Towards a Semantics of Emerald
Expressed in Map Theory

Klaus Grue
December 5, 1994

Abstract

This paper presents a semantics for a subset of an object oriented,
concurrent and distributed language with Emerald as the chosen exam-
ple. The concurrent and distributed aspects posses particular problems,
and the paper focuses on these aspects. In particular the paper covers
parallelism in which a created process can continue to run after the cre-
ating process halts. The semantics is presented in a continuation passing
style in map theory.

Map theory is a foundation of mathematics with the same expressive
power (w.r.t. consistency) as set theory, but it builds upon A-calculus
and functions instead of logic and sets. It allows unlimited recursion
which, combined with its expressive power, makes it ideal for expressing
semantics of programming languages.

The paper serves three purposes: First, it gives a semantics for a subset
of Emerald, which can be scaled up to cover all of Emerald. Second, it
shows how map theory can be used in definitions of semantics. Third, it
shows how distribution and parallelism can be modelled.

Contents

1 Introduction

2 Overview of the paper

3 Overview of the semantics
4 Overview of map theory

5 Limitation of task

6 Abstract syntax

7 Token trees

8 Decision lists 9

9 System states 10
10 Definition of £ 12
11 Evolution 13
12 The initial state 15
13 Translation 16
14 Conclusion and further work 22

1 Introduction

Emerald [6,7,16,17,15,18,19,20,25] is a novel object oriented, concurrent and
distributed language. It has been adopted for teaching of first year students at
the University of Copenhagen. This paper presents a semantics of a subset of
Emerald. The concurrency and distribution aspects of Emerald are difficult to
express in traditional frameworks, so the present paper focuses on these aspects.

The reader is assumed to know Emerald as described in [15], but Section 5
will be a sufficient introduction to many readers.

The semantics of programming languages are traditionally defined axiomat-
ically [10,11,9], in lambda calculus [3,5,21], in set theory [1,2,4,23] or in other
suitable theories [14,24]. The axiomatic approach has the benefit that it high-
lights a number of basic properties of the language from which all other prop-
erties can be deduced. A drawback of this method is that consistency of the
basic properties has to be established somehow. Another drawback is that it is
necessary to develop a new style of proof and a new collection of metatheorems
for each new axiomatisation.

In the denotational approach, the semantics is defined within some, previ-
ously established theory. That theory can be a general purpose one like set
theory, it can be tailored to computer science like lambda calculus, or it can be
even further tailored to semantics like CCS and CSP [14,24]. This paper uses
the denotational approach, but expresses the semantics in map theory [8] which
is a general purpose competitor to set theory. The semantics makes heavy use
of the unlimited recursion available in map theory.

A semantics of a programming language is by nature a definition. For that
reason, the present paper contains a definition and no theorems or proofs. For
some of the above mentioned approaches, it is necessary or at least convenient
to accompany each semantics by proofs such as consistency, soundness, com-
pleteness or congruence proofs. This is not necessary or relevant in the present

setting, where the only question is whether or not the semantics expresses the
intentions of the language designers.

Emerald supports parallelism in that objects can create new objects and
the processes of the new objects will run in parallel with the creating object.
Furthermore, the processes of the new objects may continue to run after the
creating object halts or ceases to exist like in the fork calculus [10,11,9]. This is
difficult to describe in traditional calculi of parallelism like CCS [24] and CSP
[14].

The semantics presented in this paper is intended as an aid in discussions of
the semantics of Emerald. Such discussions may be between language designers,
language implementors and language users. Furthermore, semantics can be
useful in language standardisation.

A completely different use of semantics is in automated proof systems. A
semantics written for such a system should be stated in a style that suits that
particular system. However, the present paper aims at a human audience. Read-
ers who know Emerald in advance may use the semantics for sharpening his or
her intuitive understanding of Emerald. Other readers may use it as an exam-
ple of how one can model Emeralds kind of parallelism and distribution in a
continuation passing style.

2 Overview of the paper

Section 3 describes the problems that Emerald and thereby the semantics have
to tackle and Section 4 gives a brief introduction to map theory. Section 5
gives a brief introduction to Emerald and at the same time defines the subset
of Emerald that will be described in the semantics.

Sections 6-13 define the semantics. The semantics is defined by a function
&(p, n,d) which, given a program p, input n and “decision list” d returns a trace,
i.e. a list of all states that the program traverses when executed. The list is finite
if p terminates in finite time. The output from the program is recorded in the
trace. It is possible to define process congruences based on this output, but
that is deferred to further work (Section 14). Emerald has non-determinism, so
a program may result in different traces in different runs. All possible traces of
program p for input n are generated by £(p,n,d) when d ranges over the set D
of all possible “decision lists”.

Section 6 represents the abstract syntax of the chosen subset of Emerald
in map theory. Sections 7 and 8 introduce two auxiliary concepts. Section 9
describes how program states are represented in map theory. A trace is a list of
program states. Section 10 defines £(p,n,d) on basis of two functions “trace”
and “initstate” that are defined in Sections 11 and 12, respectively. The function
“initstate” is far more complex than “trace” and is described last. The function
“initstate” computes the initial state of the program, and that initial state
contains all information about all future behaviour of the program represented as

“continuations”. The function “trace” merely has to apply these continuations
iteratively. The function “initstate” uses the function tr to translate abstract
syntax into continuations. That function is defined in Section 13

The function £ is not computable by machine, and no attempts have been
made to make the computable parts of £ “efficient” in any sense.

3 Overview of the semantics

Emerald is a language whose programs execute on networks of processors. Each
processor in the network is called a ‘node’. At any given time, each node may
be ‘up’ (available) or ‘down’ (crashed or off duty). Each node has an input and
an output byte stream which are the only means for input to and output from
the program (at least in the semantics to be defined).

At any given time, an Emerald program consists of a collection of objects.
Objects may contain local data, may export operations, may contain a local
process, and may contain a local monitor [13]. Objects may move between
nodes, either under program control or controlled by the system.

Emerald supports distribution in that objects may float between nodes (pro-
cessors) in a network. The nodes may go down and come up unpredictably.
Objects running on a node are lost when the node goes down, but objects may
‘checkpoint’ themselves. A checkpoint is a copy of the object on disk, and if an
object is lost due to node crash, then the object may be restarted by loading
its latest checkpoint.

In the semantics, each object will be identified by a ‘token’, i.e. a unique
identifier whose internal structure is irrelevant (the given semantics uses natu-
ral numbers as tokens). Token allocation will be modelled by ‘token trees’ as
described in Section 7

Emerald allows concurrency in that local processes of distinct objects run
in parallel. The parallelism may be genuine on systems with more than one
node. In Emerald, concurrency leads to non-determinism in that the order of
execution of parallel processes may affect the end result. In the semantics, this
non-determinism will be modelled by ‘decision lists’ as described in Section 8.

The operations of an object may be monitored or non-monitored. At most
one monitored operation of an object may execute at a time whereas any number
of non-monitored operations may execute in parallel. The monitors of the ob-
jects are the only means for synchronisation. In particular, there are no means
for locking internal variables.

4 Overview of map theory

Map theory [8] is an extension of untyped lambda calculus [3]. It has lambda-
abstraction Az..4 and functional application f(z). Like Lisp [22,26] it has atoms,
but contrary to Lisp it only has one atom. That atom is called T and, by

convention, represents as diverse objects as truth, the empty set and the empty
list. In the semantics it will also be used to represent absence. Map theory has an
if-then—else construct and allows unlimited use of recursion. Non-termination
is denoted L.

Map theory has several equal signs =, =, = etc. They all denote equality
and the distinctions are irrelevant for the present paper.

In addition, map theory has an epsilon operator [12]. As an example,
exeR.22=2 denotes a real number z such that 22 = 2. Hence, ez€R.2?=2
could denote v/2 or —v/2. The epsilon operator makes a deterministic but un-
specified choice, so ez€R.z222 is either always v/2 or always —v2. z°= — 1
holds for no real numbers z, so exz€R.2%2= — 1 cannot find a proper z. In this

case, y = ex€R.z?= — 1 is still a real number, e.g. 0, but that real number y
of course cannot satisfy y? = —1. The epsilon operator is not computable by
machine.

The universal quantifier V, existential quantifier 3, set membership € and
logical connectives A, V, =>, < and - are all definable in map theory. In
addition, all concepts definable in set theory are also definable in map theory.
Examples could be the set N of natural numbers, the set R of real numbers,
and the class On of ordinals. All theorems of set theory are provable in map
theory.

A pairing construct (z,y) and head and tail operations 2" and 2t are defin-
able such that (z,y)* = z and (z,y)? = y hold for all z and y. As examples,
(T,)" = T and (T,L1)! =L. The let—construct let x = A in B is defined as
usual to stand for (Az.B)(A). For more information on map theory, consult [8].

5 Limitation of task

This paper will define the semantics of a small but interesting subset of Emerald.
The emphasis will be on parallelism and distribution. The strong typing aspect
of Emerald is left out since typing and static semantics is well understood. The
subset is rather useless for actual programming. Rather, the subset is chosen to
show the interesting aspects of the semantics in such a way that the semantics
can be scaled up to cover all of Emerald.

The rest of this section lists the facilities of Emerald and specifies what is
included in and excluded from the Emerald subset to be described. For further
information on Emerald consult [15].

Assignment is included in order to describe how state changes occur. Only
assignment to simple variables (variables that hold objects) and operation re-
turn parameters is included. Assignment to record fields and array elements is
not described (and such assignments are actually syntactic sugar in Emerald).
Multiple assignments are excluded from the subset for simplicity. The abstract
syntax for assignments in the subset is

Assignment ::= Id Exp

where Exp is an expression to evaluate and Id is the destination of the assign-
ment. Constants are excluded.

As mentioned, static semantics and types will not be covered here. In the
semantics, all variables can hold objects of arbitrary type and variables need
not be declared.

Sequence (begin—end) is included, and the abstract syntax is

Sequence ::= Stmtq Stmt,

During execution, Stmt; is executed first and Stmty is executed when Stmt
completes. Sequences with more than two elements can be obtained by nested
sequencing. Selection (if) and iteration (loop, exit, for) are excluded because
they just are more complex examples of sequencing. Local variables in begin—end
blocks are excluded because handling of local variables is covered by operation
return variables.

In the semantics, objects can float freely between nodes which is the hard
part of distribution to describe. The facilities fix, unfix, refix, move and visit
for controlling object movement are excluded.

Operation invocation is included. For simplicity, however, all operations
take exactly one argument and return exactly one return value. The abstract
syntax of an invocation is

Call ::= Exp, Id Exp,

where the value of Exp; identifies the object, Id identifies the operation and
Exp, is the argument.

Assert statements are excluded.

Monitors are included in order to describe synchronisation. Conditions
(Hoare monitor conditions) and the wait, signal and awaiting facilities are ex-
cluded since they just add complexity.

Checkpoints are supported. For simplicity, checkpoints are parameterless
and checkpoints are stored on the local node. If the node goes down, then the
checkpoint will be recovered when the node comes up again. For simplicity,
any object is checkpointed when it is created so that objects are never lost
completely, even if their node crashes before they can make a checkpoint them-
selves. If an object checkpoints itself and then floats to another node, then the
checkpoint stays behind in the semantics to be given. Since checkpoints are
parameterless, their abstract syntax is

Checkpoint ::=
Return is included, return—and-fail is not. The abstract syntax of return is

Return ::=

The Primitive Statement (loophole to lower levels) is excluded.
Object creation is included. The abstract syntax of an object creation is

Create ::= OpList, OpList, Stmt; Stmty Stmts

where OpList; lists the monitored operations, OpList, lists the non-monitored
operations, Stmt; is the initialisation code, Stmty is the recovery code that
is executed when the object is recovered from a checkpoint, and Stmts is the
process of the object. Note that the initialisation code is never executed in
case the local node goes down immediately after object creation. For simplicity,
the OpList’s and Stmt’s of the object creation cannot refer to variables of the
creating object. Lots of Emerald type declaration facilities and compilation
hints are excluded from the object creation construct above.

Built-in objects like integer and Boolean will not be described in the se-
mantics.

The abstract syntax of expressions are

Exp ::= Var | Call | Create
where
Var = 1d

so an expression is either a variable reference, an operation invocation or an
object creation. The abstract syntax of statements is

Stmt ::= Assignment | Sequence | Checkpoint | Return
The abstract syntax of operation definitions is
Op n= Idl Id2 Idg Stmt

where Id; is the name of the operation, Idy is the name of the argument, Id3
is the name of the return variable and Stmt is the statement to be executed on
invocation. An OpList is a list of Op’s.

An Emerald program defines a list of objects whose processes start up in
parallel when the program starts. For simplicity, a program in the semantics
will be a single object specified by a Create construct (but this single object may
of course start arbitraryly many objects to run in parallel). Emerald facilities
for separate compilation are excluded.

6 Abstract syntax

The abstract syntax of the chosen subset is represented as follows in map theory:

Var(id) = (0,id)
Call(exp,,id, exp,) = (1,exp,id, exp,)
Create(p, ¢, 1, 8,t) = (2,p,q,7,5,t)
Assign(id, exp) = (3,id,exp)
Seq(stmty, stmto) = (4,stmt, stmts)
Check = (5,0}

Return = (6,0)

Op(idy,ids, ids, stmt) = (1d1, ido, ids, stmt)

An OpList is represented as a list of Op’s in map theory.

As an example, if z, y and z are variables represented by Var(1), Var(2) and
Var(3), respectively, and if f is an operation represented by the number 4, then
z := y.f(z) in Emerald is represented by the abstract syntax

Assign(1, Call(Var(2), 4, Var(3)))
which equals

(3,1,(1,(0,2),4,(0,3)))

7 Token trees

In the semantics, allocation of tokens is modelled by ‘token trees’. A token
tree is an infinite, binary, root labelled tree whose labels are distinct objects.
Figure 1 shows a token tree. The operations for token trees in map theory read
tt.create, tt.root, tt.head, tt.tail and tt.default.

Figure 1: Token tree

tt.create(root, head, tail) (root, head, tail)

tt.root(tree) = tree?

tt.head(tree) = tree'h

tt.tail(tree) = tree’

tt.default = d(1)

d(n) = tt.create(n,d(2-n),d(2-n+1))

Map theory is not object oriented and has no particular syntax in that it
allows notational freedom (which, however, is slightly restricted to allow machine
manipulation, but the details are left out here where map theory is used in the
same way that mathematicians use set theory). Above, ‘tt.root’ is just a function
name that contains a dot. The ‘tt’ in the name abbreviates ‘transition tree’.
Here are some theorems that follow from the definitions: '

tt.root(tt.create(r, h, t))
tt.head(tt.create(r, h,t))
tt.tail(tt.create(r, h,t))
tt.root(tt.default)
tt.root(tt.head(tt.tail(tt.default))) =

[
o = 3

Il

Figure 1 shows the transition tree tt.default. This and any other token tree
can be used for allocating unique tokens. If an object P has a token tree T,
needs a unique token and then forks a new object Q, then the object may use
tt.root(T") as the unique token, it may use tt.tail(T") for further allocations of
unique tokens, and it may pass tt.head(T") to Q so that Q may also allocate
unique tokens. Token trees are easy and efficient to implement in practice, but
are mainly used here as a theoretical convenience.

8 Decision lists

During execution of a program there will at most stages be several possible next
actions. If a number of processes inside objects are running, then any one of the
processes may perform the next step (unless queued in a monitor). Furthermore,
each node may go down or come up, and the system may decide to move any
object to any node.

This non-determinism is modelled by ‘decision lists’ in the semantics. A
decision list is an infinite list of tokens with the fairness property that any finite
sequence of tokens occurs somewhere in the sequence. The set D of all decision
lists is given by

D = {zeN*|VneNVyeN"ImeN.subseq(x, m,n) =y}

The definition says that z is a decision list if x is an infinite list of tokens
(i.e. natural numbers) and any finite sequence y of tokens occurs somewhere in

2. The natural number n is the length of y and the natural number m is the
position of y in z.

The semantics of Emerald will be a function &, where £(p,n,d) denotes the
‘trace’ of the Emerald program p when executed on the network n using decision
list d. The meaning and encoding of programs, networks and traces are given
later. The decision list d controls which alternative of all possible alternatives
is chosen at any stage in the computation. Each alternative is identified by a
unique token, and an alternative is only chosen if it occurs next in the decision
list. If no alternative is chosen, then the next step will be a ‘no operation’ step.

As an example of use, the expression

Vde D finite(€E(p, n, d))

is true if the program p is guaranteed to terminate in finite time on the network
n. As another example,

VneN3de D.~finite(E(p, n,d))

states that the program p might loop indefinitely on any network of processors.

9 System states

At any time during execution, an Emerald program p will have a state s. This
state will be modelled by a function in the semantics, and that function will
have a somewhat complex structure, which is described in the following. The
state s will not only describe the state of the program itself, but also the state
of the processors on which it is running and s will contain a decision list that
will control the behaviour of the program whenever there is a choice between
several possibilities.

The integers between —1 and —21 (inclusive) will be denoted Nodestate,
Up, Down, Input, Output, Object, Location, Val, Cont, Done, Fail, MonState,
TokenTree, Ops, Recover, CheckLoc, CheckVal Decision, Parm, Result, and
Env, respectively.

If an Emerald program has state s at any given time, then s is going to be
interpreted as follows:

s(Nodestate, n)

denotes the state of processor number n on the network. The state is either Up
or Down (i.e. s(Nodestate,n) = Up or s(Nodestate, n) = Down). Processors are
numbered from 1 and up, and there may by finitely or infinitely many processors.
The number of processors is constant during execution of a program (but each
processor may go down and come up arbitrarily). If there is no processor number
n on the network, then s(Nodestate,n) = T where T is an object of map theory
that by convention represents as diverse things as truth, the empty set, the
empty list and absence. Here and below, T represents absence.

10

s(Input, n)

denotes the yet unread bytes of the input stream of processor n. The chosen
subset of Emerald has no means for reading or writing, but such means are easy
to model. (s(Input,n) = T if n is not a node since T represents absence).

s(Output,n)
accumulates the bytes sent to the output stream of processor n.
s(Object, b)(Location)

denotes the node at which object b is located. The node is identified by an
integer.

s(Object, b)(Val)(i)

contains the value of variable ¢ in object b. A ‘value’ is always an object, and
objects are represented by integers.

s(Object, b)(Cont)

contains a function that describes how this object would like to change the
state next time it gets the opportunity. Implicitly, this ‘continuation’ defines
the behaviour of the object in all future.

If ¢ = s(Object,b)(Cont), if m is a natural number, and if (v,e,s') =
c(b,m, s), then s’ will be the state of the system after object b has performed
one atomic action. The object may have a non-deterministic choice between
several possibilities, and these possibilities are enumerated by m.

If v = Done, then the process of b has completed its execution. If v = Fail,
then b has experienced a failure (such as division by zero). In all other cases,
v(e) is a new continuation to be installed in s(Object, b)(Cont).

The value of e is a ‘local environment’, and v is a ‘parameterised continua-
tion’ which is parameterised by this local environment. The two values v and e
are returned separately in order to be able to express sequencing of statements.

Continuations and parameterised continuations will be defined recursively
and apply to expressions as well as statements. Statements are treated as ex-
pressions that can loop indefinitely or have values Done and Fail. Expressions,
in comparison, can loop indefinitely, have the value Fail or have a natural num-
ber as value. In the latter case, that natural number identifies the object which
is the value of the expression.

The local environment e is quite simple. When executing an operation, it
contains an argument value a = e(Parm), a return value r = e(Result), and the
local environment e’ = e(Env) of the calling operation.

s(Object, b)(MonState)

11

contains the state of the monitor of object b. If f = s(Object,b)(MonState)
and if f(i) = b’ for some natural number ¢, then object b’ is number 7 in the
queue to get access to the monitor. If f(¢) = T, then there is no-one in queue
position . Whenever an object is queued by the monitor, it immediately gets a
position in the queue, but it needs not get the first empty position, so objects
that are queued later may come in front of &'. However, scheduling will be fair
because each object gets a finite-numbered position in the queue to start with
and moves up in the queue each time another object is dequeued.

s(Object, b)(TokenTree)

contains the token tree from which the object allocates unique tokens. The root
of the token tree may be equal to the number that identifies the object itself, so
the root cannot be used as a fresh token. Token trees of distinct objects have
no tokens in common.

s(Object, b)(Ops, p)

contains the operation p in object b represented as a continuation.
s(Object, b)(Recover)

contains the continuation to be installed at recovery from a checkpoint.
s(Object, b)(CheckLoc)

identifies the node at which the latest checkpoint of the object resides (identified
by a number).

s(Object, b)(CheckVal)

contains the value of s(Object, b)(Val) at the time of the last checkpoint. Hence,
s(Object, b)(CheckVal) contains all variable values to be used at recovery.

s(Decision, 0)

contains the yet unused portion of the decision list that controls the program
whenever there is a choice between several possibilities.

10 Definition of &£

As mentioned in Section 77, the semantics of the chosen subset of Emerald is
described by the function £. It is defined as follows:

E(p, n,d) = trace(initstate(p, n, tt.default, d))

12

The arguments p, n and d stand for program, node description and decision
list, respectively. The program p has to be the abstract syntax of a Create
construct. The decision list d has to be a decision list. When d varies over all
possible decision lists, £(p, n,d) will vary over all possible behaviours of p.

The node description n has to be a list of input streams, i.e. a list of byte
streams. The first byte stream in the list will become the input byte stream
of node number one and so on. The number of byte streams (which may be
infinite) determines the number of nodes on the network. Each byte stream may
be finite or infinite.

The function “initstate” constructs the initial state of the system on basis
of p, n and d, and uses tt.default as token tree (any token tree will do).

The function “trace” returns the list of all states that the system will tra-
verse. That list will be finite if all objects halt or fail eventually.

Among other, the initial state will contain continuations that describe the
behaviour of the system in all future, so the function trace merely has to apply
these continuations suitably. Hence, “trace” is much simpler than “initstate”
and will be described first.

11 Evolution

The value of trace(s) is a list whose first element is the state s and whose
remaining elements are all future states. If s represents a halted system, then
there are no future states:

trace(s) = (s, if halted(s) then T else trace(step(s)))

halted(s) is true if s denotes a state where all processes are done or failed or
absent:

halted(s) = VbeN.s(Object, b)(Cont) € {Done, Fail, T}

The function step(s) takes a state s and returns the next state the system
will be in. step(s) consumes three elements of the decision list of s and uses the
first one of them to decide whether the step is going to be used for an object
movement, a node crash/recovery or a program step.

step(s) =
let d = s(Decision); s’ = (s(Decision) := d'**) in
if d"=1 then move(dt?, dtth, s') else
if d*=2 then crash(d"®, s') else exec(d?", d*", s')

This definition locally defines d to be the decision list of s. The terms d”,

dth and d**" denote the first, second, and third element of this list, and d‘*
denotes the remainder of the list when the first three elements are removed.

13

The term (f(z) := y) denotes a function g = Az.if 2=z then y else f(2) for
which g(z) = f(z) for all z except that g(z) = y. Hence, s’ above denotes the
state s in which the three first elements of the decision list of s is removed.
The definition of f(zx) := y above would be inefficient if it were executed on a
computer, but that is irrelevant here.

If b and n are integers that identify an object and a node, respectively, and
if s is a state, then s’ = move(b, n, s) is a new state in which object b has moved
to node n provided that both node n and the current residence of b are up. In
all other cases, move returns s unmodified.

move(b,n, s) =
if s(Nodestate, s(Object, b)(Location))=Up A s(Nodestate, n)=Up
then s(Object, b)(Location) :=n
else s

The function first tests that both nodes exist and are up. If not, then s is
returned unmodified. If they are, then a state is returned that merely differs
from s in that the location of object b is set to n. According to this semantics,
an object may move even if it is queued in a monitor and even after its process
has terminated.

If b and m are integers, if b identifies an object and if s is a state, then
exec(b,m, s) is the state that is reached when b performs one atomic action as
specified by the continuation of object b. If that action results in the object
being queued in a monitor, then m is used to determine the position in the
queue.

exec(b,m, s) =
if s(Nodestate, s(Object, b)(Location))=Down then s else
let ¢ = s(Object, b)(Cont); (v,e,s") = ¢(b,m, s) in
let ¢ = if v € {Done, Fail} then v else v(e) in
s'(Object, b){Cont) := ¢/

As can be seen, this definition does not say much about the behaviour of
the object. Rather, exec simply applies the continuation ¢ to the current state
s, so the behaviour of the object is entirely hidden in ¢. In the first place,
the continuation ¢ is set up by initstate which is why initstate is complicated.
See the description of s(Object, b)(Cont) in Section 9 for a description of the
parameterised continuation ¢ and the continuation ¢’ above.

If n identifies a node and s is a state, then crash(n, s) is the state after n
has changed status. If n is up, then it goes down and if n is down then it comes
up. When n goes down, all objects on n are lost. The semantics specifies that
all lost objects are recovered immediately, but the recovery will not take effect
before the residence node of the checkpoint is up. No recovery actions are made
when nodes come up since the recovery has been handled already. This is of
course not a faithful description of what really happens, but has the same effect.

14

crash(n, s) =
if s(Nodestate,n) = Down then s(Notedate,n) := Up else
if s(Nodestate,n) = Up then GoDown(n, s) else s

GoDown(n, s) lets node n go down and recovers all objects on it.

GoDown(n,s) =
let s’ = s(Nodestate, n) := Down in
let B = {bcN|s(Object, b)(Location)=n} in
RecoverSet(B, s)

RecoverSet(B, s') recovers the set B of objects. It continually picks out an
object of B and recovers it until B is empty. RecoverSet uses the e-operator of
map theory to pick out elements of B.

RecoverSet(B, s) =
if B=0 then s else
let b=ex.x € B,B' =B\ {b} in
RecoverSet(B’, RecoverOne(b, s))

RecoverOne(b, s) recovers object b.

RecoverOne(b, s) =
let s’ = s(Object, b)(Location) := s(Object, b)(CheckLoc) in
let s” = s’(Object, b)(Val) := s(Object, b)(CheckVal) in
let s = s (Object, b){Cont) := s(Object, b)(Recover) in s’

12 The initial state

The function initstate(p, n, ¢, d) takes a program p expressed in abstract syntax,
a list n of input byte streams, a token tree ¢, and a decision list d as input
and returns an initial state. It uses initdecision to install the decision list d in
the state, initnode to install the nodes of the system, and initobj to install the
object expressed by p.

initstate(p, n,t,d) =
initobj(p, t, initnode(n, 1, initdecision(d)))

initdecision(d) returns a state containing the decision list d. It does so by
adding d to the empty state T.

initdecision(d) = T(Decision, 0) := d

initnode(n, n’, s) creates nodes with numbers n/,n’ +1,n' +2, ... with input
byte streams taken from n. It creates finitely many nodes if n is finite and
infinitely many otherwise. All created nodes are up, which is of no importance
since the decision list can specify that some (possibly all) nodes go down before
execution starts.

15

initnode(n, n', s) =
if n=T then s else
let s’ = s(Nodestate,n’) := Up in
let 8" = §'(Input,n') := n in
let "' = s"(Output,n’) :== T in
initnode(nt,n’ +1,5")

Programs expressed in abstract syntax are translated to continuations by the
function tr. The program to be executed is an object expressed by an object
creation construct p. The function initobj creates a dummy object identified by
the number 0, translates p to a parameterised continuation using tr and executes
the continuation in the environment of the dummy object. This creates the
object as a side effect, and the resulting state is returned by initobj. The only
thing needed from the dummy object is the token tree t.

initobj(p,t,s) =
let s’ = s(Object, 0)(TokenTree) :=t in
let (v,e,s") = tr(p,0, T, T)(T)(0,T,s') in s”

In the definition, the two occurrences of 0 refers to the dummy object. The
first O states that the creation occurs lexically inside dummy object. The second
0 states that the create construct is called by the process of the dummy object.
The three occurrences of T are not used. The first and second T identify the
argument and return parameters of the operation in which the create construct
is located, the third T is the local environment of the create construct and the
fourth T determines how the create construct would be queued if it entered a
monitor.

13 Translation

The function tr(p,b,a,r) takes a program p and returns a parameterised con-
tinuation c¢. The parameter b identifies the object that lexically contains p.
If p occurs inside an operation definition, then @ and r identify the argument
and return parameter, respectively. The value of r affects assignment because
assignment to r affects the local environment (i.e. the stack) whereas other
assignments affect the global state (the local environment merely contains argu-
ment and return parameters since local declarations are omited from the chosen
subset of Emerald). The value of a affects the translation of variable references
since a has to be looked up in the local environment whereas all other variables
are looked up in the global state (for simplicity, the return parameter cannot
be referenced).

The parameterised continuation ¢ takes an environment e, an object ¥/, a
monitor control parameter m and a state s as arguments and returns a new
parameterised continuation v, a new local environment e’ and a new state s’.
More precisely, suppose that

16

(d,€,s") =tr(p,bya,7)(e)(b',m,s)

holds. Suppose p is a program fragment that occurs lexically inside object b and
inside an operation with argument a and return parameter r. Further suppose
this program fragment is executed in local environment e and global state s and
that the execution is part of execution of the process of object b'. In this case,
(¢, ¢!, s') represents the state after execution of one atomic action of p. If that
atomic action involves entering a monitor, then m controls where the process is
placed in the monitor queue.

¢ is the new local environment and s’ is the new global state after execution
of one atomic action. The value of v is somewhat more complicated. If p is a
statement, then v equals Done if the atomic action leads to normal termination
of p. In this case, ¢’ is going to be passed on to whatever follows p. v equals
Fail if a failure (such as division by zero) is experienced. In this case, Fail has
to propagate back to object b/, whose process halts. Otherwise, v is a new
parameterised continuation which describes what the process of b’ will do next
time it gets the opportunity to do something. If p is an expression, then the
above description applies except that if p terminates normally then v equals the
value of the expression rather than the value Done. The value of an expression
is always an object and v identifies this object.

The program fragment p can be a variable reference, an operation invocation,
an object creation, an assignment, a sequence, a checkpoint and a return. The
definition of tr simply determines the type of p and calls a function that can
translate that kind of program fragment.

tr(p, b,a,7) =
if p"=0 then var(pt, b, a,r) else
if p"=1 then call(tr(p", b, a,r), p*", tr(pt*, b,a,7), b, a,r) else
if pP=2 then create(p?” “h piith pttith pttttt p g r) else
if p"=3 then assign(p th, tr(b a,r),b,a,r) else
if p"=4 then seq(tr(p'*,b,a 7") r(p®,b,a,7),b,a,7) else
if p"=5 then check(b,a,r) else return(b, a,r)

var(i, b,a,r) returns a parameterised continuation which fetches either an
operation argument from the environment or a variable value from the state.
For simplicity, access to uninitialised variables gives a failure.

var(i, by a,) = Ae.A(b',m, s).
if iZa then (e(Parm), e, s) else
let v = s(Object, b)(Val)(i) in
if v=T then (Fail, e, s) else (v, e, s)

seq(c, ', b,a,r) puts the two continuations ¢ and ¢’ in sequence. This is done
by executing one atomic action of ¢ and returning ¢’ if ¢ terminates.

17

seq(c, ,b,a,m) = Ae AV, m, s).
let (v,e',s") = c(e)(b',m,s) in
if v = Fail then (Fail, ¢/, s") else
if y=Done
then (¢, €', s)
else (seq(v,c,b,a,r),€’,s")

check(b,a,r) makes a checkpoint of object b' whose process executes the
checkpoint construct. The checkpoint is placed on the node where b’ currently
resides. The object b that lexically contains the checkpoint construct is not
checkpointed.

check(b,a,r) = Xe.A(V/,m, s).
let s’ = s{Object, ') (CheckLoc) := s(Object, b’)(Location) in
let s” = s'(Object, b')(CheckVal) := s(Object, v’)(Val) in
(Done, e, s")

return(b, a,) returns the return value stored in the local environment (and
fails if the return value is unassigned). It also returns the local environment of
the calling operation.

return(b, a,r) = Ae.A(b/,m, s).
let v = e(Result); ¢’ = e(Env) in
if =T
then (Fail, ¢/, s)
else (v, €, s)

Execution of an assignment consists of all those atomic actions that are
necessary to evaluate the expression followed by a single atomic action which
performs the assignment. The expression is evaluated by assign and the assign-
ment is performed by assign’. The assignment affects the local environment if
the assignment variable is the return parameter and affects a variable of the
lexically enclosing object otherwise.

assign(s, ¢, b, a,7) = Ae. A(V,m, s).
let (v,€e/,s") =c(e)(b/,m,s) in
if v=Fail then (Fail,€’,s’) else
ifveN
then (assign’(i,v,b,a,7),€,s")
else (assign(i,v,b,a,7),¢,s")

assign’(i,v,b,a,7) = Ae.A\(b/,m, s).
if 4=r
then (Done, e(Result) := v, s)
else (Done, e, s(Object, b) (Val)(3) := v)

18

Invocation of an operation consists of all those atomic actions involved in
computing which object to call followed by a single atomic action for looking
up the operation followed by all those atomic actions involved in computing
the argument followed by the actual invocation. call computes the object, call’
looks up the operation and call” takes care of the rest.

call(c,i,c,b,a,r) = Ae.A(b/,m, s).
let (v,e,s") =c(e)(t/,m,s) in
if v=Fail then (Fail, e, s) else
ifveN
then (call’(v,%,¢,b,a,7),€,s")
else (call(v,i,¢,b,a,7),€,s")

call'(v,i,¢,b,a,7) = Ae A(V/,m, 5).
let p = s(Object, v)(Ops) (i) in
if p=T then (Fail, e, s) else
(call”(p,c,b,a,7),€,)

call”(p, ¢, b,a,7) = e AV, m, s).
let (v,¢e/,s") = c(e)(/,m,s) in
if v=T then (Fail, ¢, ') else
ifvgN
then (call”(p,v,b,a,r),€,s
else let ¢’ = T(Parm) := v;
(p’ e, 8/)

)
e =¢e'(Env) := ¢ in

Only object creation remains to be described. Object creation is by far the
most complicated operation in the abstract syntax. create(q,¢’,init, rec, proc)
takes as arguments a list ¢ of monitored operations, a list ¢’ of non-monitored
operations, and the abstract syntax for the initialisation code init, the recovery
code rec, and the object process proc.

The object b’ whose process executes the create construct has a token tree
t which is used for allocating an id b” for the new object. The new object
gets tt.head(t) as token tree, and the object that donates the token tree keeps
tt.tail(t). The root of the donated token tree is used as id for the created object.

The continuation of the created object b” is set to the initialisation code
followed by the process. At recovery, the object executes the recovery code
followed by the process. Initialisation and recovery code is executed inside the
monitor before any monitored operations can be started. This is ensured by
setting the first element in the monitor queue to b”.

The created object is placed on the node of the lexically enclosing object b
which is where the creation construct is executed.

The created object has no variables to begin with. Variables are created by
assignment statements.

19

For simplicity, the created object is checkpointed immediately so that all
objects have a checkpoint.

create(q, ¢, init, rec, proc, b, a,7) = Xe. A(b',m, 5).
let TokenTree; = s(Object, b’)(TokenTree) in
let TokenTree, = tt.head(TokenTree;) in
let b = tt.root(TokenTrees) in
let ¢ = tr(init, b, T,T) in
let ¢/ = tr(rec,b”,T,T) in
let ¢” = tr(proc,b”,T,T) in
let n = s(Object, b)(Location) in
let s; = s{Object, b"’)(Location) := n in

let s = s1(Object, b”)(Val) := T in

let s3 = s2(Object, b”){Cont) := seq(seq(c, release(b”)), ¢”) in

let s4 = s3(Object, b"")(MonState) := (T(1) :=b") in

let s5 = s4{Object, b")(TokenTree) := TokenTrees in

let sg = tr-mop(q,b, s5) in

let s7 = tr-uop(q’, b, s6) in

let sg = s7(Object, b")(Recover) := seq(seq(c’, release(b”)), c”) in
let sg = sg(Object, b’")(CheckLoc) := n in

let s10 = s9(Object, b”’)(CheckVal) := T in

let s11 = s10{Object, b')(TokenTree) := tt.tail(TokenTree;) in
(Done, e, 511)

release(b) is an atomic action which releases the monitor of object b.

release(b) = e . A\(b',m, s).
let mon = s(Object, b)(MonState) in
let mon’ = Ai.mon(i + 1) in
let s’ = s(Object, b)(MonState) := mon’ in
(Done, e, s')

Object b’ asks for entering the monitor of object b by acquire(b). b’ is
placed in position m in the queue (if that position is vacant, and somewhere
else otherwise). Then 7 is set to the position of b’ in the queue, and if there
are no objects before o', then b’ enters the monitor. Note that positions in the
queue may be empty.

20

acquire(b) = de. A(V', m, s).
let mon = s(Object, b)(MonState) in
let mon’ = addQueue(mon, b’,m) in
let i = ej€N.mon’(j)=b’ in
if 3jeN.j <iAmon'(j) #T
(acquire(b), e, s)
else
let mon” = A\j.mon’(i+j — 1) in
let s’ = s(Object, b) (MonState) := mon” in
(Done, e, s)

If b is not already queued then addQueue(mon, b,m) adds b to the monitor
queue mon at position m if that position is vacant and somewhere else otherwise.

addQueue(mon, b, m) =
if 3¢ € N.mon(i)=b then mon else
if mon(m)=T then mon(m) := b else
mon({ei€N.mon(¢)=T) := b

tr-uop(q, b, s) translates the sequence ¢ of non-monitored operations of object
b and install them in s as operations of b. In the definition, op is the abstract
syntax of an operation definition (cf. Section 6), i identifies the operation, p is
the body of the operation, a is the argument variable of the operation, and r is
the return parameter.

tr-uop(g, b, 8) =
if g=T then s else
let s’ = tr-uop(¢t, b, s) in
let op = ¢";i = op”;a = op?
let ¢ = tr(p,b,a,r) in
let s” = s'(Object, b)(Ops, i) := ¢ in s”

h.p = optth: p = opt* in

tr-mop is like tr-uop except that each operation acquires the monitor lock
before starting and releases the lock at completion.

tr—mop(q, ba S) =
if g=T then s else
let s’ = tr-mop(q?, b, s) in
let op = ¢";i = op”; a = op**;r = op?*™?;p = op*® in
let ¢ = tr(p,b,a,r) in
let ¢ = seq(seq(acquire(b),), release(b)) in
let s” = s'{Object, b){Ops, i) := ¢ in s”

21

14 Conclusion and further work

A semantics for a subset of Emerald has been given. The subset focuses on
parallelism and distribution. Possible future work includes to scale up the se-
mantics to cover full Emerald and to discuss the semantics with the language
designers. The semantics of the given subset has been constructed with such
scale-up in mind.

Another obvious task would be to define a reasonable process equivalence
relation in map theory, e.g. based on bi-simulation, and to show such an equiva-
lence to be a congruence with respect to the abstract syntax in Section 6. This
would allow to construct a normal model of Emerald such that two programs
were equal in the model if they had the same behaviour.

Acknowledgement

My thanks are due to Eric Jul for useful comments and suggestions to the
manuscript.

References

[1] J-R. Abrial. The specification language Z: Syntax and “semantics”. Tech-
nical report, Programming Research Group, Oxford, April 1980. (out of
print).

[2] P. Aczel. Non-Well-Founded Sets, volume 14 of Lecture Notes. CSLI, 333
Ravenswood Avenue, Menlo Park, CA 94025, USA, 1988.

[3] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and The Foundation of Mathematics. North-
Holland, 1984.

[4] M.J. Beeson. Towards a computational system based on set theory. Theo-
retical Computer Science, 60:297-340, 1988.

[5] D. Bjgrner and C.B. Jones. The Vienna Development Method: The Meta-
Language, volume 61 of Lecture Notes in Computer Science. Springer-
Verlag, 1978.

[6] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy.
Object Structure in the Emerald System. In Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Languages and Applica-
tions, pages 78-86, October 1986.

[7] Andrew P. Black, Norman C. Hutchinson, Eric Jul, Henry M. Levy, and
Larry Carter. Distribution and Abstract Types in Emerald. IEEE Trans-
actions on Software Engineering, 13(1), January 1987.

22

(8]

(9]

K. Grue. Map theory. Theoretical Computer Science, 102(1):1-133, July
1992.

K. Havelund. The fork calculus. Ph.D. Thesis Diku Report 94/4, The
University of Copenhagen, Dept. Comp. Sci., Universitetsparken 1, DK-
2100 Copenhagen, Denmark, January 1994.

K. Havelund and K. G. Larsen. The fork calculus. In A. Lingas, R. Karls-
son, and S. Carlsson, editors, 20th International Colloguium on Automata,
Languages and Programming (ICALP), pages 544-557. LNCS 700, 1993.

K. Havelund and K. G. Larsen. The fork calculus. In S. Meldal and M. Hav-
eraaen, editors, 4th Nordic Workshop on Program Correctness, Report no
78, pages 153-164. Department of Informatics, University of Bergen, Nor-
way, 1993.

D. Hilbert and P. Bernays. Grundlagen der Mathematic, volume 2.
Springer-Verlag, 1939.

C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(10):549-557, October 1974.

C. A. R. Hoare. Communicating Sequential Processes. International Series
in Computer Science. Prentice Hall, 1985.

N. C. Hutchinson, R. K. Raj, A. P. Black, H. M. Levy, and E. Jul. The
emerald programming language. Diku Report 87/22, The University of
Copenhagen, Dept. Comp. Sci., Universitetsparken 1, DK-2100 Copen-
hagen, Denmark, October 1993.

Norman C. Hutchinson. Emerald: An Object-Based Language for Dis-
tributed Programming. PhD thesis, TR 87-01-01, Department of Computer
Science, University of Washington, Seattle, January 1987.

Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy,
and Eric Jul. The Emerald Programming Language Report. Technical Re-
port 87-10-07, Department of Computer Science, University of Washington,
Seattle, October 1987. (Revised August 1988).

Eric Jul. Object Mobility in o Distributed Object-Oriented System. PhD
thesis, TR 88-12-06, Department of Computer Science, University of Wash-
ington, Seattle, December 1988.

Eric Jul, Henry M. Levy, Norman C. Hutchinson, and Andrew P. Black.
Fine-grained Mobility in the Emerald System. ACM Transactions on Com-
puter Systems, 6(1), February 1988.

23

[20]

Eric Jul, Rajendra K. Raj, and Norman Hutchinson. The Emerald System:
User’s Guide. Emerald Project Internal Memorandum (Revised November
1988), July 1988.

P. Martin-Léf. An intuitionistic theory of types: Predicative part. In Logic
Colloguium *78. North-Holland, 1975. Volume 80 of Studies in Logic and
The Foundation of Mathematics.

J. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine. Communications of the ACM, pages 184-195, 1960.

E. Mendelson. Introduction to Mathematical Logic. ~Wadsworth and
Brooks, 3. edition, 1987.

R. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

Rajendra K. Raj, Ewan D. Tempero, Henry M. Levy, Andrew P. Black,
Norman C. Hutchinson, and Eric Jul. Emerald: A general-purpose pro-
gramming language. Software—DPractice and Erperience, 21(1):91-118,
January 1991.

Guy L. Steele. Common Lisp—The Language. Digital Press, second edi-
tion, 1990.

24

