
XBox 360

Components

• 3 PowerPC cores
– 2 threads pr core

– 3.2 GHz

• R500 Graphics Processor
– 500MHz
– 48 Pipelines

• 512 MB RAM

Xenon

• 3-Way Symmetric Multi-Processor
– IBM PowerPC Architecture®
– Specialized Function VMX
– 3.2GHz

• Shared 1 MByte L2
• Front Side Bus / PHY – 21.6 GB/sec
• Phase Locked Loops

• 165 M Transistors
– IBM – 90nm SOI

Layout

Layout of the Xenon

GPU

• Custom ATI Graphics Processor
– 10MB DRAM

– 48-way parallel floating point
– Unified shader architecture

– 500 million triangles per sec
– 16 gigasamples/sec

– 48 billion shader operations/sec

GPU

Memory

• 512 MB of 700MHz GDDR3 RAM – unified
memory architecture

• 22.4 GB/s interface bus bandwidth
• 256 GB/s memory bandwith to EDRAM
• 21.6 GB/s front-side bus

Jonathan Haas
Software Design Engineer

Xbox Advanced Technology Group

Multithreading Tips &
Tricks

Why Multithread?
• Necessary to take full advantage of Xbox

360 CPU
• Necessary to take full advantage of modern

PC CPUs
• Other platforms might benefit from multithreading as well

• What do all these things have in common?
– 2D sprite-based graphics

– Waveform synthesized audio
– 16-bit pointers

– Single-threaded games

Agenda
• Designing for multiple threads
• Thread basics
• Synchronization
• Lockless programming

Design for Multithreading
• Bad multithreading can be worse than no

multithreading, so design intelligently
• Two major paradigms:

– Symmetric threads
• Job queues

– Asymmetric threads
• Task-oriented threading

• Well-designed systems use both

Bad Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Rendering ThreadRendering ThreadRendering Thread

Game ThreadGame Thread

Good Multithreading

Main Thread

Physics

Rendering Thread

Animation/
Skinning

Particle Systems

Networking

File I/O

Another Paradigm: Cascades
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Input

Physics

AI

Rendering

Present

Frame 1Frame 2Frame 3Frame 4

• Advantages:
– Synchronization points are few and well-defined

• Disadvantages:
– Increases latency

Basic Thread Management
• CreateThread()

– Watch dwStackSize

• SuspendThread(), ResumeThread()
– Probably a bad idea—can lead to

deadlocks

• TerminateThread() – not available
• XSetThreadProcessor()

– proc / 2 = core
– proc % 2 = hw thread

• WaitForSingleObject(), CloseHandle()

!

!

Thread Local Storage
• TlsAlloc()

– Allocates up to 64 DWORDs
– Returns index

• TlsSetValue()/GetValue()/Free()
• __declspec(thread)

– Not for use with massive arrays

– Earlier docs discouraged—ignore

Heap APIs
• In general, system libraries are thread-safe
• Memory management APIs let you turn

thread-safety off
– Pass HEAP_NO_SERIALIZE
– Use only when certain multiple, simultaneous

access is not a problem
– Never use on main system heap

• Best use: heaps that are read-only to all but
one thread

Open MP
• Set of compiler directives for easy

parallelization
• #pragma omp *

#pragma omp parallel for
for(int i = 0; i < 1000000; i++)
{
a[i] = i;

}

#pragma omp parallel for
for(int i = 0; i < 1000000; i++)
{
a[i] = a[i-1];

}

Controlling OpenMP
• Default is to create a thread on each

processor
– OpenMP considers each hardware thread to

be a processor

• xomp_set_cpu_order()
xomp_cpu_order_t orderNew;
orderNew.order[0] = 4;
orderNew.order[1] = 2;
xomp_cpu_order_t orderOld = xomp_set_cpu_order(orderNew);
#pragma omp parallel for num_threads(2)
// loop goes here
// reset CPU order to orderOld when done

More fun with OpenMP
• #pragma omp parallel…

– sections
• Follow with #pragma omp section

– if(expr)
– shared(varName)

– private(varName)
– reduction(op : varName)
int nSum = 0;
#pragma omp parallel reduction (+ : nSum) for
for(int i = 0; i <= 10; i++)
nSum += i;

printf("%d", nSum);

• #pragma omp…
– critical
– barrier

– flush
– master

– ordered

• For more information, read the Visual
Studio® 2005 docs

#pragma omp parallel for
for(int i = 0; i < 1000000; i++)
{
a[i] = a[i-1];

}

#pragma omp parallel for ordered
for(int i = 0; i < 1000000; i++)
{
a[i] = a[i-1];

}

Still more fun with OpenMP

Fibers
• Cooperative software pseudothreads
• Do not preempt
• ConvertThreadToFiber()
• CreateFiber()
• SwitchToFiber()

• Context switches are 7-9× faster than
software threads

Overview: Synchronization
• Necessary to control access to shared resources

– Primarily memory
• A lock is a construct designed to stall a thread

until needed resources are available.
• Lockless programming uses non-locking

constructs to achieve synchronized access
– Lockless programming is subtle and can lead to very

hard-to-find bugs
– Unpredictable memory latency can lead to strange

results !

Synch: The Goldilocks Problem
• Not enough synch

– Can lead to fatal, hard-to-find bugs

• Too much synch
– Wastes time acquiring unneeded locks
– Wastes even more time if you have to wait

unnecessarily!

• Just right, but…
– Better to eliminate contention, if possible

Locks: Critical Sections
• Prevent contention by ensuring only a

single thread can use a resource
– InitializeCriticalSection()
– EnterCriticalSection() /

TryEnterCriticalSection()

• Cheap, but not free
– ≈700 cycles when not blocking
– Rolling your own doesn’t help

Locks: Objects

• Events
– Single trigger
– Great for letting threads sleep while waiting for

another thread

• Semaphores
– Have a count that can be incremented
– Count decrements when waiting thread is released
– Great for job queues

• Mutexes
– Allow single thread access to resources

The Joys of Lockless Synch

L2

Thread 1

Thread 2

A B

A BA B A Bif(B)
{

DoSomethingWith(A);
}

A = new SomeObject();
B = true;

?

Memory Access Reordering

• Order of completing of memory accesses is
not guaranteed
– Compiler may reorder instructions

– CPU may reorder instructions

Memory Access Reordering

• Order of completing of memory accesses is
not guaranteed
– Compiler may reorder instructions

– CPU may reorder instructions
– CPU may reorder reads and writes

• Needed: memory barrier
– Ensures that prior memory accesses complete

before future memory accesses

Enter lwsync
• lwsync CPU instruction
• __lwsync() compiler intrinsic
• Creates a memory barrier

– All memory accesses before lwsync must
complete before memory accesses after
lwsync

– Works across threads

lwsync semantics
• Acquire: Ensure that after an operation, results

are available to all future operations
– Put __lwsync() after operation

• Release: Ensure that before doing an operation,
all previous operations have completed
– Put __lwsync() before operation

• Fence: A combination of the above
• This is how synch objects are implementedif(B)
{

DoSomethingWith(A);
}

A = new SomeObject();
B = true;

A = new SomeObject();
__lwsync() // release A
B = true;

if(B)
{

__lwsync() // acquire A
DoSomethingWith(A);

}

The Joys of Synchro 2:

L2

Thread 1

Thread 2

AA

A A

A++;

A++;

Interlocked IO
• Math

– InterlockedIncrement/Decrement
– InterlockedAnd/Or/Xor

• Conditionals
– InterlockedExchange/CompareExchange

• Stacks
– InterlockedPush/Pop/FlushSList

• Cheap
• Do NOT create a memory barrier; you must

use __lwsync() in an appropriate location

Conclusions
• Multithreading is important
• Design a multithreaded architecture that

works for you
• Use locks judiciously
• Use lockless programming with extreme

caution

CSP

• Program your application as a CSP
network
– Make sure you have enough processes

• Enough >> 6

• With shared cache we can let all 6 HW
threads use the same scheduler
– But we can also let L1 dictate a 2x3 scheduler

CSP
PPC PPC PPC

PPC PPC PPC

Advantages of CSP

• No consideration of the underlying
architecture when determining parallelism
– Porting to other architectures is easy

• Dynamic load balancing

Problems with CSP

• No tools exists
• CPS kernel must be implemented with

knowledge of the architecture
– This should be really easy on this architecture

though

