Algorithms

Greedy Algorithms

Overview

• Greedy Approach in General
• Job Scheduling
• Huffman Codes
• Minimum Spanning Trees
Greedy Approach in General

- Greedy-Choice Property: Optimal solution is derived by making locally optimal decisions.

- Optimal Substructure: Optimal solution contains optimal solutions to subproblems.

- Greedy vs. Dynamic
 - Shortest Path Problem.
 - Knapsack Problem.

 * 0-1 Knapsack Problem
 * Fractional Knapsack Problem
Job Scheduling

- Given: n jobs with specified start and end-time.
- Maximize number of jobs that can be carried one on a single machine.

- There is an optimal scheme with the greedy choice of the first activity.
- Optimal substructure property ensures that greedy selections returns optimal solution.
Huffman Codes

<table>
<thead>
<tr>
<th>Frequency</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed-length code</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>variable-length code</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

- Prefix code: No code ord is a prefix of another code ord.
Huffman Codes Greedy Algorithm

Algorithms

Greedy Algorithms
Minimum Spanning Tree - Problem Formulation

- *Given:* undirected, connected, network $G = (V, E, c)$.
- *Find:* a tree T spanning V, and such that its total cost (sum of its edge-costs) is minimized.
Kruskal’s Algorithm

- **Initialize:** F: forest consisting of isolated vertices of G. E_s: set of sorted edges.
- **Terminate:** If F is connected then terminate.
- **Update:** Scan E_s and delete edges with both end-vertices in the same tree. Let e denote the first edge with end-vertices in different trees. Join the trees containing the end-vertices of e. Delete e from E_s. Go to the Termination.
Primes Algorithm

- **Initialize**: F: a forest consisting of isolated vertices of G. T: arbitrarily chosen tree in the forest.
- **Terminate**: If F is connected then terminate.
- **Update**: Select an isolated vertex v closest to T. Add the shortest edge between v and T to F. Go to the Termination.
Main Observation

\(C = \{X, \bar{X}\}\) is a cut in \(G\): a partition of the vertex set in two parts \(X\) and \(\bar{X}\). An edge crosses the cut if it has one endpoint in \(X\) and the other endpoint in \(\bar{X}\).

- \(e\) is a minimal cost edge across \(C\).
- At least one MST of \(G\) contains \(e\).

\[
\begin{align*}
X & \quad u & \quad e & \quad v & \quad \bar{X} = V - X \\
\end{align*}
\]

- Suppose that \(e\) is not in any MST of \(G\).
- Let \(T\) be one of the MSTs of \(G\).
- There is a path from \(u\) to \(v\) in \(T\).
- Let \(f\) be the first edge on this path crossing \(C\).
- \(T \setminus f \cup e\) is a tree spanning all vertices and \(c(T) \geq c(T \setminus f \cup e)\).
- Hence, \(T \setminus f \cup e\) is an MST, a contradiction.
Blue Rule

• Select a cut C with no blue edges.
• Among all edges in C, select one of minimum cost and colour it blue.
• Repeat as long as possible.
Blue Rule - Correctness

Every MST can be obtained by repeated applications of the blue rule. Let T be one of (possibly several) MSTs. Keep colouring edges of T as long as the blue rule is not violated.

- If all edges of T have been coloured, there is nothing to prove.
- e: one of the edges in T that cannot be coloured by the blue rule.
 - T − e falls into two parts, and vertices in these two parts form a cut.
 - No edge across the cut can be blue; only edges of T have been coloured blue so far.
 - Since e cannot be coloured blue, it is not of minimum cost among cut-edges.
 - This contradicts the assumption that T is an MST.

\[\bar{X} = V - X \]
Blue Rule - Correctness

Only MSTs can be obtained by repeated applications of the blue rule.

- Blue rule generates a tree.
- Suppose that at some iteration the blue rule selects an edge e such that e together with previously coloured edges is in no MST.
- The edge set across the cut from which e was selected must contain at least one uncoloured edge e' in some MST T containing all edges chosen before e.
- $c(e') = c(e)$.
- $T + e - e'$ is an MST. It contains e as well as all edges coloured blue before e, a contradiction.
Red Rule

- Select a cycle with no red edge.
- Among all edges in this cycle, select one of maximum cost and colour it red.
- Repeat as long as possible.

- Every MST can be obtained by repeated applications of the red rule.
- Only MSTs can be obtained by repeated applications of the red rule.
Blue-Red Rule

- Either select a cut with no blue edge, and colour its minimum cost uncoloured edge blue,
- Or select a cycle with no red edge and colour its maximum cost uncoloured edge red.
- Repeat as long as possible.

- Every MST can be obtained by repeated applications of the red rule.
- Only MSTs can be obtained by repeated applications of the red rule.
- All implementations are based on the blue-colouring.