Friday, November 8

Program of the day

• Overview of course, exercises
• Introduction to Integer Programming
• Modelling (Williams, chapter 9)
• Applications: Opencast mining
• Evaluation
Purpose of the course

- To learn to build complex models from real life using Mathematical Programming
- To know techniques for solving Mathematical Programming models
- To understand that some problems can be solved efficiently and some cannot
- To learn that the same problem may be formulated in different ways, which are easier/harder to solve
- To know a number of techniques for decreasing solution times (or turn a problem from practically “unsolvable” to “solvable”)
Integer Programming

In first part of course: continuous variables, linear constraints

- Most products are integral (apart from liquids) - Airplane production, Tomato Soups.
- Structure of problem leads to IP - Graph problems.
- Nonlinear objective functions or constraints occur frequently

- Logical conditions - “If I use vegetable oil in the blend, then I must also add 5ml of preservatives”
Integer Programming

General formulation:

\[
\begin{align*}
\text{maximize} \quad & \sum_{j=1}^{n} c_j x_j \\
\text{subject to} \quad & \sum_{j=1}^{n} a_{1j} x_j \leq b_1 \\
& \vdots \\
& \sum_{j=1}^{n} a_{mj} x_j \leq b_m \\
& x_j \geq 0, \quad j = 1, \ldots, n, \quad x \text{ integer}
\end{align*}
\]

where

- \(A \) is a \(m \times n \) matrix
- \(b \) is a \(m \)-vector
- \(c \) is a \(n \)-vector

- IP: integer programming model
- PIP: pure integer programming model
- MIP: mixed integer programming model

ILP is not ideal model, but bounds from LP (Edmonds)
Integer Programming

IP powerful method for modelling

- LP easy to solve by e.g. Simplex (polynomial time by interior-point methods).
- General IP is NP-hard
- Many concrete problems may be solved despite NP-hardness
- Specific techniques for individual problems

Special problems

- travelling salesman problem
- project selection
- transportation problem
- assignment problem
- assembly line balancing
- set partitioning problem
- aircrew scheduling
- depot location problem
- sequencing problem
- job-shop scheduling
Hardness of IP

maximize $x_1 + x_2$
subject to $-2x_1 + 2x_2 \geq 1$
$-8x_1 + 10x_2 \leq 13$
$x_1, x_2 \geq 0$, integer

Solutions are not found in extreme points (or nearby)

Find convex hull
Model building

• Indicator variables
• Non-convex problems
• Nonlinear functions
• Logical expressions
• Transformation of “human text” to ILP
Indicator variables

- Most important modelling tool!
- $\delta \in \{0, 1\}$
- $\delta = 1$ if and only if some event happens.

Model:

$$\delta = 1 \iff x > 0$$
$$\quad \delta \in \{0, 1\}, \ x \geq 0$$

\[
\begin{array}{l}
\delta = 1 \implies x > 0 \\
\delta = 1 \implies x \geq \epsilon \quad \text{\(\epsilon\) level for } x \text{ regarded as 0} \\
x - \epsilon \delta \geq 0, \ \delta \in \{0, 1\}
\end{array}
\]

\[
\begin{array}{l}
x > 0 \implies \delta = 1 \\
\delta = 0 \implies x = 0 \\
x - M \delta \leq 0, \ \delta \in \{0, 1\} \quad M \text{ upper bound on } x
\end{array}
\]
Indicator variables

Logical implications $X \iff Y$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$X \Rightarrow Y$</th>
<th>$X \Leftarrow Y$</th>
<th>$\neg X \Rightarrow \neg Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Fixed-charge problem

cost function

\[f(x) = \begin{cases}
 ax + b & \text{if } x > 0 \\
 0 & \text{if } x = 0
\end{cases} \]

Model:

\[\begin{cases}
 \text{minimize} & ax + \delta b \\
 \text{subject to} & x - M\delta \leq 0 \\
 & x - \epsilon\delta \geq 0 \\
 & \delta \in \{0, 1\}, \quad x \geq 0
\end{cases} \]
Non-convex problems

canstraints:

\[x_1 + x_2 \leq b \]
\[x_1 \geq 1 \text{ or } x_2 \geq 1 \]
\[x_1, x_2 \geq 0 \]

Modeling tool

\[\delta = 1 \Rightarrow x \geq \epsilon \]

Two indicator variables \(\delta_1, \delta_2 \):

\[
\begin{align*}
 x_1 + x_2 &\leq b \\
 \delta_1 + \delta_2 &\geq 1 \\
 x_1 - 1\delta_1 &\geq 0 \\
 x_2 - 1\delta_2 &\geq 0 \\
 x_1, x_2 &\geq 0, \\
 \delta_1, \delta_2 &\in \{0, 1\}
\end{align*}
\]
Indicator variables

“A is included in the blend iff B is included in the blend” can be modeled by using constraints

<table>
<thead>
<tr>
<th>$x_A > 0 \Rightarrow \delta = 1$</th>
<th>$x_A - M\delta \leq 0, \quad \delta \in {0, 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta = 1 \Rightarrow x_B > 0$</td>
<td>$x_B - \epsilon\delta \geq 0, \quad \delta \in {0, 1}$</td>
</tr>
<tr>
<td></td>
<td>ϵ level for x_B regarded as 0</td>
</tr>
</tbody>
</table>

Example

Assume that x_A and x_B are proportions in blend i.e. $x_A + x_B = 1$.

$$M = 1 \quad \epsilon = 0.01$$

Formulation:

$$
\begin{align*}
\left\{& x_A - \delta \leq 0 \\
x_B - 0.01\delta \geq 0 \\
\delta & \in \{0, 1\}\end{align*}
$$
Indicator variables for linear inequalities

Example

“If resources needed for production of x_1, x_2 and x_3 are below the limit of one truck, then use the other truck for some other purpose.”

General form

$$\sum_{j=1}^{n} a_j x_j \leq b \iff \delta = 1, \quad \delta \in \{0, 1\}$$

- $\sum_{j=1}^{n} a_j x_j \leq b \iff \delta = 1$ has the MIP formulation

$$\sum_{j=1}^{n} a_j x_j + M\delta \leq M + b$$

where M is upper bound on $\sum_{j=1}^{n} a_j x_j - b$

$\delta = 1$: $\sum_{j=1}^{n} a_j x_j \leq b$

$\delta = 0$: $\sum_{j=1}^{n} a_j x_j - b \leq M$
Indicator variables for linear inequalities

- \(\sum_{j=1}^{n} a_j x_j \leq b \Rightarrow \delta = 1 \) has the MIP formulation

\[
\sum_{j=1}^{n} a_j x_j - (m - \epsilon)\delta \geq b + \epsilon
\]

where \(m \) is lower bound on \(\sum_{j=1}^{n} a_j x_j - b \).

\[
\delta = 0 \Rightarrow \sum_{j=1}^{n} a_j x_j \geq b + \epsilon
\]

\(\delta = 0 \): \(\sum_{j=1}^{n} a_j x_j \geq b + \epsilon \)

\(\delta = 1 \): \(\sum_{j=1}^{n} a_j x_j - m + \epsilon \geq b + \epsilon \)

\[
\sum_{j=1}^{n} a_j x_j - b \geq m
\]
Indicator variables for inequalities, example

Logical condition

\[2x_1 + 3x_2 \leq 1 \iff \delta = 1\]
\[\delta \in \{0, 1\}\]
\[0 \leq x_1 \leq 1, \quad 0 \leq x_2 \leq 1\]

We find

\[M = \text{u.b.}(\sum_{j=1}^{n} a_j x_j - b)\]
\[= \text{u.b.}(2x_1 + 3x_2 - 1) = 4\]

and

\[m = \text{l.b.}(\sum_{j=1}^{n} a_j x_j - b)\]
\[= \text{l.b.}(2x_1 + 3x_2 - 1) = -1\]

choose \(\epsilon = 0.01\), i.e. constraint broken when \(2x_1 + 3x_2 \geq 1.01\)

Constraints

\[2x_1 + 3x_2 + 4\delta \leq 4 + 1\]
\[2x_1 + 3x_2 - (-1 - 0.01)\delta \geq 1 + 0.01\]

Which results in model:

\[
\begin{align*}
2x_1 + 3x_2 + 4\delta & \leq 5 \\
2x_1 + 3x_2 + 1.01\delta & \geq 1.01 \\
\delta & \in \{0, 1\} \\
0 \leq x_1 & \leq 1, \\
0 \leq x_2 & \leq 1
\end{align*}
\]
Nonlinear functions

Frequently, the objective function or some of the constraints may contain nonlinear functions.

Approx. nonlinear function by piecewise linear function

- Split into m intervals
- For each interval $[d_i, d_{i+1}]$

\[d_i \leq x \leq d_{i+1} \iff y = a_i x + b_i \]

- Model as

\[
\begin{align*}
\begin{cases}
 d_i \leq x & \iff \delta_1 = 1 \\
 x \leq d_{i+1} & \iff \delta_2 = 1 \\
 \delta_1 + \delta_2 = 2 & \iff \delta = 1 \\
 y = a_i x + b_i & \iff \delta = 1
\end{cases}
\]

- Many intervals m, better precision but much harder to solve!
Logical conditions and 0-1 variables

a) If no depot is sited here then it will not be possible to supply any of the customers from the depot.

b) If we manufacture product A then we must also manufacture product B or at least one of products C and D.

c) If we do not place an electronic module in this position, then no wires can be connected into this position.

Introduce an indicator variable $\delta_i \in \{0, 1\}$ with each condition X_i

<table>
<thead>
<tr>
<th>Condition X_i is true $\iff \delta_i = 1$</th>
</tr>
</thead>
</table>

In this way we may formulate:

<table>
<thead>
<tr>
<th>$X_1 \lor X_2$</th>
<th>$\delta_1 + \delta_2 \geq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1 \land X_2$</td>
<td>$\delta_1 = 1, \delta_2 = 1$</td>
</tr>
<tr>
<td>$X_1 \implies X_2$</td>
<td>$\delta_1 - \delta_2 \leq 0$</td>
</tr>
<tr>
<td>$X_1 \iff X_2$</td>
<td>$\delta_1 - \delta_2 = 0$</td>
</tr>
</tbody>
</table>
Transformation to linear form

Write up the text in ordinary mathematical form

\[(\sin(x_1) \leq \frac{1}{2} \lor x_1x_2 \leq x_3) \Rightarrow (x_3 = 1 \lor x_2 + x_1 \leq 1)\]

Stepwise transformation

1. Arithmetic functions are replaced by piecewise linear approximations of the functions.

2. Products of decision variables are transformed into products of binary variables. Products of binary variables may easily be expressed as logical constraints, and thus put on binary form.

3. Relations are transformed into linear inequalities with boolean variables.

\[(ax \leq b) \iff (\delta = 1)\]

4. Boolean logics are transformed into linear form.

\[(B_1 \lor B_2) \iff (\delta' = 1)\]

5. The resulting expression should be true \(\delta_{all} = 1\)

6. Domains of variables are defined.

\[\delta_i \in \{0, 1\}\]
Transformation of general constraints to linear form

Step 3:

<table>
<thead>
<tr>
<th>Relation</th>
<th>ILP-constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ax \leq b$</td>
<td>$Ax + (\delta - 1)M \leq b$, $Ax + \delta M \geq b + \varepsilon$</td>
</tr>
<tr>
<td>$Ax < b$</td>
<td>$Ax + (\delta - 1)M \leq b - \varepsilon$, $Ax + \delta M \geq b$</td>
</tr>
<tr>
<td>$Ax > b$</td>
<td>$Ax + (1 - \delta)M \geq b + \varepsilon$, $Ax - \delta M \leq b$</td>
</tr>
<tr>
<td>$Ax \geq b$</td>
<td>$Ax + (1 - \delta)M \geq b$, $Ax - \delta M \leq b - \varepsilon$</td>
</tr>
<tr>
<td>$Ax = b$</td>
<td>$Ax \geq b \land Ax \leq b$,</td>
</tr>
</tbody>
</table>

Step 4:

<table>
<thead>
<tr>
<th>Relation</th>
<th>Meaning</th>
<th>ILP-constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_1 \lor B_2$</td>
<td>$\delta = 1 \iff \delta_1 = 1 \lor \delta_2 = 1$</td>
<td>$\delta - \delta_1 - \delta_2 \leq 0$, $\delta_1 + \delta_2 - 2\delta \leq 0$</td>
</tr>
<tr>
<td>$B_1 \land B_2$</td>
<td>$\delta = 1 \iff \delta_1 = 1 \land \delta_2 = 1$</td>
<td>$2\delta - \delta_1 - \delta_2 \leq 0$, $\delta_1 + \delta_2 - \delta \leq 1$</td>
</tr>
<tr>
<td>$B_1 \Rightarrow B_2$</td>
<td>$\delta = 1 \iff (\delta_1 = 1 \Rightarrow \delta_2 = 1)$</td>
<td>$\delta_1 - \delta_2 + \delta \leq 1$, $\delta_1 - \delta_2 + 2\delta \geq 1$</td>
</tr>
<tr>
<td>$B_1 \Leftrightarrow B_2$</td>
<td>$\delta = 1 \iff (\delta_1 = 1 \iff \delta_2 = 1)$</td>
<td>use: $(B_1 \Rightarrow B_2) \land (B_2 \Rightarrow B_1)$</td>
</tr>
<tr>
<td>$\neg B_1$</td>
<td>$\delta = 1 \iff \neg(\delta_1 = 1)$</td>
<td>$\delta = 1 - \delta_1$</td>
</tr>
</tbody>
</table>
Opencast mining (williams example 12.15)

Concentration c_{ijk} of pure metal for each block

- **Level 1 (surface)**

 \[
 \begin{array}{cccc}
 1.5 & 1.5 & 1.5 & 0.75 \\
 1.5 & 2.0 & 1.5 & 0.75 \\
 1.0 & 1.0 & 0.75 & 0.50 \\
 1.5 & 1.5 & 1.5 & 0.25 \\
 \end{array}
 \]

- **Level 2 (25 ft depth)**

 \[
 \begin{array}{ccc}
 4.0 & 4.0 & 2.0 \\
 3.0 & 3.0 & 1.0 \\
 2.0 & 2.0 & 0.5 \\
 \end{array}
 \]

- **Level 3 (50 ft depth)**

 \[
 \begin{array}{cc}
 12.0 & 6.0 \\
 5.0 & 4.0 \\
 \end{array}
 \]

- **Level 4 (75 ft depth)**

 \[
 6.0
 \]

Cost of extraction

| Level 1: $e_1 = 3.000$ pounds | Level 2: $e_2 = 6.000$ pounds | Level 3: $e_3 = 8.000$ pounds | Level 4: $e_4 = 10.000$ pounds |

Revenue from 100% block is $R = 200.000$ pounds
Opencast mining

Introduce variables x_{ijk}

- **Level 1 (surface)**

<table>
<thead>
<tr>
<th>x_{111}</th>
<th>x_{112}</th>
<th>x_{113}</th>
<th>x_{114}</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{121}</td>
<td>x_{122}</td>
<td>x_{123}</td>
<td>x_{124}</td>
</tr>
<tr>
<td>x_{131}</td>
<td>x_{132}</td>
<td>x_{133}</td>
<td>x_{134}</td>
</tr>
<tr>
<td>x_{141}</td>
<td>x_{142}</td>
<td>x_{143}</td>
<td>x_{144}</td>
</tr>
</tbody>
</table>

- **Level 2 (25 ft depth)**

<table>
<thead>
<tr>
<th>x_{211}</th>
<th>x_{212}</th>
<th>x_{213}</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{221}</td>
<td>x_{222}</td>
<td>x_{223}</td>
</tr>
<tr>
<td>x_{231}</td>
<td>x_{232}</td>
<td>x_{233}</td>
</tr>
</tbody>
</table>

- **Level 3 (50 ft depth)**

<table>
<thead>
<tr>
<th>x_{311}</th>
<th>x_{312}</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{321}</td>
<td>x_{322}</td>
</tr>
</tbody>
</table>

- **Level 4 (75 ft depth)**

<table>
<thead>
<tr>
<th>x_{411}</th>
</tr>
</thead>
</table>

Maximize net profit

$$\sum (R \cdot c_{ijk} - e_i)x_{ijk}$$

Constraints

$$\delta_{ijk} = 1 \Rightarrow \begin{cases}
\delta_{i-1,j,k} = 1 \\
\delta_{i-1,j-1,k} = 1 \\
\delta_{i-1,j,k-1} = 1 \\
\delta_{i-1,j-1,k-1} = 1
\end{cases}$$

All variables $x_{ijk} \in \{0, 1\}$.
Opencast mining

The constraints

\[\delta_{ijk} = 1 \Rightarrow \begin{cases}
\delta_{i-1,j,k} = 1 \\
\delta_{i-1,j-1,k} = 1 \\
\delta_{i-1,j,k-1} = 1 \\
\delta_{i-1,j-1,k-1} = 1
\end{cases} \]

can be expressed as

\[\begin{align*}
\delta_{ijk} - \delta_{i-1,j,k} & \leq 0 \\
\delta_{ijk} - \delta_{i-1,j-1,k} & \leq 0 \\
\delta_{ijk} - \delta_{i-1,j,k-1} & \leq 0 \\
\delta_{ijk} - \delta_{i-1,j-1,k-1} & \leq 0
\end{align*} \]

Model with 30 binary variables, 56 constraints
Brute-force solution: \(2^{30}\) steps
Opencast mining

\[
\begin{pmatrix}
-1 & -1 & 1 \\
-1 & -1 & 1 \\
-1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\

-1 & -1 & 1 \\
-1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{pmatrix}
\]

The constraint matrix \(A \) is totally unimodular (TU)

Solving

\[
\max \quad c\delta
\]

s.t.

\[
A\delta \leq b
\]

\[
\delta \geq 0
\]

gives integer solutions for any integer vector \(b \) and any \(c \)
Opencast mining

The optimal solution

- Level 1 (surface)

- Level 2 (25 ft depth)

- Level 3 (50 ft depth)

- Level 4 (75 ft depth)

Net profit is 17.500 pounds.