Sensor Networks Hardware

Why Care About Hardware?

Sensor node components:
- Sensing
- Processing
- Communication

Why not use high level abstractions?
1. Hardware improvements made sensor networks possible
2. Application characteristics impact sensor network design, both hardware and software

Hardware trends

- Moore's law
 - Processing, storage
- System on a chip
 - Digital and analog components on a same chip
 - Low power, small form factor
- MEMS technology
 - Low power, small form factor, high performance sensors/actuators
- Energy source
 - Higher density, smaller form factor
 - Do not follow Moore's law

Hardware impact on applications

- Lifetime
 - Depends on energy budget (batteries, energy harvesting)
 - Energy consumption depends on hardware components and on interaction with software
 - Turning off components to save energy
 - Moving boundary between hardware and software components
 - Hardware characteristics impact software design
 - CO-DESIGN
 - CROSS LAYER OPTIMIZATIONS

Hardware impact on applications

- Cost
 - Dictates choice of hardware components, of fabrication method
- Sensed Data
 - Dictates choice of radio, of sensors
- Environment
 - Form factor impacts choice of hardware components, layout

A Case Study: ETH BTNode

http://www.btnode.ethz.ch/
Sensor Node Components

- Processing
 - Microcontroller
 - Memory
- Communication
 - RF transceiver
 - Optical transceiver
- Sensing
 - Sensor Board
- Energy
- Interface

Micro-Controller Unit

- CPU
 - 8 / 16 / 32 bits
 - Compiler support
- Pins in/out (GPIO)
- Serial / UART
 - SCI (to PC)
 - SPI (to radio)
 - I2C (chip to chip com)
- Clock / Timer
 - (external) crystal
- Memory
 - Internal Flash/RAM
 - registers imany for RISC, few for CISC
- Tight coupling
 - Integrated interrupt controller
 - No MMU
- Analog to Digital converter
 - Given resolution at a given frequency

Micro-Controller

- Sleeping modes
 - Turn off different components (CPU, UART, memory, flash)
- CPU wake-up events
 - Woken up on any interrupts
 - Woken up only on timer interrupt

MCU: ETH BTNode

- Atmega1281 MCU
 - 8 bits
 - External crystal
 - 32 kHz (real time)
 - 7 MHz (CPU clock)
 - 4 KB SRAM
 - 4 KB EEPROM
 - 10 bit ADC at 50-200 kHz
- Sleeping modes:
 - Idle: CPU woken up by any signal from UART or clock
 - Power save: CPU only woken up by external clock

Memory

- RAM (Random Access Memory)
 - SRAM
- EEPROM (Electrically Erasable Programmable Read-Only Memory)
 - Programmable 1 byte at a time
- Flash
 - Special type of EEPROM programmable one page at a time

RF Transceiver

- SPI connection to MCU
- Bandwidth
 - 800MHz, 900 MHz, 2.4 GHz
- Digital + Analog
 - Shared channel vs. Separate channels
 - Impact on interferences (or traffic overloading)
 - Oversampling
 - Hardware accelerator
 - Independent clock
- Antenna
 - Onboard vs. external
RF Transciever: ETH BTNode

Ericsson ROK 101 007
- 2.4 GHz radio
- Bluetooth Baseband
 - Frequency hopping Spread Spectrum (separated channels)
 - Internal 15 MHz crystal
 - Packet based interface (IrDa)
 - Bandwidth up to 35 Kbps

Optical Transciever

Sensor Board

- Choosing a sensor
 - Mode
 - Scientific, light, temperature, motion detector...
 - Range of operation
 - Interface
 - Analog (via ADC)
 - Digital (i2c, spi)
 - Power consumption
 - Duty cycling possibilities
 - Consumption when idle, in operation
 - Start-up time
- Precision
 - Accuracy of measurement
 - If ADC is used, accuracy is a combination of sensor measurement and CPU sampling/representation
- Designing a sensor board
 - Connection to MCU
 - Power source
 - Form factor / packaging

Temperature Sensor Board for Dummies

- Thermistor
 - NTC resistor: 10 kΩ
 - Decrease in resistance when subjected to an increase in temperature
- Power source
 - Independent
 - From MCU
- Input to ADC converter
 - Voltage drop (analog input) gives indication of decrease in resistance

Energy

- Joules / Watts / Amperes / Volts
 - Power (P in Watt) = Potential Difference (U in Volts) * Current (I in Ampere)
 - Energy (E in Joule) = Power (P in Watt) * Time (T in sec)
 - 1 W = 1 V * 1 A
 - 1 J = 1 J / sec
- Voltage regulation on a sensor node
 - CMOS has different consumption at different voltages
 - Different components have different voltage needs

Energy Consumption: ETH BTNode

With 5V power source:
- BTNode consumes 46mW in idle mode with radio off
- Bluetooth radio consumes 30mW extra

With 3V power source:
- 24mW power save
- 2 mW external RAM off
- 0.6 mW voltage regulator off
Energy Consumption: ETH BTNode

- **Back of the envelope calculation**
 - Transmitting 1KiB at 20 meters:
 - 230 mW at 5 KiB/sec
 - 230 (mJ/sec) / 5 = 46 mJ
 - Computing 6 million instructions:
 - 7 MIPS at 50 mW
 - 50 (mJ/sec) * 6 / 7 = 42 mJ

Transmitting 1 KiB ~ Processing 6 mio. instructions

Batteries

- **Characteristics**
 - Voltage: e.g., 1.2V
 - Charge capacity: 2000 mAh

Energy Harvesting

- **Solar energy**
 - Energy from the sun: 100 mW/cm²
- **Photo-voltaic cells**: 10-15% efficiency
- **Mechanical energy**
 - Piezo-electrical components
 - Shoe example: 200mW during a walk
- **Temperature/pressure variation**
 - Up to 100 mW
- **Exotic solutions**
 - Biological fuel cells, fat burning, radioactive sources, …

Interface

- **Programming**
 - Serial (over RS232 or USB)
 - Parallel
- **Debugging**
 - Sensor (in), LED (out)
 - UART
 - BDM
 - JTag

Berkeley Mote Evolution

http://www.tinyos.net/media.html

Towards Sensor Nodes On A Chip

- **Digital + Analog components**
- **Digital Design**
 - High level down to gates
- **FPGA support for co-design**
 - Spec Mote
Application Driven Co-Design

Application specific assembly of HW and SW components
• Application requirements
• Energy budget
• HW / SW characteristics:
 – Which HW components?
 – Duty cycling?

Vs.

Generic hardware + Application specific Energy source and SW components

Cross Layer Optimizations:
HW Impact on SW Design

• Processing is orders of magnitude cheaper than transmissions
 – In-network processing
• Radio bandwidth
 – Transmitting a lot fast vs. Transmitting few bits
• Sleeping modes
 – Power consumption in different sleeping states impacts duty cycling
• Separate clocks for radio and MCU
 – Radio vs. MCU driven duty cycling

Summary

• HW Components
 – MCU, Memory, Radio, Antenna, Energy source
• Energy budget is limited
 – Based on source of energy available
 – Local processing cheaper than transmission
 – Duty cycling
 • turn off components to preserve energy
 – Cross Layer Optimizations