XBox 360

EBUG |t

=
5

L

Components

« 3 PowerPC cores
— 2 threads pr core
— 3.2 GHz
 R500 Graphics Processor
— 500MHz
— 48 Pipelines

e 512 MB RAM

Xenon

o 3-Way Symmetric Multi-Processor
— IBM PowerPC Architecture®
— Specialized Function VMX

— 3.2GHz
e Shared 1 MByte L2
e Front Side Bus / PHY — 21.6 GB/sec
 Phase Locked Loops

e 165 M Transistors
— IBM — 90nm SOl

Layout

Xenon System Block Diagram.

Michael Dougherty-
Xbox Advanced Technology Group. 3 5+ GHz CPU~|| 3.5 GHz CPU~|| 35 GHz CPU+
VFU. YFU . VP,
'é LI Cache . LI Cache . L1 Cacke
= _ REBI. KB, WEBI,
— aé : Video Scaler- |, a nKBD REKBD 32KBD.
._§
= 1 MB L2 Cache~
i 500 MBa B,
&
0E0RE WY , 108 GBE ..
2000 ke) 204+ 3B 256+ MB
LY R “umtmw_.
w Ll : \
Penphenls l4—» - - Neeth Eridge. ——>
i S00MB R VBMOBER
g - - 24+ 0BEW .
Bemary |\ South Bridge~ s T . 1
Unit (<2 \\, - g Deciordar . v o
<
-
g
500+ MHzv | @[] 1oMB
3 3) 3D Core E e & | EDRAM:
00 Mbisk y (3 o X 5) a o
F]
) Hard
[Btemery | Dy | | Pt 2
(1) CPU — Misin Memory Lateseios . {3 DVD. {5) GPL Perfomancs Overview . {6) EDRAM RAW Bandwadh
{in CPU cycles) . 3.4 0B capactty . # &5 ALU ops per eycle . {in 22 pizel quads per GPL! cycle)
* =325 main mwmory 0 CPU 4Ll 110 CPU. »-T=166MBis R {track depordent) . -léhlmﬁluﬁnm@gb Write: Fead (resclbve):
#3112 wCPU 3L DwCPU. o-]00nsop — 100ms typcal man access time . # 16 F3 inpad isderpolates -fanﬁ m 'f“ﬁ'ﬁ
" ; (gaek distance and rotational labency dependent) ® V5 and PS boad balanced . elal wlal .
;Utmmﬁ’“ﬂl'ﬂmwﬂ* » Tvlax thaoaghputs per cycle . » 4 ZfStencl only 2 ZiStencil ariy .
. i‘“ﬁ"‘;ﬁmw’“m 1”“’._ * ZiStencil testing, alpha blesding, and MSA A
?rﬂwum-mn 0-15 =3B RAF (mcor dprudia). 22+2 pinel quads + Zf5tencil R
e — ' * =13 me wvg, — 30 me typical max scoess tine . ' .
. : . * predicteble srearng and wlfthresding {7) 10 & GBi fror L2 + 22 44+ GHis fiom main
.%_ (st disturce and votatiomal ltency dependent) . SIS O et device . memony peak bandwadh.
- ¥]

Layout of the Xenon

L2 Cache

{1 MB)

PowerPC
Processing L1 Cache
Element

LD
Fedioin
Imnireton
(B e

Lonirod Uit

lnsretion
st

1 1 -
Stone Storne:
Exaciitian Zara y Execition Cara y

-

GPU

o Custom ATI Graphics Processor
— 10MB DRAM
— 48-way parallel floating point
— Unified shader architecture
— 500 million triangles per sec
— 16 gigasamples/sec
— 48 billion shader operations/sec

== EE B
=i : i ==

| 24 pixel shaders | g

jj 2 |
|] | cpid] | g
5 o B n =

Fragman! Crossbar

§ 16 render Dﬁtputs
oty pabey, mucbor judbns

Partition Partithon | Partitlan

R - B B
DRAM() DRAM(z) [DRAM(s)

Memory

512 MB of 700MHz GDDR3 RAM - unified
memory architecture

22.4 GB/s interface bus bandwidth
256 GB/s memory bandwith to EDRAM
21.6 GB/s front-side bus

Multithreading Tips &
Tricks

Jonathan Haas
Software Design Engineer
Xbox Advanced Technology Group

Why Multithread?

* Necessary to take full advantage of Xbox
360 CPU

 Necessary to take full advantage of modern
PC CPUs

Other platforms might benefit from multithreading as well
 What do all these things have in common?
— 2D sprite-based graphics
— Waveform synthesized audio
— 16-bit pointers
— Single-threaded games

Agenda

Designing for multiple threads
Thread basics
Synchronization

Lockless programming

Design for Multithreading
 Bad multithreading can be worse than no
multithreading, so design intelligently

 Two major paradigms:

— Symmetric threads
« Job queues

— Asymmetric threads
» Task-oriented threading

» \Well-designed systems use both

Bad Multithreading

Good Multithreading

Thread

Main Thread

[\

Animation/
Skinning

‘

———

S
~— ~

« ing ‘ ead <7}

Networking

File 110

18
L

Another Paradigm: Cascades

l:ramﬂ THrgad 1
Hingsid
Thrédd 3
Rémdadry
Fresahb

« Advantages:
— Synchronization points are few and well-defined

* Disadvantages:
— Increases latency

VVV VY

Basic Thread Management
CreateThread()

— /\Watch dwStackSize

SuspendThread(), ResumeThread()
— /\Probably a bad idea—can lead to

deadlocks

erminate

hread() — not available

XSetThreadProcessor()
— proc / 2 = core

—proc % 2 =

hw thread

WaitForSingleObject(), CloseHandle()

Thread Local Storage
e TIsAlloc()

— Allocates up to 64 DWORDs
— Returns index

o TIsSetValue()/GetValue()/Free()

e declspec(thread)
— Not for use with massive arrays
— Earlier docs discouraged—ignore

Heap APIs

* In general, system libraries are thread-safe

« Memory management APIs let you turn
thread-safety off
— Pass HEAP_NO_ SERIALIZE

— Use only when certain multiple, simultaneous
access Is not a problem

— Never use on main system heap

 Best use: heaps that are read-only to all but
one thread

Open MP

o Set of compiler directives for easy
parallelization

e #pragma omp *

O

Controlling OpenMP
 Default is to create a thread on each
processor

— OpenMP considers each hardware thread to
be a processor

e« Xomp set cpu order()

Xonp_cpu_order t order New,

order New.order[0] = 4;

orderNew.order[1] = 2;

xonp_cpu_order t orderdd = xonp _set cpu_order(orderNew);
#pragma onp parallel for numthreads(2)

/'l | oop goes here

/Il reset CPU order to orderd d when done

More fun with OpenMP

e #pragma omp parallel...

— sections
 Follow with #pragma omp section

— If(expr)

— shared(varName)

— private(varName)

— reduction(op : varName)

Still more fun with OpenMP
e #pragma omp...
— critical
— barrier
— flush
— master

order ed
— ordered ® @

e For more information, read the Visual
Studio® 2005 docs

Fibers
Cooperative software pseudothreads

Do not preempt
ConvertThreadToFiber()
CreateFiber()
SwitchToFiber()

Context switches are 7-9x faster than
software threads

Overview: Synchronization
 Necessary to control access to shared resources
— Primarily memory

* Alock is a construct designed to stall a thread
until needed resources are available.

* Lockless programming uses non-locking
constructs to achieve synchronized access

— Lockless programming is subtle and can lead to very
hard-to-find bugs

— Unpredictable memory latency can lead to strange

results /\

Synch: The Goldilocks Problem

* Not enough synch
— Can lead to fatal, hard-to-find bugs

 Too much synch
— Wastes time acquiring unneeded locks

— Wastes even more time if you have to walit
unnecessarily!

e Just right, but...
— Better to eliminate contention, if possible

Locks: Critical Sections

* Prevent contention by ensuring only a
single thread can use a resource

— InitializeCriticalSection()

— EnterCriticalSection() /
TryEnterCiriticalSection()

e Cheap, but not free
— =700 cycles when not blocking
— Rolling your own doesn’t help

Locks: Objects

e Events
— Single trigger

— Great for letting threads sleep while waiting for
another thread

e Semaphores
— Have a count that can be incremented
— Count decrements when waiting thread is released
| for job queues

__The Jovs of Lockless Synch

A = new SonmeQhj ect () ;
B = true;

——read 1

>

if(B)
{
DoSonet hi ngWth(A);

—i}

read 2

Memory Access Reordering

e Order of completing of memory accesses IS
not guaranteed

— Compiler may reorder instructions
— CPU may reorder instructions

Memory Access Reordering

e Order of completing of memory accesses IS
not guaranteed

— Compiler may reorder instructions
— CPU may reorder instructions
— CPU may reorder reads and writes

 Needed: memory barrier

— Ensures that prior memory accesses complete
before future memory accesses

Enter lwsync
 lwsync CPU Instruction

 lwsync() compiler intrinsic
e Creates a memory barrier

— All memory accesses before lwsync must
complete before memory accesses after
lwsync

— Works across threads

lwsvnc semantics

A = new SomeChj ect (), after an operation, results

__lwsync() // release A

B = true; ture operations
— Put __ lwsync() after operation

 Release: Ensure that before doing an operation,
all previous operations have completed

— Put __ lwsync() before operation

e Fence: A combination of the above

| ;OB Ljects are implemented

__lwsync() // acquire A
DoSonet hi ngWth(A);

A++;

The Javs of Synchro 2:

——read 1

A++;

Interlocked 10
Math

— InterlockedIncrement/Decrement
— Interlocked And/Or/Xor

Conditionals
— InterlockedExchange/CompareExchange

Stacks
— InterlockedPush/Pop/FlushSList

Cheap

Do NOT create a memory barrier; you must
use Iwsync() in an appropriate location

Conclusions
Multithreading Is important

Design a multithreaded architecture that
works for you

Use locks judiciously

Use lockless programming with extreme
caution

CSP

 Program your application as a CSP
network
— Make sure you have enough processes
« Enough >> 6
 With shared cache we can let all 6 HW
threads use the same scheduler
— But we can also let L1 dictate a 2x3 scheduler

Advantages of CSP

 No consideration of the underlying
architecture when determining parallelism

— Porting to other architectures Is easy
 Dynamic load balancing

Problems with CSP

* No tools exists
 CPS kernel must be implemented with
knowledge of the architecture

— This should be really easy on this architecture
though

