- Data not known exactly

Operations Planning
- Pochet-Wolsey’s model is too large, NP-hard
- Decomposition → inaccurate model
- Medium-term planning horizon, strategic level
- Larger time buckets

Some definitions
- Work in Process: inventory between the start and end points of a product routing is called work in process (WIP)
- WIP inventory: work in process inventory
- FGI inventory: final goods inventory
- Lead time: the time allotted for production of a part on that routing or line.
- Little's Law
 \[\text{WIP} = \text{Throughput} \times \text{cycle time} \]

Master Production Scheduling Model (Pochet-Wolsey)
- time horizon \(t = 1, \ldots, n \)
- \(\phi_i^t \): unit production cost
- \(q_i^t \): fixed production cost
- \(\pi_i^t \): inventory cost
- \(D_i^t \): demand

Decision variables
- \(x_i^t \): production lot size in period \(t \)
- \(y_i^t \): binary variable indicating production period \(t \)
- \(I_i^t \): inventory at end of period \(t \)

Moreover
- \(C_i^k \): available capacity, resource \(k \) time \(t \)
- \(\xi_k^i \): per unit resource consumption
- \(\beta_k^i \): fixed resource consumption
Material Requirement Planning Model (Pochet-Wolsey)

Multi-item multi-level capacitated lot-sizing model

• Optimize simultaneously production and purchase of all items
• from raw materials to finished products
• satisfy external demands
• satisfy internal demands
• short-term horizon

Bill of materials (BOM)

Material Requirement Planning Model (Pochet-Wolsey)

• $S(i)$ set of direct successors of i (items consuming i)
• r_{ij} amount of item i required to make one item j
• γ_i lead-time to produce or deliver a lot of i
 i.e. x_i can be delivered at time $t + \gamma_i$

Model

$$\min \sum_{i=1}^{m} \sum_{t=1}^{n} \phi_i x_{it} + q_i y_{it} + \pi_i I_{it}$$

Subject to:

$$I_{i,t-1} + x_{i,t-\gamma_i} = \left(D_{i,t} + \sum_{j \in S(i)} r_{ij} x_{j,t}\right) + I_{i,t} \quad \forall i, t$$

$$x_{i,t} \leq M_i y_{i,t} \quad \forall i, t$$

$$\sum_{i=1}^{m} \varepsilon_i x_{i,t} + \sum_{i=1}^{m} \beta_i y_{i,t} \leq C_i \quad \forall t$$

$$x_{i,t} \in \mathbb{R}_+, I_{i,t} \in \mathbb{R}_+$$

Large, NP-hard model, difficult to solve

Capacity of Resources

• Gross capacity
• Usable capacity
• Productivity factor

<table>
<thead>
<tr>
<th>Resource Description</th>
<th>Gross Capacity (hours/day)</th>
<th>Productivity Factor</th>
<th>Usable Capacity (hours/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine S100</td>
<td>8</td>
<td>0.95</td>
<td>7.6</td>
</tr>
<tr>
<td>Forklift</td>
<td>8</td>
<td>0.85</td>
<td>6.8</td>
</tr>
<tr>
<td>Machine ASS</td>
<td>16</td>
<td>0.85</td>
<td>13.6</td>
</tr>
<tr>
<td>Machine PPP</td>
<td>8</td>
<td>0.95</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Capacity limit is soft (queuing theory)

- variation in arriving jobs
- variation in lead times

Lead time depends on load

Asmundsson, Single-stage multi-product planning

Simplified model

$$\min \sum_{t} \sum_{i} \phi_i X_{it} + \pi_i I_{it}$$

Subject to:

$$I_{i,t} = I_{i,t-1} + X_{i,t-\gamma_i} - D_{it} \quad \forall i, t$$

$$\sum_{i=1}^{m} \varepsilon_i X_{it} \leq C_i \quad \forall t$$

$$X_{it}, I_{it} \in \mathbb{R}_+ \quad \forall i, t$$

• LP-model (easy to solve)
• Setup times are neglected (future work)
• Constant lead time (production time) γ_i
Introduction

Accurate measurements of manufacturing capacity is hard to obtain (Elmaghraby 1991)

- Stochastic performance analysis models
 Queuing models capture important aspects (Hopp, Spearman 2000)
 Stochastic model of whole production unrealistic
- Deterministic techniques
 Divide planning horizon in discrete buckets
 Assign capacity in each bucket
 Solution satisfying aggregated constraint not feasible in practice
- Integrating approaches (Hung, Leachman 1996)
 Solve LP model for production planning
 Feed into simulator to estimate lead times
 Add cut if not feasible

Relation between WIP and system throughput

- Analytic congestion model for closed production systems (Spearman 1991)
- Queuing models of manufacturing systems (Buzacott, Shanthikumar 1993)

Connection between WIP, variation, utilization (Medhi 1991)

\[
WIP = \frac{c^2 \rho^2}{1 - \rho} + \rho
\]

\[c \text{ variation service time and arrivals, } \rho \text{ utilization of server}
\]

\[
\rho = \sqrt{(WIP + 1)^2 + 4WIP(c^2 - 1) - (WIP + 1)^2(c^2 - 1)}
\]

Figure for different values of \(c\)

Clearing Function

Capacity limit depends on Work-in-process (W)

\[
\sum_i \xi_{it} X_{it} \leq f_t (\sum_i \xi_{it} W_{it})
\]

Asmundsson

Single Stage Multi-product Planning Model Using Clearing Functions

- \(X_{it}\) number of units of product \(i\) produced time \(t\)
- \(R_{it}\) number of units or product \(i\) released into the stage at the beginning of time period \(t\)
- \(W_{it}\) number of units of product \(i\) in WIP inventory at the end of period \(t\)
- \(I_{it}\) number of units of product \(i\) in finished goods inventory at the end of period \(t\)
- \(\xi_{it}\) amount of resource (machine time) required to produce one unit of item \(i\) time \(t\)
- \(f_t(W)\) clearing function representing resource in period \(t\)
- \(D_t\) the demand for product \(i\) in period \(t\)

If capacity depends on WIP we need to have cost associated with WIP (internal inventory)
CF model (Clearing Function)

\[
\min \sum_i \sum_t \phi_{it} X_{it} + \omega_{it} W_{it} + \pi_{it} I_{it} + \rho_{it} R_{it}
\]

Subject to:

\[
\begin{align*}
W_{it} &= W_{i,t-1} - X_{it} + R_{it} \quad \forall i, t \\
I_{it} &= I_{i,t-1} + X_{it} - D_{it} \quad \forall i, t \\
\sum_i \xi_{it} X_{it} &\leq f_t \left(\sum_i \xi_{it} W_{it} \right) \quad \forall t \\
X_{it}, W_{it}, I_{it}, R_{it} &\in \mathbb{R}_+ \quad \forall i, t
\end{align*}
\]

where

- \(\phi_{it} \) cost of producing unit \(i \) time \(t \)
- \(\omega_{it} \) cost of WIP of unit \(i \) time \(t \)
- \(\pi_{it} \) cost of inventory unit \(i \) time \(t \)
- \(\rho_{it} \) cost of releasing unit \(i \) time \(t \)

Problem with capacity constraint

\[X_A + X_B \leq f(W_A + W_B) \]

for two products \(A, B \)

- Solution exists \(X_A > 0, X_B = 0, W_A = 0, W_B > 0 \)
- Maintain high \(W_B \) if cheap
- Create capacity for \(X_A \)

No link between WIP available and production

Solution

\(Z_{it} \geq 0 \) represent an allocation of expected throughput among different products

\[
X_{it} \leq Z_{it} f_t \left(\sum_i \xi_{it} W_{it} \right) \quad \forall i, t
\]

\[
\sum_i Z_{it} = 1 \quad \forall t
\]

Depends on total WIP.

Prefer WIP of specific product \(i \).

Assuming \(\xi_{it} W_{it} = Z_{it} \sum_i \xi_{it} W_{it} \) we get (?)

\[
X_{it} \leq Z_{it} f_t \left(\frac{\sum_i \xi_{it} W_{it}}{Z_{it}} \right) \quad \forall i, t
\]

\[
\sum_i Z_{it} = 1 \quad \forall t
\]

ACF model (Allocated Clearing Function)

\[
\min \sum_i \sum_t \phi_{it} X_{it} + \omega_{it} W_{it} + \pi_{it} I_{it} + \rho_{it} R_{it}
\]

Subject to:

\[
\begin{align*}
W_{it} &= W_{i,t-1} - X_{it} + R_{it} \quad \forall i, t \\
I_{it} &= I_{i,t-1} + X_{it} - D_{it} \quad \forall i,t \\
X_{it} &\leq Z_{it} f_t \left(\sum_i \xi_{it} W_{it} / Z_{it} \right) \quad \forall t \\
\sum_i Z_{it} &\leq 1 \quad \forall t \\
X_{it}, W_{it}, I_{it}, R_{it} &\in \mathbb{R}_+ \quad \forall i, t
\end{align*}
\]

Utilization vs. WIP

- Utilization on the y-axis.
- WIP on the x-axis.
- Various curves showing utilization at different WIP levels.
Outer approximation of clearing function

Outer linear functions \(\alpha^c W_i + \beta^c \) for \(c = 1, \ldots, C \)
\[
\sum_i \xi_{it} W_{it} \leq \alpha^c W_t + \beta^c \\
\forall c, t
\]
then
\[
f(W) = \min_{c=1,\ldots,C} \{ \alpha^c W_t + \beta^c \}
\]
Assume that
\[\alpha^1 > \alpha^2 > \alpha^3 > \ldots > \alpha^C = 0\]

Linear model
\[
\min \sum_i \sum_t \phi_{it} X_{it} + \omega_{it} W_{it} + \pi_{it} I_{it} + \rho_{it} R_{it}
\]
Subject to:
\[
W_{it} = W_{i,t-1} - X_{it} + R_{it} \quad \forall i, t
\]
\[
I_{it} = I_{i,t-1} + X_{it} - D_{it} \quad \forall i, t
\]
\[
\sum_i \xi_{it} X_{it} \leq \alpha^c \xi_{it} W_{it} + Z_{it}^c \beta^c \quad \forall i, t, c
\]
\[
\sum_i Z_{it} = 1 \quad \forall t
\]
\[
Z_{it}, X_{it}, W_{it}, I_{it}, R_{it} \in \mathbb{R}^+, \quad \forall i, t
\]
Which is correct since
\[
Z_{it} f \left(\frac{\xi_{it} W_{it}}{Z_{it}} \right) = Z_{it} \min \left\{ \alpha^c \frac{\xi_{it} W_{it}}{Z_{it}} + \beta^c \right\}
\]
\[
= \min_c \left\{ \alpha^c \xi_{it} W_{it} + \beta^c Z_{it} \right\}
\]

Asmundsson, experimental results

Single-stage system, 3 products
- Variation of arrival 0.5 variation of service 2
- Max throughput 10 items / period
- Minimize inventory holding costs \((\pi_1, \pi_2, \pi_3) = (1, 2, 3)\)
- Holding costs of WIP and FGI are same

Clearing function, linear approximation

Asmundsson, experimental results

Production Plan

Figure 2: Production plan

Figure 3: Production lead time

Throughput

Figure 5: Throughput and Demand of ACF and FC Models.

Demand (gray), throughput from ACF more smooth than FC

Figure 6: WIP and FGI levels, Cumulative across Items.

WIP high when throughput high, FC model does not capture WIP
FC solution only optimizes FGI holding costs, fails to capture tradeoffs WIP, FGI
Asmundsson, experimental results

Figure 7: Production Lead-Time across all Items.

Lead time greater than 0.1 (from processing time), varies significantly.

Figure 8: Marginal Cost of Capacity (MCC).

Figure 9: Nonlinear Relationship between throughput and lead time.