Overview

- Binary Search Trees (Chapter 12 except 12.4)
- Balanced Binary Trees (Red-Black Trees) (Chapter 13)
Search Trees

A data structure which can be used to represent disjoint sets of items with keys is called a search tree if the following operations are available.

- **access(k,S)**: returns item with the key k from the set S; if $k \notin S$, then returns null.

- **insert(i,S)**: inserts item i into the search tree S, i not already in S.

- **delete(i,S)**: deletes item i from S.

- **make**: returns new empty search tree.

- **join(S,i,T)**: returns the search tree set $S \cup \{i\} \cup T$. S and T are destroyed. Every item in S has a key less than the key of i. Every item in T has a key greater than the key of i.

- **split(i,SiT)**: splits the search tree SiT containing i into three search trees: s containing all items with keys less than i, $\{i\}$, and t containing all items with keys greater than i. The pair of search trees $[S,T]$ is returned. SiT is destroyed.

Each item has a unique key. Items other than roots cannot be accessed in $O(1)$ time.
Full Binary Search Trees

- Each node represents one item.
- Nodes in the left subtree of any node have keys less than the node itself.
- Nodes in the right subtree of any node have keys greater than the node itself.
- Pointers at any node x:
 - $\text{left}(x)$
 - $\text{right}(x)$
 - $\text{p}(x)$
Accessing Items

\[
\text{access}(k, S)
\]

STEP 1: \(x = \text{root of } S. \)

STEP 2: If \(\text{key}(x) < k, \) then \(x = \text{right}(x). \) Go to **STEP 2**.

STEP 3: If \(\text{key}(x) > k, \) then \(x = \text{left}(x). \) Go to **STEP 2**.

STEP 4: If \(\text{key}(x) = k, \) return \(x. \) **STOP**.

STEP 5: If \(\text{key}(x) = \text{NIL}, \) return \(\text{NIL}. \) **STOP**.

- \text{access}(70, S)

- Accessing item \(i \) takes time proportional to the depth of \(i \) in the search tree: \(O(n) \) since a binary tree with \(n \) items can have depth \(n - 1. \)
Inserting Items

\[\text{insert}(i, S) \]

STEP 1: \(k = \text{key}(i) \). \(x = \text{root of } S \).

STEP 2: \(\text{key}(x) < k \) and \(\text{right}(x) = \text{NIL} \); let \(i \) be the right son of \(x \). STOP.

STEP 3: \(\text{key}(x) < k \) and \(\text{right}(x) <> \text{NIL} \); \(x = \text{right}(x) \). Go to **STEP 2**.

STEP 4: \(\text{key}(x) > k \) and \(\text{left}(x) = \text{NIL} \); let \(i \) be the left son of \(x \). STOP.

STEP 5: \(\text{key}(x) > k \) and \(\text{left}(x) <> \text{NIL} \); \(x = \text{left}(x) \). Go to **STEP 2**.

- \(\text{insert}(80, S) \)

- inserting \(i \) takes time proportional to the depth of \(i \) after the insertion: \(O(n) \)
Deleting Items

STEP 1: Begin at i.

STEP 2: If i has a NIL child, replace i by the other child (which can be NIL). STOP.

STEP 3: Follow right sons of $\text{left}(i)$ until reaching a node j with NIL as right child. Swap i and j. Replace i by its left child (can be NIL). STOP.

- $\text{delete}(20)$
- $\text{delete}(30)$

- proportional to the depth of i when i has a NIL child (i has to be accessed).
- proportional to the depth of $i + \text{depth of } i$’s left son.

In both cases $O(n)$ time is required.
Joining Trees

join(S,i,T)

• Make the roots of S and T the left and right children of i, respectively.

• Joining requires $O(1)$ time.
Splitting Trees

\textbf{split}(i, SiT)

\textbf{STEP 1:} Access \(i\).

\textbf{STEP 2:} Let \(S\) be the left subtree of \(i\), and let \(T\) be the right subtree of \(i\).

\textbf{STEP 3:} Stop if \(i\) is the root of the original tree \(SiT\).

\textbf{STEP 4:} If \(i\) is a left child, then \(T = \text{join}(T, p(i)i, r(p(i)i))\).

\textbf{STEP 5:} If \(i\) is a right child, then \(S = \text{join}(l(p(i)), p(i)i, S)\).

\textbf{STEP 6:} Let \(p(i)\) act as \(i\) and go to \textbf{STEP 3}.

- Splitting is proportional to the depth of \(i\): \(O(n)\)
Splitting Trees

split(40,SIT)
Balanced Binary Search Trees

- How to carry out tree operations while keeping the depth of the tree small?
- Is it possible to reduce maximal depth from $O(n)$ to for example $O(\log n)$?
Balanced Binary Search Trees

- Every node is either black or red, the root is black.
- All leaves (NIL nodes) are black.
- If a node is red, then both its children are black.
- Every path from a given node to each of the leaves in its subtree has the same number of black nodes.
Height of Balanced Binary Search Trees

• A red-black tree with \(n \) internal (non-leaf) nodes has height at most \(2 \log(n + 1) \).

• A subtree rooted at a node \(x \) with black height \(bh(x) \) has at least \(2^{bh(x)} - 1 \) internal nodes.

• Proof by induction on the height of \(x \).

• If \(h(x) = 0 \) then \(x \) is an (external) leaf, and the number of internal nodes is 0. And \(2^{bh(x)} - 1 = 2^0 - 1 = 0 \).

• Assume that \(x \) has a positive height. Each of the two children of \(x \) has height one less. Furthermore, their black height is at least \(bh(x) - 1 \). Therefore, by the inductive hypothesis, the number of internal nodes in the subtree rooted at \(x \) is at least

\[
(2^{bh(x) - 1} - 1) + (2^{bh(x) - 1} - 1) + 1 = 2^{bh(x)} - 1
\]

• Let \(h \) be the height of the tree.

• Every red node has two black sons. Number of red nodes on any path from the root \(r \) cannot be more than \(h/2 \). Therefore the number of black nodes must be at least \(h/2 \). Therefore \(bh(r) \geq h/2 \). Therefore \(n \geq 2^{h/2} - 1 \).

• Or \(n+1 \geq 2^{h/2} \), or \(log(n+1) \geq h/2 \), or \(2 \log(n+1) \geq h \).
Balanced Binary Search Trees

- Accessing an item in balanced binary search tree requires $O(\log n)$ time.

- Insertion and deletion can also be done in $O(\log n)$ time but appropriate balancing is required.
Rebalancing Balanced Binary Search Trees

- Each of these operations can be done in $O(1)$ time.
Rebalancing after Insertion

If the root is reached, it is colored black.

Rotation and some color changes.

Rotation and case above.
Rebalancing after Deletion

• If the removed node was red, no problems.
• If the removed node was black while its left son x was red, make x black.
• If the removed node was black while its left son x was black?
red top node takes care of the fat black node

fat black node propagates up the tree

fat black disappears

fat black disappears
Rebalancing after Deletion -cont.

- Case 3a: transformed into case 4a
- Case 3b: transformed into case 4b
- Case 1: transformed into 2a, 3a or 4a depending on c and d
Joining Balanced Trees

- In order to join a balanced tree s, item i, and a balanced tree t, $bh(s)$ and $bh(t)$ is compared.
- If $bh(s) \geq bh(t)$, right pointers in s are followed until a black node x with $bh(x) = bh(t)$ is reached.
- x and its subtree is replaced by i, x (and its descendants) is made left subtree of i, and t is made the right subtree of i.
- i is set to be red.
- Rebalancing beginning from i is then carried out as if i was inserted.
- The case $bh(s) < bh(t)$ is symmetric.
- Each join is proportional to the sum of black heights of trees. Hence join takes at most $O(\log n)$ time.
Splitting Balanced Trees

- As splitting in binary search trees. But joins as in balanced binary trees.
- Split requires $O(\log n)$ time.