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Abstract

This paper shows that OO principles can be used to enhance the rigour

of mathematical notation without loss of brevity and clarity.

It is well known that traditional mathematical notation is not com-

pletely formal. This is so because mathematicians and other users of

mathematical notation tend to sacri�ce exactness to obtain brevity and

clarity. The mathematician thereby leaves to the reader to guess the

meaning of each formula presented based on the written and unwritten

rules of the particular �eld of research. This works perfectly well for com-

munication between researchers in the same �eld, but may be an obstacle

for communication between researchers form di�erent �elds or for new-

comers such as students. The lack of rigour in mathematical notation may

also be an obstacle when mathematical phenomena are to be simulated on

computers, where the programmer has to �ll out the gaps in the notation.

It is generally believed that complete formal rigour leads to an explo-

sion in the size of formulas. The present paper, however, shows that a

great amount of ambiguity can be removed from mathematical notation

by keeping the notation but de�ning mathematical objects as objects in

the OO sense. Examples from several di�erent �elds will be given.
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1 Introduction

Computers demand unambiguous notation, programmers want brevity and main-

tainers of software want clarity. Users of mathematical notation demand brevity

and clarity, but the demand for unambiguous notation is less pressing in math-

ematics. Hence, development of unambiguous notation has mainly occurred in

the �elds of mathematical logic and computer science, with computer science

as the place where unambiguity is most needed. It is therefore no surprise

that computer science has developed a number of formalisms (i.e. programming

languages) that are completely unambiguous.

In many respects, mathematical notation is superior to computer science

ditto. This is so because mathematics has had longer time to develop its notation

and because computer science has been restricted to a character set with 96

characters and typewriters that could merely arrange those characters as simple,
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linear strings. The present paper aims at combining the best from the two

worlds.

Such a combination of notation from two worlds will necessarily o�end both

worlds as not all properties of each world will be included or even appreciated.

Section 2 will present a number of ambiguities that appear in contemporary

mathematical notation. Section 3 will present the choices that were made in

the development of the notation. Section 4 develops the notation itself.

2 Examples of problems

2.1 Sum

A term like

A +B

may denote many di�erent things. If A and B are integers, then the + de-

notes integer addition, and if A and B are matrices, then the + denotes matrix

addition. Similarly, a statement like

A +B = B +A

may denote many di�erent things, depending on what A and B might be. if Z

andM(m;n) denote the sets of integers and m by n real matrices, respectively,

then

8A;B2Z:A+ B = B +A

states that addition of integers commutes whereas

8A;B2M(2; 2):A+ B = B +A

states that addition of 2 by 2 matrices commutes. In general, in the statement

8A;B2S:A+B = B + A

the kind of addition in play depends on the set S. In OO terms this dependency

is easy to explain: An integer like 2 or 117 must contain somewhere inside it an

addition operation, and in a term like

2 + 117

the addition operation is fetched from 2 or 117. In a term like

8A;B2Z:A+ B = B +A
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all elements of Z contain an operation that does integer addition. This is in

contrast to the traditional mathematical approach where addition is attached

to the set Z rather than to each of its elements. As an example, in the traditional

approach one might study the structure (Z;+) tacitly meaning that the given

operation should be used for addition of integers in the formulas appearing

afterwards.

2.2 Product

The product operator � yeilds more striking results in that

A �B

denotes vector cross product if A and B are 3-dimensional vectors and Cartesian

product if they are sets. Furthermore, A � B denotes the ordinary product of

A and B if A and B are integers or real numbers. As examples,

8A;B2Z:A� B = B �A

is true whereas

8A;B2R

3

:A�B = B � A

is false. In the former statement, � denotes integer multiplication, and in the

latter it denotes vector cross product. Again, in OO terms, there is no problem

in describing what happens: Integers as well as vectors have a cross product

operation, but that of integers is ordinary integer multiplication and that of

vectors is vector cross product.

2.3 Juxtaposition

If v is a vector and T is a transformation from vectors to vectors, then

2v

denotes the product of 2 and v whereas

Tv

denotes T applied to v. This indicates that objects must have a juxtaposition

operation and that AB denotes the juxtaposition operation of A applied to A

and B. The juxtaposition operation of integers is integer multiplication whereas

that of functions is functional application. Note that this does of course not

mean that 23 means two times three. Digits are \synthetic "characters in the

sense that if they are placed right next to each other, then they synthesise

a new token rather than being combined by the juxtaposition operation. In

natural language and traditional computer science, also alphabetic characters

are synthetic. In the present paper, roman characters are synthetic and italics

are not so that log(x) is the function \log" applied to x whereas log(x) is the

juxtaposition of l, o, g, and x.
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2.4 Arrows

If A and B are sets then

A! B

denotes the set of functions from A into B. In many expositions, if U and V

are vector spaces, then

U ! V

denotes the vector space of linear functions from U to V . In OO terms it is

still easy to describe what happens: Sets are sets of objects, but sets are also

objects in their own right and may contain operations that operate on the set as

a whole. The arrow operation is an example of an operation on a set. The arrow

operation is also reasonable to de�ne for structured sets like vector spaces. In

category theory arrows are also de�ned for structures that have not resemblance

with sets.

2.5 Functional objects

Functions are objects just like sets. As an example, if U and V are vector spaces

and if f; g 2 (U ! V ) then

f + g

denotes the function h for which h(x) = f(x) + g(x). This can be achieved by

de�ning the ! operation of vector spaces such that when U and V are vector

spaces, all elements of U ! V have + operations that behave as above. Hence, it

is reasonable to let the functions in U ! V have + operations so it is reasonable

to let the functions in U ! V be objects.

Another example is composition. If U , V and W are vector spaces, if f 2

U ! V and g 2 V ! W , then

g � f 2 U !W

The composition operation � has to be an operation of f or g. Composition is

more than just functional composition as can be seen in

8f; f

0

2U ! V 8g2V !W : g � (f + f

0

) = (g � f ) + (g � f

0

)

In this statement, the second plus operation has to be an operation of g � f or

g � f

0

which indicates that composition not merely composes the functions but

also de�nes an addition operation for the resulting object.

(Again, in category theory, composition is also de�ned for structures that

have no resemblance with functions).
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2.6 Summary

The above examples show that if numbers, sets, functions etc. are interpreted

as objects in the OO sense, then a lot of the ambiguity in ordinary mathe-

matical notation disappears. It remains to justify that this approach is at all

mathematically sound.

3 Choices of notation

3.1 Strength of foundation

The development of an object oriented mathematics can be based on a strong

foundation such as set theory [14] or map theory [9] or a weak one like �rst

order predicate calculus [14], category theory [3] or lambda calculus [5, 2, 16, 17]

(\strong" and \weak" with respect to consistency power). In a weak foundation

it is possible to prove statements like \if real numbers exist, then addition of real

numbers commute". In strong foundations it is furthermore possible to prove

statements like \real numbers do exist".

The only drawback of stronger theories is that their consistency is harder

to prove (actually, this is the formal de�nition of \stronger"). In the following,

ZFC set theory (and the existence of an inaccessible ordinal [14]) is assumed

consistent, and under this assumption, strong theories have bene�ts only. In

this light it is chosen to base object oriented mathematics on a strong theory.

Set theory is a strong foundation building on �rst order predicate calculus

and map theory is a strong foundation building on lambda calculus. Attempts

have been made to establish a strong theory based on category theory [12].

Category theories that include set theory are of course strong, but they just loan

power from set theory and do not really add anything to set theory. The object

oriented mathematics presented here includes category theory in a natural way,

but is not based on it.

3.2 Computability

Set and map theory have the same formal power but map theory has an ad-

vantage that could be expressed as a slogan like \computable functions are

computable". As an example, if the de�nition of integer addition in set theory

is written out in its full horror, then it contains a large number of universal and

existential quanti�ers and contains absolutely no indication of how two integers

can actually be added. The de�nition of integer addition in map theory is not

particularly easy to read, but it has the advantage that it contains no quanti-

�ers and is directly executable by machine. More generally, arbitrary recursive

de�nitions are legal in map theory where set theory merely allows restricted

recursion schemes.
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The object oriented mathematics presented in the following is based on

map theory and has the advantage that computable functions are directly com-

putable. Computation may even be e�cient provided that elementary opera-

tions like addition are not actually executed on basis of their de�nitions but are

executed directly by hardware.

A description of the version of map theory used here is given in [7]. A

description that aims at �rst year university students is given in [10]. The

original version of map theory was given in [9] and a semantic description is

given in [4].

3.3 Notational freedom

A tradition of mathematics is that each author has notational freedom. On the

contrary, computer science has the tradition that the equivalent of an author,

namely a programmer, can merely choose names of variables and functions. Fur-

thermore, mathematicians arrange their formulas as two-dimensional patterns

with subscripts, superscripts and more advanced arrangements of characters

such as matrices. Programmers can merely arrange their programs as simple

linear strings of characters. These limitations in computer science are due to the

lack of laser printers or similar in the early days of computer science and have

no justi�cation today (see [10] for a language that o�ers notational freedom to

the programmer).

3.4 Operations

The central contribution from OO to object oriented mathematics is the idea

to include operations in objects where the traditional approach in mathematics

is to associate operations to sets of objects. This central contribution can be

stated in few words and may seem simple, even trivial, but that is normal in

fundamental mathematics. As an example, the notion of a set is even simpler

but is however quite important. Even though the central contribution is simple,

it is still non-trivial to work out the details. The reward of working out the

details is that mathematical notation becomes less ambiguous, category theory

is captured by the resulting theory, and it becomes possible to integrate teaching

in OO with teaching of mathematics. Since the object oriented mathematics

presented here is based on map theory which in turn is based on lambda calculus,

it furthermore becomes possible to integrate teaching in OO and mathematics

with teaching of functional programming.

3.5 Types

All attempts so far to introduce strong typing in fundamental mathematics

have been notorious failures (though in
uential failures) [19, 15]. Hence, no

strong typing scheme will be enforced upon object oriented mathematics. The

7



typing in object oriented mathematics will be more like that in smalltalk [1]

and lisp [13, 18]. In programming languages, types are convenient for catching

programming errors and for speeding up the resulting code, as is the rationale for

types e.g. in [11]. Hence, types should be seen as a practical convenience rather

than a fundamental concept, and types seems to play no role in fundamental

mathematics.

3.6 Inheritance

The notion of inheritance will not play a central role in object oriented math-

ematics because of the lack of strong typing. Inheritance will, however, occur

in the form of functions on objects, and will be of great convenience when con-

structing objects later in this paper.

3.7 State

Objects in OO can have a \state" and, correspondingly, objects in object ori-

ented mathematics have a \value". However, the value of an object in object

oriented mathematics cannot change with time. As an example, the result of

2+ 3 is not that the value of 2 changes to 5. Rather, the result of 2+3 is a new

object whose value of 5.

This is a general and quite convenient property of mathematics that objects

do not change value with time. Even temporal logic is time independent in the

sense that e.g. a theorem in temporal logic is true forever even if the theorem

talks about temporal relationships. At the end of the paper, the standard

example with a bank account is worked out in object oriented mathematics just

to show that object oriented mathematics can deal with more programming like

topics than matrices and vector spaces. However, as will be seen, withdrawing

money from a bank account results in a bank account with a new value rather

than changing the old value.

4 Notation

4.1 Basics

This section presents a number of concepts that are available in map theory.

All concepts in map theory are ultimately de�ned from �ve basic concepts as

described in [7, 10]. In the present paper, a long list of concepts like pairs,

integers etc. will be taken as granted.

In this section, a distinction will be made between \OO constructs" and

\raw constructs". As an example,

117
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will denote an OO integer which has a value, a type, and a number of operations,

whereas

117

will denote a raw integer which has no such structure. Later, a \value" operation

will be introduced and, as an example, the value of the OO integer 117 will be

the raw integer 117:

value(117) � 117

Here, � denotes raw equality of map theory as opposed to the = operation that

comes with most objects. As another example, x+

Z

y will be assumed to denote

raw addition of raw integers whereas x+y will be de�ned later to denote general

addition:

2 + 3 � 5

2 +

Z

3 � 5

4.2 Logic

T and F will denote raw truth and raw falsehood. In map theory, truth and

falsehood are values just like e.g. integers and di�erential manifolds. The raw

connectives ^, _, :, ) and , have their usual properties such as

T ^ F � F

and

:F � T

Likewise, the raw quanti�ers 8 and 9 have their usual properties such as

(8x2Z9y2Z : y =

Z

x+

Z

2) � T

where =

Z

is equality on integers. The raw if-then-else construct

p

�

x

y

has the properties

T

�

x

y

= x and F

�

x

y

= y
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4.3 Bottom and exception

? is the value of an in�nitely looping expression and � is the value of an ex-

pression that gives rise to a \run time error" within �nite time. As an example,

if

n!

:

= n = 0

�

1

n � (n � 1)!

then (�1)! �? since computation of (�1)! loops inde�nitely. On the contrary,

the value of 1=0 is �. The value � is an OO value as will be seen later. The

value ? has no sympathetic properties.

The general properties of the raw if-then-else construct are

T

�

x

y

� x ?

�

x

y

� ? and p

�

x

y

� y if p 6� T and p 6� ?

4.4 Binary trees

The construct x'y denotes the raw pair of x and y (as opposed to the OO

pair de�ned later). The operations z

h

and z

t

denote the head and tail of z,

respectively. In particular,

(x'y)

h

� x (x'y)

t

� y

A construct is said to be a raw binary tree if it is built up from raw truth and

raw pairs only. As an example,

((T 'T )'(T '(T 'T )))

is a raw binary tree. Equality =

B

on raw binary trees is de�ned by

x =

B

y

:

= x

*

y

�

T

F

y

�

F

x

h

=

B

y

h

^ x

t

=

B

y

t

This is an example of a recursive de�nition. Arbitrary recursive de�nitions are

legal in map theory. Note that the de�nition makes use of

p

�

x

y

� y if p 6� T and p 6�?

where it should be noted that no pair (r's) equals T or ?.

Binary trees will be used to represent many di�erent things such as F , � and

raw integers. T is by de�nition a binary tree.
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4.5 Arrays

The concept of a \raw array" and the constructs hi, xhyi and xhy 7! zi have the

following properties for all raw arrays x, binary trees y, y

0

and arbitrary values

z:

hi is a raw array

xhy 7! zi is a raw array

xhy 7! zihyi = z

xhy 7! zihy

0

i = xhy

0

i if y 6=

B

y

0

As an example, let

a

:

= hih0 7! 10ih1 7! 11ih2 7! 12i

The construct a is a raw array according to the rules above (since raw integers

are binary trees). Among other, the array a has the properties

ah0i 10

ah1i 11

ah2i 12

ah3i T

For a more detailed description of raw arrays, see [8].

4.6 Strings

For all constructs A, [A] denotes a representation of the expression A (a \G�odel

number" [14], except that in this paper, [A] is a raw binary tree; the exact

encoding is irrelevant). As an example,

2 + 2 � 4

whereas

[2 + 2] 6� [4]

where the former states that 2+2 and 4 are equal (have the same value) whereas

the latter states that 2 + 2 and 4 are di�erent expressions. Constructs like [+]

and x

y

are also legal and also denote binary trees. Constructs like [x+ y] and

[+] will be referred to as \strings".
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4.7 Raw functions

The construct x̂A: denotes the raw function that maps x to A, and f (x) denotes

the raw function f applied to x. As an example, if

f � x̂x+

Z

2:

then

f (3) � 3 +

Z

2 � 5

The construct x̂A: is approximately the original notation for lambda abstraction

�x:A, but Church had no^on his typewriter, so he used the letter most similar

to^which was �.

In map theory any raw function di�ers from T and ?.

4.8 Objects

Objects are arrays. If a is an object then, among other, ahT i is the raw value

of a and ahF i is the type of a:

value(a)

:

= ahT i

type(a)

:

= ahF i

As examples,

value(T ) � T type(T ) � 0

value(F ) � F type(F ) � 0

value(117) � 117 type(117) � 1

value(�) � T type(�) � 2

The assignment of types to objects is arbitrary. The purpose of having types

is that it makes possible to de�ne a computable construct x =

O

y which states

\the objects x and y have the same value and type":

x =

O

y

:

= value(x) =

B

value(y) ^ type(x) =

B

type(y)

The object � is particularly easy to de�ne:

�

:

= hihF 7! 2i

12



4.9 Operations

If a is an object then

ah1'[+]i

is a plus operation on a applicable when a is the �rst argument of the sum and

ah2'[+]i

is applicable when a is the second. As an example,

117h1'[+]i

is an integer plus operation and

117h1'[+]i(117)(118) � 117 + 118 � 235

Likewise,

117h2'[+]i

is an integer plus operation and

117h2'[+]i(118)(117) � 118 + 117 � 235

Similarly, ah1'[ ]i and ah2'[ ]i are the juxtaposition operations of a. As an exam-

ple, 117h1'[ ]i is integer multiplication so that if x � 3 then

2x � 2h1'[ ]i(2)(x) � 6

Integers have no operation for the situation where the integer is the second

argument to a juxtaposition, which is indicated by the operation being T instead

of a raw function:

117h2'[ ]i � T

4.10 Pedagogical ordering

Sums like 2 + � and � + 2 where 2 is an integer and � a real number posses a

particular problem. It is customary to introduce integers before real numbers

which gives a \pedagogical ordering" on the two concepts: Integers come before

real numbers. It is reasonable to de�ne the addition operation on integers be-

fore introducing real numbers, and therefore the addition operation on integers

cannot add an integer to a real number. On the contrary, integers are known

when addition of real numbers is de�ned, and therefore it is reasonable to de�ne

real addition such that it can cope with integers also (as will be seen later, the
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de�nition of real addition is simpli�ed by introducing a \canonical conversion",

i.e. type conversion, from integers to real numbers).

In the mathematical world, a text may be said to be \pedagogical" and

in the world of computer science, a program may be said to be \readable" or

\maintainable". Pedagogical, readable and maintainable are of course synonyms

in this sense. A major advantage of OO is that it allows a proper pedagogical

ordering of concepts in programs as well as mathematics. A common lie in

teaching of OO as well as mathematics is to identify this pedagogical ordering

with the temporal order in which the programmer/mathematician invents the

concepts.

4.11 The de�nition of x+ y

Now let +

1

Z

, +

2

Z

, +

1

R

, and +

2

R

denote integer and real addition, i.e.

x+

1

Z

y � 117h1'[+]i(x)(y)

x+

2

Z

y � 117h2'[+]i(x)(y)

x+

1

R

y � �h1'[+]i(x)(y)

x+

2

R

y � �h2'[+]i(x)(y)

The operation x +

2

Z

y should only be used if y is an integer. The operation

inspects the type of x, and if it is an integer, then it adds x and y. If x is no

integer then the operation gives op and returns T . In other words, x +

2

Z

y can

be de�ned by

x +

2

Z

y

:

= type(x) =

B

1

�

yhT 7! value(x) +

Z

value(y)i

T

The de�nitions of +

2

Z

, +

1

R

, and +

2

R

are similar though the latter two are more

complicated.

It is now possible to de�ne x+ y:

x else y

:

= x

�

y

x

x+ y

:

= xh1'[+]i(x)(y) else yh2'[+]i(x)(y) else �

As an example, � + 2 is computed as follows:

� + 2 � �h1'[+]i(�)(2) else 2h2'[+]i(�)(2) else �

� � +

1

R

2 else � +

2

Z

2 else �

� � +

1

R

2

� 5:14159 � � �
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Likewise, 2 + � is computed by

2 + � � 2h1'[+]i(2)(�) else �h2'[+]i(2)(�) else �

� 2 +

1

Z

� else 2 +

2

R

� else �

� T else 2 +

2

R

� else �

� 2 +

2

R

�

� 5:14159 � � �

As can be seen, x+ y �rst tries to apply the plus operation of x, and if that

fails, it tries to apply the plus operation of y. If both attempts fail, the result

is an exception �.

The computations above are not quite accurate in that the right argument

of \else" is only computed if the �rst equals T .

All operations are de�ned like x+y above. An operation like x 2 y, however,

should have the variation that it tries the 2-operation of y before that of x.

4.12 Example: quantum mechanics

Even functional application (juxtaposition) should try to look for a juxtaposition

operation on the second argument. As an example, if f is a real function and x is

an \observable" in quantum mechanics, then it is x, not f , that has an operation

that tells how f should be applied to x. Quantum mechanics is a particularly

good example of a �eld in which the notation is so heavily overloaded that the

notation is a major obstacle to understand the theory. Furthermore, quantum

mechanics is a particularly good example for illustrating the bene�ts of an object

oriented mathematics, but space does not permit a full treatment.

In quantum mechanics, things like position, time, momentum and kinetic

energy are \observables". As an example of a formula, the energy H of a

particle with mass m and momenta p

x

, p

y

and p

z

is (c.f. [6], Section 30):

H � c

q

m

2

c

2

+ p

2

x

+ p

2

y

+ p

2

z

In this formula, the real squaring and real square root functions are applied to

observables, but observables are not real numbers. The operation for applying

real functions to observables is de�ned in Section 11 of [6] and is a good example

of pedagogical ordering: There is no need to know about observables when

de�ning ordinary functional application. The notation in [6] is a good example

of heavily overloaded notation that can be made precise by object oriented

mathematics.

4.13 Canonical conversions

In mathematics as well as computer science, it is customary to \identify" objects

with each other. As an example, an integer may serve as a real number. This
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will be represented by a \canonical conversion" operation x:y whose value has

the same type as y and represents the same value as x. As an example,

2:�

is the real number 2. If the conversion is impossible, then the value is T . As an

example,

�:2 � T

The canonical conversion operation is treated like any other operation.

As an example of use, x +

1

R

y tries to convert y to a real number before

addition:

x+

1

R

y

:

= x

~

+

1

R

(y:x)

x

~

+

1

R

z

:

= z

�

T

xhT 7! value(x) +

R

value(y)i

Canonical conversions are useful in many situations. As an example, if S is

a set and U a vector space, then U :S would be the vector space U interpreted

as a set. Further, if U

�

denotes the dual vector space of U , then U and U

��

are canonically isomorphic. Hence, if x 2 U and y 2 U

��

, then x:y should

be the element of U

��

corresponding to x and y:x should be the element of U

corresponding to y.

4.14 Example: a category of vector spaces

A possible representation/implementation of vectors and vector spaces is out-

lined in the following. Space does of course not allow a complete treatment.

Hence, the presentation will take the form of a speci�cation that states things

like that a vector \shall" have certain operations with certain properties.

As will be seen, the vector spaces form a category, actually a Cartesian closed

one. In the category, U ! V will be the vector space of linear maps from U to

V . Another category would be obtained by letting U ! V be the vector space

of all maps from U to V .

For vector spaces U and V , U�V will be the Cartesian product of U and V .

Vector spaces W that can be expressed on the form U�V will be called product

vector spaces. Vector spaces W that can be expressed on the form U ! V will

be called function vector spaces.

Any vector space has an associated body of scalar values. As examples, the

body of a real vector space is the body of real numbers and that of a complex

vector space is the body of complex numbers. Any vector shall have a body

operation so that body(x) is the body of scalars that x can be multiplied with.

Furthermore, any vector x shall have a right juxtaposition operation so that if

a 2 body(x) then ax is the vector x multiplied by the scalar a.
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Any vector shall of course have value, type and = operations, but the details

are not particularly interesting here.

Any vector shall have a pair operation. As an example, if x and y are

vectors with the same body, then (x; y) shall be a vector. If z = (x; y) then

body(z) = body(x) = body(y), value(z) = value(x)'value(y), and type(z) =

[vector]'[; ]'type(U )'type(V )'T . Furthermore, z shall have operations z

h

and z

t

such that (x; y)

h

= x and (x; y)

t

= y. The plus and juxtaposition operations of

z shall be ûv̂(u

h

+ v

h

; u

t

+ v

t

):: and âx̂(ax

h

; ax

t

)::, respectively.

Any vector x shall have a canonical conversion operation with the property

that 0:x equals the zero vector of the same kind as x, i.e. 0 times x. Any vector

space U shall have a 0 operation such that 0

U

is the zero vector of U .

A vector space shall have a value which is a set of vectors, a type, an =

operation and a body operation. The vector space shall have a 2 operation so

that x 2 U means x 2 value(U). If U is a vector space and S is a set, then U :S

shall be equal to value(U), i.e. the vector space U interpreted as a set.

Vector spaces shall have a � operation such that if U and V have the same

body then U � V is a vector space W such that value(U) = f(x; y)jx 2 U ^ y 2

V g, type(W ) = [vspace]'[�]'type(U)'type(V )'T , and body(W ) = body(U ) =

body(V ). The product vector space W shall have operations W

H

and W

T

so

that W

H

= U and W

T

= V .

Vector spaces shall have a ! operation such that if U and V have the

same body then U ! V is a vector space W such that type(W ) = [vspace]'[!

]'type(U)'type(V )'T and body(W ) = body(U ) = body(V ). value(W ) shall

contain one vector for each linear map from U to V , and those vectors shall

have a left juxtaposition operation that denotes functional application. As an

example, if f 2 U ! V and x 2 U , then fx = fh1'[ ]i(f)(x) 2 V and fx denotes

f applied to x.

Functional vector spaces U ! V shall have a Dom and a Rng operation such

that Dom(U ! V ) = U and Rng(U ! V ) = V . Functional vectors x 2 U ! V

shall have a dom and a rng operation such that dom(x) = U and rng(x) = V .

All vectors x whatsoever shall have a domain operation such that domain(x)

is the vector space of which x is a member, so if x 2 value(U) then domain(x) =

U . In consequence, no two vector spaces can share vectors. As an example, if U

0

is a subspace of U , then the elements of U

0

shall have domain U

0

and those of U

shall have domain U , which prevents U and U

0

to have any vectors in common.

There shall of course be canonical conversions between vectors of U and U

0

if

U

0

is a subspace of U so that elements of U

0

are identi�ed with elements of U .

Having a domain operation simpli�es the 7! operation: All vector spaces U

shall have a 7! operation such that

x2U 7! A

has the following properties: Let f = x̂A: and let V = domain(f0

U

). If

domain(fx) = V for all x 2 U , and if there is an element g of U ! V such that
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fx = gx for all x 2 U , then x 2 U 7! A denotes this (unique) g. Otherwise,

x2U 7! A shall equal �.

It is now possible to de�ne id

U

and �:

id

U

:

= x2U 7! x

f � g

:

= x2dom(g) 7! f(gx)

These de�nitions of id

U

and f �g together with Dom and Rng turn the collection

of vector spaces into a category. The elements of U ! V have some resemblance

with functions and f �g has some resemblance with functional composition, but

the elements of U ! V and the construct f � g have much more structure than

functions and functional composition. This is a typical situation in category

theory, but there are also examples where elements of U ! V has no resemblance

with functions.

As an example of use, de�ne

base(U )

:

= body(U ):U

U

�

:

= U ! base(U )

base(U) is the body of U interpreted as a vector space and U

�

is the dual of U .

Now de�ne

c

:

= x2U 7! y2U

�

7! yx

The function vector c is of type U ! (U

�

! base(U )) so c is of type U ! U

��

.

The function c is the canonical isomorphism between U and U

��

which shows

that two applications of the dual operation essentially yields the original vector

space. This is an example of use of 7!. As another example, de�ne

c

0

:

= f2U!V 7! x2V ! base(V ) 7! x � f

The function vector c

0

is of type (U ! V ) ! (V

�

! U

�

) and is the canonical

isomorphism between U ! V and V

�

! U

�

. As a last example, de�ne

c

00

:

= f2U�V!W 7! x2U 7! y2V 7! f(x; y)

The function vector c

00

is the canonical isomorphism (U � V ! W ) ! (U !

(V ! W )).

The canonical conversion functions of vectors shall implement these canon-

ical isomorphism so that if e.g. x 2 U and y 2 U

��

, then x:y = u2U

�

7! ux.

Likewise, y:x = "v̂v2U ^ y = cv: where " is the \such that" operator of map

theory and where "v̂v 2 U ^ y = cv: reads \a v such that v 2 U and y equals

cv".
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4.15 Example: bank accounts

As the last example, the classical (and in OO papers almost unavoidable) exam-

ple with a bank account will be treated. A simple bank account in the present

setting will be represented by an object with a value, a type (which could arbi-

trarily be set of 118, a deposit operation and a withdraw operation. The deposit

operation will be denoted + and withdrawal will be denoted � so that if x is a

bank account and y is an integer (denoting an amount of cents) then x+ y is a

new bank account whose deposit is y greater than the deposit of x and similarly

for x� y. If y is negative then x+ y and x� y equal �. If y is greater than the

deposit of x then x � y also equals �. The de�nition of a bank account of zero

deposit reads:

zerobankaccount

0

:

= hih1'[+] 7! depositih1'[�] 7! withdrawi

zerobankaccount

:

= zerobankaccount

0

hT 7! 0ihF 7! 118i

deposit

:

= x̂ŷy � 0

�

xhT 7! value(x) + yi

�

::

legal(x; y)

:

= y � 0 ^ value(x)� y � 0

withdraw

:

= x̂ŷlegal(x; y)

�

xhT 7! value(x)� yi

�

::

Next, consider an object that represents a person. Person objects will be

constructed such that their value is unused and their type is arbitrarily set to

119. A person will have a name and an address together with two operations

\setname" and \setaddress". In a person object x, the name and address will

be kept in xh0'[name]i and xh0'[address]i, respectively. The de�nition of person

with no name and address reads:

noperson

:

= hihF 7! 119ih1'[setname] 7! setnih1'[setaddress] 7! setai

setn

:

= x̂ŷxh0'[name] 7! yi::

seta

:

= x̂ŷxh0'[address] 7! yi::

Section 4.5 introduced raw arrays and a number of operations on arrays.

Now, one more operation on arrays, &, will be introduced. Whenever x and y

are raw arrays, x & y will be a new raw array z with the following property for

all binary trees t:

zhti = yhti if yhti 6= T

zhti = xhti otherwise

In other words, x & y combines the associations of x and y such that the

associations in y take precedence.

Having this operation, it is easy to combine a person object and a bank

account object into a bank account with owner. As an example,

noperson & zerobankaccount
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is a bank account with a deposit of zero and no name and address, but which

has a deposit and withdraw operation as well as a setname and a setaddress

operation.

The description of bank accounts above is a mathematical one but, by virtue

of the computability of a subset of map theory, the above de�nitions are also

machine computable. Among other, this gives an opportunity to establish a link

between mathematics and object oriented programming in an undergraduate

curriculum. Mathematical bank accounts of course have the peculiar property

that any operation on a bank account gives a new bank account rather than

modifying the old one. Treatment of temporal bank accounts in which the

deposit is a function of time is not particularly complicated but nevertheless

out of the scope of the present paper.

5 Conclusion

An \object oriented mathematics" system has been introduced. The major

bene�t of such a system is that it allows an exact yet notationally compact

treatment of notions that are not normally treated in a mathematically precise

way. Examples are given drawn from banking, quantum mechanics, category

theory and tensor algebra. Possible uses of the system is to ease communica-

tion between di�erent areas and, in particular, to make undergraduate curricula

more coherent by allowing a consistent notation to be used for many di�erent

�elds such as object oriented programming, functional programming and math-

ematics.
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