Overview

- General Algorithm
- Prim’s Algorithm
- Kruskal’s Algorithm
- Round Robin Algorithm
Problem Formulation

- \textit{Given:} undirected, connected, network \(G = (V, E, c)\).
- \textit{Find:} a tree \(T\) spanning \(V\), and such that its total cost (sum of its edge-costs) is minimized.
Main Observation

- \(C = \{X, \bar{X}\} \) is a cut in \(G \): a partition of the vertex set in two parts \(X \) and \(\bar{X} \). An edge crosses the cut if it has one endpoint in \(X \) and the other endpoint in \(\bar{X} \).
- \(e \) is a minimal cost edge across \(C \).
- at least one MST of \(G \) contains \(e \).

\[\begin{align*}
X & \quad u \quad e \quad v \\
\bar{X} = V - X
\end{align*} \]

- Suppose that \(e \) is not in any MST of \(G \).
- Let \(T \) be one of the MSTs of \(G \).
- There is a path from \(u \) to \(v \) in \(T \).
- Let \(f \) be the first edge on this path crossing \(C \).
- \(T \setminus f \cup e \) is a tree spanning all vertices and \(c(T) \geq c(T \setminus f \cup e) \).
- Hence, \(T \setminus f \cup e \) is an MST, a contradiction.
Blue Rule

• Select a cut C with no blue edges.
• Among all edges in C, select one of minimum cost and colour it blue.
• Repeat as long as possible.
Blue Rule - Correctness

Every MST can be obtained by repeated applications of the blue rule. Let T be one of (possibly several) MSTs. Keep colouring edges of T as long as the blue rule is not violated.

- If all edges of T have been coloured, there is nothing to prove.
- e: one of the edges in T that cannot be coloured by the blue rule.
 - $T - e$ falls into two parts, and vertices in these two parts form a cut.
 - No edge across the cut can be blue; only edges of T have been coloured blue so far.
 - Since e cannot be coloured blue, it is not of minimum cost among cut-edges.
 - This contradicts the assumption that T is an MST.

$$\hat{X} = V - X$$
Blue Rule - Correctness

Only MSTs can be obtained by repeated applications of the blue rule.

- Blue rule generates a tree.
- Suppose that at some iteration the blue rule selects an edge e such that e together with previously coloured edges is in no MST.
- The edge set across the cut from which e was selected must contain at least one uncoloured edge e' in some MST T containing all edges chosen before e.
- $c(e') = c(e)$.
- $T + e - e'$ is an MST. It contains e as well as all edges coloured blue before e, a contradiction.
Round Robin Algorithm

- **Initialize**: F: a forest consisting of isolated vertices of G.
- **Terminate**: If F is a tree then terminate.
- **Update**: Select any tree T in F (cut selection). Add to F a minimum cost edge between T and another tree in F (edge selection). Go to the **Termination**.

- how to select a tree? can it be done in parallel?
- how to quickly identify the shortest “sticking out” edge?
- how to efficiently join trees?
- how to clean-up afterwards (if at all)?
Prim’s Algorithm

- **Initialize:** F: a forest consisting of isolated vertices of G. T: arbitrarily chosen tree in the forest.
- **Terminate:** If F is connected then terminate.
- **Update:** Select an isolated vertex v closest to T. Add the shortest edge between v and T to F. Go to the Termination.
Prim’s Algorithm - Data Structures

• Place all vertices on a heap. Let one vertex s have 0-key. Let all other vertices have ∞-keys. Also, $\pi(s) = \text{nil}$.

• Delete the top vertex v from the heap (using deletemin).

• Inspect every edge (v, w) incident to v. If w is on the heap and $|(v, w)| < \text{key}(w)$, then $\text{key}(w) := |(v, w)|$ and $\pi(w) := v$.

• $n \text{ deletemin}$ operations are required. Each requires $O(d \log_d n)$ time in d-heaps and $O(\log n)$ amortized time in Fibonacci heaps.

• $n \text{ insert}$ operations are required. Each requires $O(\log_d n)$ time in d-heaps and $O(1)$ amortized time in Fibonacci heaps.

• at most $m \text{ decrease}$ operations is required. Each requires $O(\log_d n)$ time in d-heaps and $O(1)$ amortized time in Fibonacci heaps.

• The worst-case time complexity for this implementation is

 - d-heaps: $O(nd \log_d n + m \log_d n)$
 - Fibonacci heaps: $O(n \log n + m)$
Kruskal’s Algorithm

- **Initialize:** F: forest consisting of isolated vertices of G. E_s: set of sorted edges.
- **Terminate:** If F is connected then terminate.
- **Update:** Scan E_s and delete edges with both end-vertices in the same tree. Let e denote the first edge with end-vertices in different trees. Join the trees containing the end-vertices of e. Delete e from E_s. Go to the Termination.
Kruskal’s Algorithm - Data Structures

• Sorting of edges requires $O(m \log m) = O(m \log n)$.

• Checking for cycles and joining trees can be carried out in $O(m \alpha(m, n))$ time.

• Overall complexity is $O(m \log n)$.
Round Robin - Data Structures

- Components in the forest are represented as disjoint sets of their vertices. Data structures permitting \(m \) find-operations, and \(n-1 \) union-operations in \(O(m\alpha(m, n)) \) time, where \(\alpha \) is a very slowly growing function of \(m \) and \(n \). In particular, it is dominated by \(O(m \log n) \).

- Edges “sticking out” from each tree are placed on heaps.

- Trees are placed on a queue. The first tree \(T \) in the queue is picked up. The shortest edge to any other \(T' \) tree is found on its heap. Components \(T \) and \(T' \) are merged and placed at the rear of the queue. Heaps for \(T \) and \(T' \) are merged.

- If heaps are appropriately implemented (leftist heaps with lazy deletion and lazy meld), an \(O(m \log \log n) \) time algorithm can be obtained.
Round Robin - Complexity Analysis

- \(n \) makeheap operations require \(O(m) \) time.
- \(n - 1 \) lazymeld operations require \(O(n) \) time.
- findmin?
- \(T_i = i\)-th tree selected.
- \(m_i \) = number of edges (including deleted and dummy edges) on the heap associated with \(T_i \) when \(T_i \) is selected.
- \(k_i \) = number of deleted or dummy edges encountered during the \(i\)-th findmin operation.
- Each tree on the queue during pass \(j \) contains at least \(2^{j-1} \) vertices.
- At most \(\lceil \log n \rceil \) passes of the queue are needed.
- \(\sum_{i=1}^{n-1} m_i \leq (2m + n - 1) \lfloor \log n \rfloor \).
- \(\sum_{i=1}^{n-1} k_i \leq 2m + n - 1 \).
- \(i\)-th findmin operation requires \(O(k_i \max\{1, \log \frac{m_i}{k_i+1}\}) \) time.
- \(i\)-th findmin is small if \(k_i \leq m_i/(\log n)^2 - 1 \) and large otherwise.
Round Robin - Complexity Analysis (cont.)

- Assume that all findmin are small. Total time for small findmin operations is $O(\sum_{i=1}^{n-1} k_i \max\{1, \log \frac{m_i}{k_i+1}\})$

$$\sum_{i=1}^{n-1} k_i \max\{1, \log \frac{m_i}{k_i+1}\} \leq \sum_{i=1}^{n-1} k_i \log m_i < \sum_{i=1}^{n-1} \frac{m_i}{(\log n)^2} \log m_i <$$

$$\sum_{i=1}^{n-1} \frac{m_i}{(\log n)^2} 2 \log n = 2 \sum_{i=1}^{n-1} \frac{m_i}{\log n} \leq 2 \frac{(2m + n - 1) \log n}{\log n} \leq 6m$$

- $n-1$ small findmin require $O(\sum_{i=1}^{n-1} k_i \max\{1, \log \frac{m_i}{k_i+1}\}) = O(m)$
Round Robin - Complexity Analysis (cont.)

- Assume that all findmin are large. Total time for large findmin operations is $O(\sum_{i=1}^{n-1} k_i \max\{1, \log \frac{m_i}{k_i + 1}\})$.

$$\sum_{i=1}^{n-1} k_i \max\{1, \log \frac{m_i}{k_i + 1}\} < \sum_{i=1}^{n-1} k_i \max\{1, \log \frac{m_i^2}{m_i}\} =$$

$$\sum_{i=1}^{n-1} k_i \max\{1, 2 \log \log n\} = 2 \sum_{i=1}^{n-1} k_i \log \log n \leq$$

$$2(2m + n - 1) \log \log n \leq 6m \log \log n$$

- $n - 1$ large findmin require

$$O(\sum_{i=1}^{n-1} k_i \max\{1, \log \frac{m_i}{k_i + 1}\}) = O((m \log \log n)\alpha(m \log \log n, n)) =$$

$$O(m \log \log n)$$

since each operation involves deletion check and in total they require

$$O(\alpha(m \log \log n, n)) < 2 \text{ time.}$$

- Asymptotically faster than any other algorithm for sparse graphs.

- Asymptotically faster algorithms for dense graph exist ($O(n^2)$) but the round robin bound is likely to be overly pessimistic.

- appropriate clean-ups can improve the performance of round robin for dense graphs.
Minimum Spanning Trees - Summary

- Round robin algorithm: $O(m \log \log n)$.
- Prim’s algorithm: $O(n \log n + m)$.
- Kruskal’s algorithm: $O(m \log n)$.

- Round robin algorithm: leftist heaps and find-union algorithm.
- Prim’s algorithm: Fibonacci heaps.
- Kruskal’s algorithm: find-union algorithm.