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REPRESENTING SIGNALS BY THEIR TOPPOINTS IN SCALE SPACE
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Abstract

Witkin (1983) introduced the fingerprint of a function as a
set F of points in scale space, where scale space is the plane.
Fingerprints are calculated by convolving the function with a
Gaussian with continuously varying standard deviation. He
defined the toppoints of the signal as points in scale space
where F has a horizontal tangent. This paper proves that
periodic, bandlimited functions are defined up to a
multiplicative constant by their toppoints, if this concept is
properly generalized. The uniqueness theorem may be
regarded as a sampling theorem for signals in the scale
space.

Introduction,

During the past decades researchers have realized that
conventional mathematical tools like series expansion and
Fourier analysis are inadequate for image understanding and
image analysis. At the same time the idea of multi-resolution or

. multiscale representation of images has received increasing

attention. Multiresolution representation of image features has
been used for edge detection [1,2], region extraction [3,4],
image segmentation [5], motion analysis [6], stereo matching
[7] and image encoding and compression [8].

A signal or image can be represented at a given resolution or

" scale by convolution (filtering) with a gaussian-shaped lowpass

filter [9]. The result is an averaged or blurred version of the
original image or signal. The purpose of filtering is to wipe out
irrelevant details below a certain chosen scale before subsequent
analysis. The blurring process can be controlled by tie filter
width: filtering with a filter of small scale retains more details
than at larger scales. In the limit as the scale converges to zero
the filter becomes a Dirac delta-function, which leaves the signal
or image unchanged, whereas all features are removed at infinite
scale. Multiscale analysis, i.e. tracing a feature (zero-crossing,
extremum) of the signal or one of its derivatives over a
continuous scale interval can provide information useful for
signal processing or signal understanding [9]. It is conjectured
{10,11] that the human eye contains optimum edge detection
mechanisms comprised of Gaussian low-pass filters and spatial
Laplacian operators.

The Scale Space Tmage.
Witkin [12] suggested to describe a signal g in the following
way. Assume that g is locally Ll] and that there exists a

polynomial P:R—R such that |g(x)] < P(x) for all xeR. The
scale space image g of g is the function g:RxR , —R given by
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g(x,t) = IR 8(y) (4mty 2 exp(-(x-y)2/(4t)) dy

for xeR, t>0. The domain S =RxR, of the scale space image
is called the scale space. The scale sf;ace image is geﬁncd ax%d
analytical in all of scale space.

The set F +={(x,)eS_ | g(x,t)=0} is called the fingerprin:
of g due to its appearence (Fig..1). Let g(P-9)(x,t) denote g
differentiated p times with respect to x and q times with respect
to t. The set T +={xeS, | g(x,t)=g(1’°)(x,t)=0} is called the
set of zoppoints of g. Due to the analyticity of g the set T, is
discrete unless g is the zero function. *

In general g is not uniquely determined by its toppoints or its
fingerprint. Consider the function

. h(x) =2, sin(x) + aq sin(3x) + ag sin(5x) + ...
wmch'has the fingerprint {(pn,t)lpeSZ,te R, } regardless of
the a;'s as long as |a, |23|a3|+5|a51+... Obviously many
considerably different functions have identical fingerprints.

The purpose of this paper is to prove that if we also consider
negative scales and toppoints occurrring at negative scales, and
at +eo and if g:R—R is periodic and bandlimited, then g is
determined up to a constant factor by its toppoints.
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Figure 1. The figure shows the fingerprint of the periodic
bandlimited function g(x)=cos(2x)-3cos(3x+3)+2cos(4x+2)
-cos(5x+1.178)+cos(6x). The graph shows 2.5 periods. For
small t the high frequency contents dominate, for large t the low
frequency dominates.

The uniqueness is proved by considering global behavior
(i.e. for t = o and -o=) and local behavior of the scale space
representation of the periodic and bandlimited function g.

A function g:R—R is bandlimired if there exists a
distribution G with compact support such that

g(x)=fR G(w)exp(jwx)dow.
For bandlimited g, only one G satisfies the equation, and this G
is the Fourier Transform of g. A necessary and sufficient
condition for a function to be bandlimited is stated in the
Paley-Wiener theorem [13].



In general 1t does not make sense to consider g(x,t) for t<0.
If g is bandlimited, however, one may extend the scale space
image gof g
g(x,t)= J’R G(w)exp(jox)exp(- tmz)dm
This definition extends analytically the scale space image of g to
all of S=RxR. Likewise, one may extend fingerprints by
={(x,1)es| g(x,t):O} and toppoints by

T = {(xneS | gx,n=g10x,)=0}.
The set T is countable as is T (unless g is the zero function).

The Scale Space Image of Peri nd Bandlimited Function

From now on we assume that g is periodic with period 2,
bandlimited, and not the zero-function. Then there exist integers
L and H with L<H and real numbers aj ,...,ay, and ¢ ,...,.0y
such that aj #0, a0, and

g(X) (= IL .H) agcos(fx-¢y)
We refer to L and H as the lower and {ngher bandlimit of g,
respectivly. By straightforward calculation we find the scale
space image g of g to be

g(x,0)=2(f=L,....H) ascos(fx-0¢) exp(-f2t).
1. Global Behavior of the Signal.
a.The Fingerprint as t—+oo

Let F be the fingerprint of g. For large t we have
g(x,t) = a;_cos(Lx-¢p ) exp(- th),
so it is trivial to prove the following lemma:
Lemma 1. (The behavior of F in the neighbourhood of +e°)
There exists a real constant A and continuous real curves
.,dgp such that in each 2n period interval I= {(x,t) | x&
O RO [ s re 1,
dy(t)<d, (t)< .<d~; (t) for all t>A and
Fm(Rx(A +oo)) = {(d;(D.1) | t>A, i=1,...,2L}.
(For L=0 this is to be mterpreted as Fm(Rx(A +00)) = D).

The curves d(t) all converge for t—-+ee. Defme D, such
that d,(t)—D; for {—s+00, We have D;<Dy<...Dy; and the Dj's
are equally spaced over each interval of length %n For large £
the fingerprint F looks almost like {(D;,t) | t large, i=1,...,2L}.
We shall refer to {(D;,+e) | i=1,...,2L} as the infinite toppoint
of multiplicity L of F.

b. The fingerprint as t—>-co

By analogywith lemma 1 we have:

Lemma 2. (The behavior of F in the neighbourhood of -o0)
There exists a real constant B and continuous real curves
$15--»Sppg Such that in each 27 period interval I

s (t)< (t)<...<SH17(t) for all t<B and

FA(RA(-=,B)) = {(5,{00) | 1<B, i=1,...2H}.

The curves s;(t) all converge for t—>-co, Deﬁne S, such that
5;(1)=S; for t—-eo, We have S,< and t’he S:'s are
equa]ly spaced over each mterva!l %ength %‘E For small t (ie.
for numerically large, negauve t), the fingerprint F looks almost
like {(S 1) | t small, i=1,...,2H}. We shall refer to {(S;,-<) |
i=1 ﬁ} as the as the source of multiplicity H of F.
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II. Local Behavior of the Signal.

For all fixed (x,t,)e R? deﬁne the order of g at (x,t ) as the
least number m for which g(™0) (Xgoto)=0. If §( 9:8 then g
has order zero at (x,,t ). If g(x .t )-O and g (x t 0?0 then g
has order one at (x, t % If g has a toppoint at (x, 0) Then g has
order at least two at ( Xpte)- In appendix A we prove:
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Lemma 3. (The local behavior of F where g has even order).
Suppose the order m of g at (x,t,) is even. Then there exxsts a
nthelghbourhood Q of (x,t,) and m real curves dys...dy, such

at
d (t)<d2(t)< .<dp (1) for all t<t,
(t)=-..=d(t )=x, and

s (do,6 t<t,}.
Figure 2 displays F in ' the neigh hbourhood of an (Xgoty) where g
has order four. If the order m of g at (x,t,) is even, then we
may describe F in the neighbourhood of (ox stp) @8 m curves
coming from below and disappearing in the pomt (Xtp)- In this
case we say that g has a toppoint of multiplicity m/2 (xo,to)
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Figure 2. The neighbourhood of a point (x .t ) where g has the

021'der four, and, accordingly, a toppomt of multipicity

> X

In appendix A we also prove:

Lemma 4. (The local behavior of F where g has odd order).
Suppose the order m of g at (x,,t,,) is odd. Then there exist 2
nerghbourhood Q of (xt,), a real curve ¢ and m-1 real curves
ds,...,dp, such that

c (t)< ()<...<dp,(t) for all t<t,,

1 dﬁ 2t )_..‘.il”d (t,)=x, and
BA (e, @ e Byof @ <t

Figure 3 dlsplays F in the nerghbourhood of an (x,, t o) where g
has order five. If the order m of g at (x,,t,) is odd, then we may
describe F in the neighbourhood of (xgoto) as one curve which
goes through (x,,t,) together with me1 curves coming from
below and dlsappea.nng in the point (x,t,). In this case we say
that g has a toppoint of multiplicity (m—? % in (Xgsto)-

(XOyto)

77Tt % > X

Figure 3. The neighbourhood of a point (x,t,) where g has the
order five and a toppoint of mump?lcxty 2.

Th ness Theorem

Lemma 5. The upper bandlimit equals the sum of toppoints
counted with multiplicity.

Proof. We prove that H = N(t,) + T(t;), where N(t,) is half
the number of points of mtersecnon between F and the line t =

t;, and where T(t,) is the number of finite toppoints (counted
with muluphcrty)lbelow the line. From lemma 2 the statement
follows for t;<B.Let the total multiplicity of the toppoints att =
t,be k. IfH N(ty) + T(tl) for ty = t, - &, it remains true for t,
= to + € since by lemma 3 or lemma 4 T is increased by k and
N 1s decreased by k. From lemma 1 N(tl) L fort; > A and
lemma 5 follows.

Theorem. If g and h are both periodic and bandlimited, if
neither is the zero function, and if g and h have the same
toppoints counted with multiplicity, then g=ah for some real
non-zero constant a.

Proof. If g is periodic with period A and h is periodic with
period B, then the ratio between A and B must be a rational
number, i.: otherwise g and h could not have the same
toppoints. Jence g and h have a common period C, i.e. there
exists a C such that both g and h are periodic with period C.
Without loss of g:aerality we may assume C=2r.



The functions g and h have a toppoint of the same
multiplicity at infinity in I. Hence, their lower bandlimits are
equal. Let L and H denote the lower and higher bandlimit,
respectively.

Define ay ,...,ay, bp,----by» OpseeesOpp NNy such that

g(x)=2(f=L,....H) a; cos(fx-¢y),
h(x)=X(f=L,....H) b cos(fx-1¢), and

='q .
(1t is zﬁlv“vay% posible to satisfy ¢; =1 because the infinite
toppoint of g and h coincide). From the Ideﬁnition of L we have
a; #0 and by #0. Define a=a; /b; and v=g-ah.
We now prove indirectly that v is the zero function. Assume
that v is not the zero function.

If g has a finite toppoint of multiplicity k at some (x,t,), then
h also has a finite toppoint of multiplicity k at (x,t,), and then v
has a finite toppoint at (xo,to)of multiplicity at least k. Hence, as
g has H-L finite toppoints counted with multiplicity, v has at
least H-L finite toppoints counted with multiplicity. We have

v(x) =2 (f=L,...,H) (a; cos(fx-9¢) - a bgcos(fx-ng)
— S (L1, H) (2 cos(fx-07) - a by cos(fxng)
Hence, the lower bandlimit of v is at least L+1 so v has a
toppoint at infinity of multiplicity at least L+1.

As v has at least H-L finite toppoints counted with
multiplicity and an infinite toppoint of multiplicity L+1, the
upper bandlimit of v must be at least H+1. However, the higher
bandlimit of v is at most H, which gives the contradiction.
Hence v=g-ah is the zero function, so g=ah as stated.

APPENDIX A,

Lemma 6. The Fourier transform G of g(x)=a,x%+...+a x"
reads G=a_j °8(%+...+a j‘HS(?Snwhere 8() denotes a?th
derivative of the dclta-dism%ution.

Proof. [g G(@)exp(jox)dw = Oy va_xi,

Lemma 7. Any polynomial 1s bandlimited with upper
bandlimit zero.

Proof. Follows from Lemma (6

Define vij(x)=x1, V(@)="8W), W(w,x,1) = exp(jox-ta?),
and vi(x,t) = Jgp Vj(®) W(w,x,t) do. V; is the Fourier transform
andyv; is the scale space image of vi. f,et W;(w,x,t) denote the
i'th éerivati,vc_ of W(w,x,t) with respect to . We have
vi(x,t)= j'IS(I)W(m,x,t)d(o = j'W;(0,x,t). The functions v;
are the Heat Polynomials defined by bVidder [14].

Lemma 8.
W (co,x,t):(jx—Ztm)Wi +1 (w,x,1)- 2(i+1)tWi(m,x,t).~

roof. By induction in i.

Lemma 9. v (x,t)=1.

V1(X,0=X. Vi 2(X,t)=xV; _1(X,t)+2(1+1)tv;(x,t).
1 Proof. F%gx% lemma é+a1nd the deﬁnitioils. )

Lemma 10. v;(x,-1) is a polynomial in x of degree i which
has i distinct, real roots.
. Proof. By lemma 9 and induction in i we prove that v;(x,-1)
is a polynomial of degree i. Define q,=1, qj=i,
qp=2(i-p+1)qy_9, p=2,...,i. We have q,>0 For p=0,...,i.
D%fme Xp(x) =}<); v:_(X,-1).From Widder [?4] we get:

C X{0 =X
Using lemma 9 we can prove that the sequence X, X1, weens X
is the Sturm sequence of the polynomial Xq = v;(x, -1)
Hence, by Sturm‘s Theorem [15] we have that X5 = vi(x,-1)
has i distinct, real roots

Lemma 11. v;(AxA20)=Av;(x,1).

Proof. Follows from the definition (the result is also stated
in Widder [14]).

Lemma 12. v;(x,1) is a polynomial in x of degree i which
has i distinct, imaginary roots.
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Proof. v;(jx,1)=jv;(x,-1) by lemma 11. Hence, lemma 12
restates lemma 10.
Lemma 13. For i even, none of the roots of v;(x,1) are real.
For i odd, exactly one root is real (and this root has order one).
Proof. This is a direct consequence of lemma 12.
Lemma 14. The fingerpri Sfunctiori g of any bandlimited g
satisfies g(x,t)=2(i=0..+e0) g'¥(0) (i)™* v;(x,1).
Proof. Se Widder [14]. ) ;
Lemma 15. g(At,-A%)= 5(i=0..+s) gD(0) (i1)! Al vi(x,-1),
Proof. Follows frorE lemma 11 and 14). )
Lemma 16. g(ATA%)= Z(i=0..+e0) g(0) (i1 M vy(z,1).
Proof. As 15.
Lemma 3 and 4 follows from lemma 10, 13, 15, and 16.
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