What is a Sensor Network?

- A sensor network is a collection of sensor nodes equipped with sensing, communication (short range radio) and processing capabilities.

What is it good for?

DARPA Vision

- Multiple target tracking
- Dense deployment of sensor nodes on the ground
- Flexible sensor tasking
- Multi-modal sensor nodes
 - Seismic sensor, motion detector, microphone

A First DARPA Demo

A Second DARPA Demo

Great Duck Island
Zebranet
- Modelling long-range animal migrations
 - Sparse connections
- Observing inter-species predator-prey interactions
- Analyzing the impact of human development on animal behavior

Wireless Monitoring and Control
- Supply chain management
- Health care
- Structure Monitoring
- Entertainment
- Production Automation
- Surveillance

System Constraints
- Lifetime
 - From a few days to a few years, with or without maintenance
- Cost
 - From a few cents to thousands of euros
- Sensed Data
 - Low rate (e.g., temp sensors) vs. High rate (e.g., imagers)
 - Different accuracy and precision requirements
- Environment
 - From protected (e.g., in a building) to very hostile (outdoors)
- Network topology
 - From star to mesh topologies
- Different densities and scale
- User interaction
 - Fixed vs. Flexible tasking
 - Monitoring vs. control

System Taxonomy
- Scale
 - Sampling: Function of phenomena and application
 - Extent: Space covered and lifetime
 - Density: Density of sensor nodes vs. input stimuli
- Variability
 - Structure: Ad hoc vs. Engineered system
 - Task: Single vs. Multiple modes of operation
 - Space: Mobility of system and phenomena
- Autonomy
 - Modality: Multiple modalities combined
 - Complexity: data vs. Event delivery

Sensor Network Regime
- Based on Darpa Vision (formulated by Culler et al)
 - Limited energy
 - Limited hardware capabilities
 - Concurrent flows of data (from sensors and network)
 - Passive vigilance vs. Bursts of concurrency-intensive operations
 - Need for robustness
- Different classes of applications require definition of appropriate regime
Related Areas

- Pervasive Computing
 - Marc Weiser’s vision
 - Large domain
- Personal Area Networks
 - Person-centric spaces and networks
 - Cable replacement
- RFID
 - Essentially for supply chain management
 - Adding sensing capabilities to RFID is promising
- Ad-hoc networks
 - Infrastructure-less networking

Reality Check

- Thousands of self-configuring sensor nodes
 - Still Sci-Fi
 - Vernor Vinge recommended reading (A depthness in the sky)
- Programming, Debugging, Deployment challenges
- 800 nodes max
- 50 nodes state-of-the-art

Summary

- Sensor networks are application specific
- Key application characteristics
 - Lifetime, cost, data rate, environment, network topology, user interaction
 - Impacts sensor network design
- Appropriate regime for a given class of application