Friday, November 15

Program of the day:

- Solving MIP models by branch-and-bound (Wolsey chapter 7)
- Applications: Knapsack Problem (demo)
- Design issues in branch-and-bound
- Relaxations
Techniques for MIP

- Preprocessing
- Branch-and-bound
- Valid cuts

Development

1960 Brakthrough: branch-and-bound

1970 Small problems ($n < 100$) may be solved. Exponential growth, many important problems cannot be solved.

1983 Crowder, Johnson, Padberg: new algorithm for pure BIP. Sparse matrices up to ($n = 2756$).

1985 Johnson, Kostreva, Sahl: further improvements.

1987 Van Roy, Wolsey: Mixed IP. Up to 1000 binary variables, several continuous variables.

Now Preprocessing, addition of cuts, good branching strategies
Solving IP by enumeration

- Binary IP

maximize \[2x_1 + 3x_2 - 1x_3 + 5x_4 \]
subject to \[4x_1 + 1x_2 + 2x_3 + 3x_4 \leq 8 \]
\[x_1, x_2, x_3, x_4 \in \{0, 1\} \]

- Integer IP

maximize \[2x_1 + 3x_2 - 1x_3 + 5x_4 \]
subject to \[4x_1 + 1x_2 + 2x_3 + 3x_4 \leq 8 \]
\[x_1, x_2, x_3, x_4 \in \mathbb{N} \]

- Mixed integer IP

maximize \[2x_1 + 3x_2 - 1x_3 + 5x_4 \]
subject to \[4x_1 + 1x_2 + 2x_3 + 3x_4 \leq 8 \]
\[x_1, x_2 \in \{0, 1\} \]
\[x_3, x_4 \in \mathbb{R} \]
Elements of Branch-and-bound

Problem

\[
\begin{align*}
\text{maximize} & \quad cx \\
\text{subject to} & \quad x \in S
\end{align*}
\]

- **Divide and conquer** (Wolsey prop. 7.1)
 \(S = S_1 \cup S_2 \cup \ldots \cup S_K \) and \(z^k = \max\{cx : x \in S_k\} \)
 \[
 z = \max_{k=1,...,K} z^k
 \]
 Often: decomposition by splitting on decision variable
 Overlap between \(S_i \) and \(S_j \) is allowed

- **Upper bound function** (Wolsey prop. 7.2)
 \[
 z^k = \sup\{cx : x \in S_k\}
 \]
 then \[
 z = \max z^k
 \]
 is an upper bound on \(S \)

- **Lower bound** (so far best solution) \(\bar{z} \)

- **Upper bound test**
 \[
 \text{if } z^k \leq \bar{z} \text{ then } x^* \not\in S_k
 \]
Example: Knapsack Problem

Given n items and a knapsack

- Item j has the weight w_j
- Profit of item j is p_j
- The capacity of the knapsack is c

\[
\begin{align*}
\text{maximize} & \quad \sum_{j=1}^{n} p_j x_j \\
\text{subject to} & \quad \sum_{j=1}^{n} w_j x_j \leq c \\
& \quad x_j \in \{0, 1\}, \quad j = 1, \ldots, n.
\end{align*}
\]

Important problem

- Budgeting
- Transportation
- Subproblem (e.g. separation of valid inequalities)
Branch-and-bound

A systematical enumeration technique for solving IP/MIP problems, which apply bounding rules to avoid to examine specific parts of the solution space.

\[
\begin{align*}
\text{maximize} & \quad cx \\
\text{subject to} & \quad Ax \leq b \\
& \quad x' \geq 0 \\
& \quad x'' \geq 0, \text{ integer}
\end{align*}
\]

- Branching tree enumerates all integer variables.
- Once all integer variables are fixed, remaining problem is solved by LP.
- General MIP algorithm does not know structure of problem
- Upper bounds \overline{z} are derived in each node by LP-relaxation.
- If $\underline{z} \leq \overline{z}$ then descendant nodes need not to be examined
Branch-and-bound for MIP

Recursive procedure which at each node:

- If infeasible, backtrack
- Solve LP-relaxation, getting \bar{x} and \bar{z}
- If $\bar{z} \leq \bar{z}$ then backtrack
- If all x are integral: update \bar{z}, backtrack
- Choose a fractional variable $x_i = d$
- Branch on

$$x_i \leq \lfloor d \rfloor \quad x_i \geq \lceil d \rceil$$

Where

- objective function should be maximized
- \bar{z} is so far best solution (incumbent solution)
- \bar{z} is upper bound at node
- \bar{x} is LP-solution to current problem
Branch-and-bound for MIP

Example:

\[
\begin{align*}
\text{maximize} & \quad x_1 + x_2 \\
\text{subject to} & \quad x_1 + 5x_2 \leq 20 \\
& \quad 5x_1 + 3x_2 \leq 20 \\
& \quad 6x_1 + x_2 \leq 21 \\
& \quad x_1, x_2 \geq 0, \ \text{integer}
\end{align*}
\]

Branch on most fractional variable, best-first search
Root node

- LP-solution $x_1 = \frac{20}{11} = 1.8181$, $x_2 = \frac{40}{11} = 3.6363$.
- Lower bound $z = -\infty$.
- Two nodes: $x_2 \leq 3$ and $x_2 \geq 4$ with upper bounds $\bar{z} = 5.2$ and $\bar{z} = 4$.

Node 1

- Add constraint $x_2 \leq 3$, getting LP-solution $x_1 = \frac{11}{5} = 2.2$ and $x_2 = 3$.
- Two nodes: $x_1 \leq 2$ and $x_1 \geq 3$ with upper bounds $\bar{z} = 5$ and $\bar{z} = \frac{14}{3} = 4.6667$.

Node 2

- Add constraint $x_1 \leq 2$, getting LP-solution $x_1 = 2$ and $x_2 = 3$. Upper bound $\bar{z} = 5$. Feasible solution $\bar{z} = 5$.

Node 3

- Add constraint $x_1 \geq 3$, getting LP-solution $x_1 = 3$ and $x_2 = \frac{5}{3} = 1.6667$. Upper bound $\bar{z} = 4.6667 < \bar{z}$.

Node 4

- Add constraint $x_2 \geq 4$, getting LP-solution $x_1 = 0$ and $x_2 = 4$. Upper bound $\bar{z} = 4 < \bar{z}$.
Design issues

\[
\begin{align*}
\text{maximize} & \quad cx \\
\text{subject to} & \quad x \in S
\end{align*}
\]

Pruning rules (Wolsey 7.2)

- Prune by optimality \(z^k = \max\{cx : x \in S_k\} \)
- Prune by bound \(\underline{z}_k \leq z \)
- Prune by infeasibility \(S_k = \emptyset \)

Branching rules (Wolsey 7.4)

- most fractional variable \(j \) i.e. \(x_j - \lfloor x_j \rfloor \) close to \(\frac{1}{2} \)
- least fractional variable
- greedy approach

Selecting next problem

- Depth-first-search
 (quickly find solution, small changes in LP, space)
- Best-first-search
 (greedy approach)
Design issues

Relaxation (Wolsey 2.1)

\[
\begin{align*}
\max \{ cx : x \in S \} & \quad (IP) \\
\max \{ f(x) : x \in T \} & \quad (RP)
\end{align*}
\]

RP is a relaxation of IP if

- \(S \subseteq T \)
- \(f(x) \geq cx \) for all \(x \in S \)

Which constraints should be relaxed

- Quality of bound (tightness of relaxation)
- Remaining problem can be solved efficiently
- Constraints difficult to formulate mathematically
- Constraints which are too expensive to write up