Algorithms

Disjoint Sets

Overview

- Maintaining Disjoint Sets
- Complexity Analysis

Applications

- Equivalence of symbolic addresses (Fortran),
- Minimum spanning trees, and other combinatorial optimization problems,
- Special kind of sorting.
Disjoint Sets - Problem Formulation

Data structure supporting the representation of disjoint sets.

- Sets are identified by unique representatives called canonical elements.
- Elements in sets are assumed to be integers between 1 and \(n \). If not, appropriate pointers need to be maintained.
- Each element can be accessed in \(O(1) \) time.
- Three operations must be available:
 - \texttt{makeset(x)}: create a new set containing the single element \(x \),
 - \texttt{find(x)}: return the canonical element of the set containing \(x \),
 - \texttt{link(x,y)}: form a new set that is the union of the two sets whose canonical elements are \(x \) and \(y \). A canonical element of the union is selected and returned. Old sets are destroyed.

- How to organize disjoint sets in order to be able to carry out:
 - \(n \) \texttt{makeset},
 - \(m \) \texttt{find},
 - \(k \) \texttt{link}, \(k \leq n - 1 \),

in any feasible order as quickly as possibly.
Vector Representation

• One element in a set represents the set itself.
• Four n-vectors can represent sets. Suppose element i belongs to set j.

 - $\text{set}(i) := j$,
 - $\text{next}(i) := \text{pointer to the next element in } j$,
 - $\text{first}(j) := \text{pointer to the first element in } j$,
 - $\text{size}(j) := \text{size of the set } j$.

\[
\begin{array}{cccc}
\text{SET} & \text{NEXT} & \text{FIRST} & \text{SIZE} \\
1 & 3 & 1 & 4 \\
2 & 4 & 2 & 3 \\
1 & 5 & & \\
2 & 8 & & \\
1 & 7 & & \\
6 & 0 & 6 & 1 \\
5 & 0 & & \\
4 & 0 & & \\
2 & 0 & & \\
\end{array}
\]
Vector Representation

- **makeset(x):**
 - set(x):=x
 - first(x):=x
 - next(x):=0 or (:=x)
 - size(x):=1

One makeset in $O(1)$ time. n makeset in $O(n)$ time.

- **find(x): trivial (= set(x))**

One find in $O(1)$ time. m find in $O(m)$ time.

- **link(x,y):** Elements of the smaller subset are added to the larger subset by scanning and pointer update.

One link in $O(n)$ time. $n - 1$ link in $O(n^2)$. This bound can be improved. When an element is scanned, it ends up in a set which is at least twice as big. Conclusion: Each element cannot be scanned more than $\log_2 n$ times. $n - 1$ link in $O(n \log_2 n)$.
Rooted Trees Representation

- nodes of a tree contain elements of a set,
- root contains the canonical element of a set,
- each node x has a pointer $p(x)$ to its parent, except for the root which points to itself.

- The same set can be represented by many different trees.
Rooted Trees Representation

- **makeset** \(x \): create one-node tree.
- **find** \(x \): follow parent pointers from \(x \) to the root. Can become \(O(n) \) if not careful.
- **link** \(x, y \): let \(y \) be the parent of \(x \), and let \(y \) be the canonical element of the union set. \(O(1) \) time.

\[
\text{find}(6), \text{link}(4, 2), \text{find}(6)
\]

![Diagram](image)

What is wrong with this data structure? High trees.

\[
\text{makeset}(1), \text{makeset}(2), \ldots, \text{makeset}(n)
\]
\[
\text{link}(\text{find}(1), 2), \text{link}(\text{find}(2), 3), \ldots, \text{link}(\text{find}(n-1), n)
\]

\[
\text{find}(1)
\]
Linking by Rank

- roots of one-element trees have rank 0,
- *linking by rank*: During the *link* operation, the root of the tree with higher rank is made the root of the union tree.
- if trees have the same rank, then the rank of the new root (chosen arbitrarily) is increased by 1.
Linking by Rank - Example

link(1,5), link(4,7), link(3,6), link(2,7),
link(6,8), link(7,5), link(9,6), link(6,5)

5
\[\begin{array}{c}
\emptyset \\
1 \\
0 2 0 9 3 0 \\
\end{array} \]

Is it better? How good is it in fact?

makeset(1), makeset(2),..., makeset(n)
link(find(1),2), link(find(2),3),..., link(find(n-1),n)
Linking by Weight

- *linking by weight*: During the link operation, the root of the tree with more nodes is made the root of the union tree.

\[
\text{link}(1,5), \text{link}(4,7), \text{link}(3,6), \text{link}(2,7), \\
\text{link}(6,8), \text{link}(5,7), \text{link}(9,6), \text{link}(6,7)
\]
Some Basic Observations

- Once an item seizes to be the root of a tree, it never becomes a root again. Furthermore, its rank never changes.

- \(r(x) \leq r(p(x)) \) with the inequality strict if \(p(x) \neq x \).

When linking, old root with higher rank becomes a new root; if both roots have the same rank, one of them becomes a new root and its rank is increased by one.

- The number of items \(s(x) \) in a tree with root \(x \) is at least \(2^{r(x)} \).

By induction on the number of link-operations.

- True before the first link.

- Assume that true before the \(i \)-th link (of items \(x \) and \(y \)). Let \(r_i \) denote the rank function just before the \(i \)-th link.

- if \(r_i(x) < r_i(y) \), then after link\((x,y)\), \(y \) is the root, and \(r_{i+1}(y) = r_i(y) \). Hence, \(s_{i+1}(y) > s_i(y) \geq 2^{r_i(y)} = 2^{r_{i+1}(y)} \).

- if \(r_i(x) > r_i(y) \), the symmetric situation arises.

- if \(r_i(x) = r_i(y) \), then according to the hypothesis, the tree after link\((x,y)\) satisfies:

\[
s_{i+1}(y) = s_i(x) + s_i(y) \geq 2^{r_i(x)} + 2^{r_i(y)} = 2^{r_i(y)+1} = 2^{r_{i+1}(y)}
\]

since \(r_{i+1}(y) = r_i(y) + 1 \).

- \(n \geq s_i(z) \geq 2^{r_i(z)} \) for all \(i, 0 \leq i < n \), implies \(\log n \geq r_i(z) \). Since the rank is strictly increasing when going up the tree, no tree has height greater than \(\lceil \log n \rceil \).

Conclusion: \textit{find} requires \(O(\log n) \) time.

- Overall complexity: \(O(n + m \log n + n - 1) = O(n + m \log n) \). This bound is tight.
Linking by Rank or Size - Bound Tightness

- A binomial tree B_0 consists of a single node.
- A binomial tree B_i, $i > 0$, consists of two binomial trees B_{i-1} with root of one being the parent of the root of the other.
- B_i has size 2^i and height i.
- Let $n = 2^i$ for some $i \in \mathcal{N}$. Appropriate sequence of link by rank will result in a binomial tree B_i.
- One path in B_i has $i + 1$ nodes. \texttt{find} of bottom node takes $O(i) = O(\log n)$ time.

\texttt{makeset(1), makeset(2), makeset(3), makeset(4), makeset(5), makeset(6), makeset(7), makeset(8)
link(1,2), link(3,4), link(5,6), link(7,8)
link(2,4), link(6,8)
link(4,8)
m times \texttt{find(1)}}
Path Compression

- *path compression:* During the `find` operation all traversed nodes are made direct successors (sons) of the root.

- `find(7)`

```
    9
   /|
  1 6
 / | |
5 2 3
   |
  4
   |
  7
```

The path from 7 to the root has to be traversed twice.
Find with Halving

- *halving*: During the find every other node on the find path is made a child of its grandparent.

- *find(7)*

```
  9
  / \  /   /
 1   2 3   6
  |   |   |   |
  5   4   7   8
  |   |   |   |
  1   2   3   4
  |   |   |   |
  7   6   5   4
```

Find with Splitting

• *splitting*: During the `find` operation every node on the find path is made a child of its grandparent.

• `find(7)`
Linking by Rank+Compressions - Basics

- Each node has initially rank 0.
- As long as a node is a root, its rank either remains unchanged or it grows (by 1 at a time).
- When a node seizes to be a root, its rank remains unchanged.
- \(r(x) < r(p(x)) \) unless \(x \) is a root.
Linking by Rank+Compressions - Basics

- Without path compressions the rank of a node indicates its height.
- With path compressions the rank of a node is an upper bound on its height. Is it possible that the rank of some node becomes greater than \(\log n \)?
- No. Path compressions do not change ranks.
- There are no more than \(n/2^r \) nodes that will receive rank \(r \) anytime during the entire sequence of operations.
 - When a node \(x \) receives rank \(r \) (\(x \) becomes a root), mark \(x \) and all its descendants using a label \(L_r \). Since the rank of \(x \) is \(r \), at least \(2^r \) nodes are marked. Neither \(x \) nor its descendants have been marked by \(L_r \) before.
 - If the rank of \(x \) changes, it grows. Ranks of descendants of \(x \) remain unchanged. Furthermore, all future ancestors of \(x \) will have rank greater than \(r \). Hence, neither \(x \) nor its descendants can be marked more than once by \(L_r \) (when \(x \) or any of its descendants changes a father, the rank of the new father is greater than \(r \)).
 - Number of nodes which receives the rank \(r \) throughout the entire sequence of operations is therefore at most \(n/2^r \). Otherwise, more than \(2^r n/2^r = n \) nodes would be labeled by \(L_r \), a contradiction.
Ackermann’s Function

\[A(i, j) = \begin{cases} 2^i & \text{if } i = 1, j \geq 1 \\ A(i - 1, 2) & \text{if } i \geq 2, j = 1 \\ A(i - 1, A(i, j - 1)) & \text{if } i, j \geq 2 \end{cases} \]

- \(A(1, 1) = 2, \ A(1, 2) = 4, \ A(1, 3) = 8, \ A(1, 4) = 16, \ldots \)
- \(A(2, 1) = A(1, 2) = 4, \)
- \(A(3, 1) = A(2, 2) = A(1, A(2, 1)) = A(1, 4) = 16, \)
- \(A(4, 1) = A(3, 2) = A(2, A(3, 1)) = A(2, 16) = A(1, A(2, 15)) = \ldots \)
- \(A(2, 3) = A(1, A(2, 2)) = A(1, 16) = 2^{16} = 65536, \)
- \(A(3, 2) = A(2, A(3, 1)) = A(2, 16) = \ldots \)

Ackermann’s function grows very quickly.

Inverse of Ackermann’s Function

\[\alpha(m, n) = \min\{i \geq 1 | A(i, \lfloor m/n \rfloor) > \log n\} \]

- For all practical purposes \(\alpha(m, n) \) is not larger than 4. For instance \(\alpha(m, n) \leq 3 \) for \(n < 2^{16} \).
Iterated Logarithm Function

\[\log^{(i)} n = \begin{cases}
 n & \text{if } i = 0, \\
 \log(\log^{(i-1)} n) & \text{if } i > 0 \text{ and } \log^{(i-1)} n > 0, \\
 \text{undefined} & \text{if } i > 0 \text{ and } \log^{(i-1)} n \leq 0 \text{ or } \log^{(i-1)} n \text{ undefined}
\end{cases} \]

\[\log^* n = \min\{i \geq 0 | \log^{(i)} n \leq 1\} \]

- \(\log^* 2 = 1 \),
- \(\log^* 4 = 2 \),
- \(\log^* 16 = 3 \),
- \(\log^* 65536 = 4 \),
- \(\log^* 2^{65536} = 5 \).

Number of atoms in the universe is approx. \(10^{80} < 2^{65536} \).
More Definitions

\[B(j) = \begin{cases}
-1 & \text{if } j = -1, \\
1 & \text{if } j = 0, \\
2 & \text{if } j = 1, \\
4 & \text{if } j = 2, \\
16 & \text{if } j = 3, \\
65536 & \text{if } j = 4, \\
2^{2^{j-1}} & \text{if } j \geq 5, \ j - 1 \text{ times}
\end{cases} \]

More generally, \(B(j) = 2^{B(j-1)} \) for \(j > 0 \).

\[\text{block}(j) = [B(j - 1) + 1..B(j)], j = 0, 1, ..., \log^* n - 1 \]

\begin{align*}
\text{block}(0) &= [0..1] \\
\text{block}(1) &= [2..2] \\
\text{block}(2) &= [3..4] \\
\text{block}(3) &= [5..16] \\
\text{block}(4) &= [17..65536]
\end{align*}
Worst-Case Time Complexity

• \texttt{n} \texttt{make_set} requires $O(n)$ time.
• \texttt{n} – 1 \texttt{link} requires $O(n)$ time.
• Suppose that \texttt{find}(x_0) is about to be carried out. Let $x_0, x_1, x_2, x_3, ..., x_l$ denote the path to the root.
• Divide nodes on the path in two groups:
 – Group A: nodes with ancestor’s rank in the next block. In addition: child of the root.
 – Group B: remaining nodes.
• there are $\log^* n$ blocks. Processing of nodes of type A during each \texttt{find} takes at most $O(\log^* n + 1)$ time. There are m \texttt{find}. Processing of nodes of type A takes in total $O(m \log^* n)$ time.
• How many nodes in group B is processed during the m \texttt{find}?
Worst-Case Time Complexity (cont.)

- $N(j)$: number of nodes with ranks in $\text{block}(j)$.

\[N(j) \leq \sum_{r=B(j-1)+1}^{B(j)} \frac{n}{2^r} \]

- For $j = 0$, we have $B(j - 1) + 1 = 0$, $B(j) = 1$. Hence,

\[N(0) \leq \frac{n}{2^0} + \frac{n}{2^1} = \frac{3n}{2} = \frac{3n}{2B(0)} \]

- For $j \geq 1$, we have

\[N(j) \leq \frac{n}{2B(j-1)+1} \sum_{r=0}^{B(j)-(B(j-1)+1)} \frac{1}{2^r} < \]

\[\frac{n}{2B(j-1)+1} \sum_{r=0}^{\infty} \frac{1}{2^r} = \frac{n}{2^{B(j-1)+1}} = \frac{n}{B(j)} < \frac{3n}{2B(j)} \]

- Suppose that a group B node is in block $B(j)$. During each find involving this node, its rank is unchanged. Hence, it remains in the block $B(j)$. But its father changes. After at most

\[B(j) - B(j - 1) - 1 \]

find, the father will belong to another block. Consequently, our node will become of type A.

- Let $P(n)$ denote the total number of type B nodes encountered during the $m \text{ find}$.

\[P(n) \leq \sum_{j=0}^{\log^* n - 1} \frac{3n}{2B(j)}(B(j) - B(j - 1) - 1) \leq \]

\[\sum_{j=0}^{\log^* n - 1} \frac{3n}{2B(j)}B(j) = \frac{3}{2}n \log^* n \]
Summary

<table>
<thead>
<tr>
<th></th>
<th>makeset</th>
<th>find</th>
<th>link</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(m + n \log n)$</td>
</tr>
<tr>
<td>tree</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(mn)$</td>
</tr>
<tr>
<td>link by rank</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(n + m \log n)$</td>
</tr>
<tr>
<td>with compressions</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O((m + n) \log^* n)$</td>
</tr>
</tbody>
</table>