Minimum Makespan Scheduling

- Minimum makespan scheduling: Definition and variants
- Factor 2 algorithm for identical machines
- PTAS for identical machines
- Factor 2 algorithm for unrelated machines

Martin Zachariasen, DIKU

December 4, 2006
Minimum Makespan Scheduling

General framework considered:

- We are given a set of jobs and a set of machines.

- The jobs have either identical or different processing times on the given machines.

- The task is to assign jobs to machines so that the completion time, also called the makespan is minimized. (We may also say that we minimize the maximum total processing time on any machine.)

- The order in which the jobs are processed on a particular machine does not matter, and we may assume that they are completely “packed”.

Other variants:

- Jobs have precedence constraints.

- There may be setup times for different types of jobs.

- There may be due and release times for some jobs.
Minimum makespan scheduling on identical machines

Given a set of n jobs with processing times $p_i \in \mathbb{Z}^+, i = 1, \ldots, n$, and a positive integer m.

Find an assignment of the jobs to m identical machines such that the makespan is minimized.

Minimum makespan scheduling on unrelated machines

Given a set J of n jobs and a set M of m machines. The processing time for a job $j \in J$ on machine $i \in M$ is $p_{ij} \in \mathbb{Z}^+$.

Find an assignment of the jobs J to the machines M such that the makespan is minimized.
Algorithm 10.2 (Minimum makespan, identical machines)

1. Order the jobs arbitrarily.
2. Schedule jobs on machines in this order: schedule the next job on the machine that has been assigned the least amount of work so far.

⋄ ⋄ ⋄

Theorem
Algorithm 10.2 achieves an approximation guarantee of 2 for the minimum makespan scheduling problem on identical machines.

Proof
Two lower bounds on OPT: \(\frac{1}{m} \sum p_i \) and \(\max_i \{p_i\} \)

Let \(j \) be the index of a job with maximum completion time. The starting time of this job is at most

\[
\frac{1}{m} \sum p_i \leq \text{OPT}
\]

Since \(p_j \leq \text{OPT} \) we get that the processing times on all machines is bounded by

\[
\frac{1}{m} \sum p_i + \max_i \{p_i\} \leq 2 \cdot \text{OPT}.
\]

Tight example
\(m^2 \) jobs with unit processing times followed by one job with processing time \(m \).
PTAS for identical machines

Reduction to bin packing where $I = \{p_1, \ldots, p_n\}$ are the sizes of the objects that are to be packed.

$$\text{bins}(I, t) = \text{Minimum number of bins of size } t \text{ that are required.}$$

Minimum makespan: $\min\{t : \text{bins}(I, t) \leq m\}$

Perform binary search for makespan t over interval $[\text{LB}, 2 \cdot \text{LB}]$, where

$$\text{LB} = \max\left\{ \frac{1}{m} \sum_i p_i, \max_i \{p_i\}\right\}$$

Problem: Bin packing also NP-hard.
Bin packing with fixed number of object sizes

Assume that we have k different object sizes for a given bin size t.

Bin packing problem specified by k-tuple (i_1, \ldots, i_k).

$\text{BINS}(i_1, \ldots, i_k)$ = Minimum number of bins that are required.

For a given instance $(n_1, \ldots, n_k), \sum_{j=1}^{k} n_j = n$ let

$$\mathcal{K} = \{(i_1, \ldots, i_k) \mid 0 \leq i_j \leq n_j, j = 1, \ldots, k\}$$

$$\mathcal{Q} = \{(q_1, \ldots, q_k) \in \mathcal{K} \mid \text{BINS}(q_1, \ldots, q_k) = 1\}$$

First we find \mathcal{Q} and then we determine the number of required bins for all k-tuples in \mathcal{K} via dynamic programming:

$$\text{BINS}(i_1, \ldots, i_k) = 1 + \min_{q \in \mathcal{Q}} \text{BINS}(i_1 - q_1, \ldots, i_k - q_k)$$

Running time: $O(n^{2k})$.

6
Let $0 < \epsilon < 1$ and $t \in [LB, 2 \cdot LB]$.

1. Discard small objects of size less than ϵt.

2. Round remaining objects:
 $$p_j \in \left[t\epsilon(1 + \epsilon)^i, t\epsilon(1 + \epsilon)^{i+1} \right] \rightarrow p_j' = t\epsilon(1 + \epsilon)^i.$$
 At most $k = \lceil \log_{1 + \epsilon} \frac{1}{\epsilon} \rceil$ different object sizes.

3. Find optimal solution to resulting problem in $O(n^{2k})$ time.

4. Increase bin sizes to $t(1 + \epsilon)$ and increase objects to original size — gives a valid packing.

5. Fill up with small objects. Resulting number of bins denoted by $\alpha(I, t, \epsilon)$.

Core algorithm
Proof of approximation guarantee

Lemma

\[\alpha(I, t, \epsilon) \leq \text{bins}(I, t) \]

Corollary

\[t^*_\alpha = \min\{t : \alpha(I, t, \epsilon) \leq m\} \leq \text{OPT} \]

Assume that we perform a binary search to determine \(t^*_\alpha \) within an interval \([T - \epsilon \cdot \text{LB}, T]\). Can be done in \(\lceil \log_2 \frac{1}{\epsilon} \rceil \) iterations of the core algorithm.

Lemma

\[T \leq (1 + \epsilon) \cdot \text{OPT} \]

Proof

\[T \leq t^*_\alpha + \epsilon \cdot \text{LB} \leq (1 + \epsilon) \cdot \text{OPT} \]

Theorem

The algorithm produces a valid schedule having makespan at most

\[T \cdot (1 + \epsilon) \leq (1 + \epsilon)^2 \cdot \text{OPT} \leq (1 + 3\epsilon)\text{OPT} \]

8
Factor 2 algorithm for unrelated machines

Integer program formulation:

\[
\text{minimize } t \\
\text{subject to } \sum_{i \in M} x_{ij} = 1, \quad j \in J \\
\sum_{j \in J} x_{ij} p_{ij} \leq t, \quad i \in M \\
x_{ij} \in \{0, 1\}, \quad i \in M, \quad j \in J
\]

Problem: LP-relaxation has \textit{unbounded} integrality gap (e.g., one single job of length \(m\) on \(m\) machines).

Solution: Guess a lower bound \(T \in \mathbb{Z}^+\) on the optimal makespan.

Set \(S_T = \{(i, j) \mid p_{ij} \leq T\}\) and define LP\((T)\) as the following feasibility problem:

\[
\sum_{i: (i, j) \in S_T} x_{ij} = 1, \quad j \in J \\
\sum_{j: (i, j) \in S_T} x_{ij} p_{ij} \leq T, \quad i \in M \\
x_{ij} \geq 0, \quad (i, j) \in S_T
\]
Properties of extreme point solutions to LP(T)

Lemma
Any extreme point solution to LP(T) has at most $n + m$ nonzero variables.

Proof
Let $r = |S_T|$. At least $r - (n + m)$ of the $x_{ij} \geq 0$ inequalities must be set to equality. Thus at most $n + m$ variables are nonzero.

Corollary
Any extreme point solution must set at least $n - m$ jobs integrally.

Proof
Let α be number of integrally set jobs and β be the number of fractionally set jobs.

Since $\alpha + \beta = n$ and $\alpha + 2\beta \leq n + m$ we get $\alpha \geq n - m$.
Algorithm 17.5 (Minimum makespan, unrelated machines)

1. Construct any greedy schedule having makespan α.
2. By a binary search in the interval $[\alpha/m, \alpha]$, find the smallest value T^* for which $\text{LP}(T^*)$ has a feasible solution.
3. Find an extreme point solution, say x, to $\text{LP}(T^*)$.
4. Assign all integrally set jobs to machines as in x.
5. Construct fractional support graph H and find a perfect matching in it.
6. Assign fractionally set jobs according to the matching in H.

For an extreme point solution x we define the bipartite support graph $G = (J, M, E)$, where $(j, i) \in E$ iff $x_{ij} \neq 0$.

Fractional support graph H is induced from G by jobs being fractionally set.
Proof of approximation guarantee

Pseudo-forest: Graph for which each connected component has at most as many edges as vertices.

Lemma
Graph G' is a pseudo-forest.

Lemma
Graph H has a perfect matching.

Theorem
Algorithm 17.5 achieves an approximation guarantee of 2 for the problem of scheduling on unrelated machines.

Proof
Clearly $T^* \leq \text{OPT}$. At most one fractional job is scheduled on each machine (we use a matching); since the processing time of each fractional job is bounded by T^*, the resulting makespan is at most $2 \cdot T^* \leq 2 \cdot \text{OPT}$.