Exercise 1

Consider the positive semidefinite matrix:

\[A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \succeq 0 \]

- show that \(a_{ii} \geq 0 \)
- show that if \(a_{ii} = 0 \) then \(a_{ij} = 0 \) for all \(j = 1, \ldots, n \)

Exercise 2

A cone \(\mathcal{K} \) is an object satisfying:

\[\forall x \in \mathcal{K}, \lambda \geq 0 : \lambda x \in \mathcal{K} \]

- Prove that the set of positive semidefinite matrices is a cone.

For a given inner product \(\langle \cdot, \cdot \rangle \) the dual cone of \(\mathcal{K} \) is given by

\[\mathcal{K}^* = \{ s \in S_n^+ : \langle s, x \rangle \geq 0, \forall x \in \mathcal{K} \} \]

A cone \(\mathcal{K} \) is self-dual if an inner product can be chosen such that \(\mathcal{K} = \mathcal{K}^* \)

- Show that the set of positive semidefinite matrices is a self-dual cone

Exercise 3

The dense subgraph problem is defined as follows: Given a weighted graph \(G = (V, E, c) \) and a positive integer \(k \). Choose a subset \(U \subseteq V \) of the nodes, with \(|U| = k \) such that the sum of the edge weights in the subgraph spanned by \(U \) is maximized. The problem can formally be defined as follows:

\[z = \max \left\{ \sum_{i \in U} \sum_{j \in U} c_{ij} : U \subseteq V, |U| = k \right\} \quad (1) \]

Formulate the dense subgraph problem as a semidefinite optimization problem. Consider various improved formulations.