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Abstract

Map theory (MT) is a foundation of mathematics. MT is slightly
more powerful than ZFC set theory, but its merit is that it builds on top
of computable functions where ZFC builds on top of finite sets. Thus,
where ZFC is suited as a foundation of mathematics, MT is suited as
a foundation of both mathematics and computer science. This paper
gives an introduction to MT intended for a broad audience consisting of
mathematicians, logicians, and computer scientists.

1 Introduction

1.1 ZFC

Recall that ZFC is a generalization of the theory of finite sets:

• The power set of a finite set is finite. Therefore, ZFC has a power set
operator.

• The union of a finite set of finite sets is finite. Therefore, ZFC has a union
operator.

• The complement of a finite set is not finite. Therefore, ZFC has no com-
plement operator.
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Even the axiom of choice, which is also known as the axiom of Zermelo, is
valid in the world of finite sets. The only axiom of ZFC which transcends the
world of finite sets is the axiom of infinity.

Map theory is constructed the same way, except that it begins with com-
putable functions.

1.2 Overview

We introduce map theory in the following steps:

Section 2 defines a programming language M for expressing computable func-
tions. The notion of computable functions is much richer than that of
finite sets, and for that reason we shall dwell longer on computable func-
tions in MT than it is usual to dwell on finite sets in ZFC.

Section 3 presents a theory of M, i.e. a theory which describes the behavior
of programs expressed in the M programming language. Section 3 also
defines a relation of behavioral equivalence of programs. Programs modulo
this equivalence relation are referred to as maps.

Section 4 presents a mental model for visualizing maps. That mental model
can be extended into a firm, mathematical model, but we shall not do so
in the present paper.

Section 5 discusses which quantifiers can be added to the M programming
language. Section 5 also states the four axioms which turn the theory from
Section 3 into Map Theory. The axioms do not complete the definition of
MT, however, since they refer to a construct φ which is defined in Section
6.

Section 6 selects the domain of quantification. It turns out to be a bad idea to
let the quantifiers of Map Theory quantify over all maps. Rather, Section
6 defines the notion of a ‘wellfounded’ map and lets quantifiers quantify
over these maps. Section 6 also defines a predicate φ for testing whether
or not a map is wellfounded.

MT is a foundation which can stand on its own feet. But we utilize the readers
previous knowledge and use ZFC as a quick way of explaining MT.

1.3 History

MT was introduced in 1992 in [3]. [3] proved all axioms and inference rules of
ZFC in MT and also proved the consistency of MT in ZFC+SI where SI is the
assumption that there exists an inaccessible ordinal.

In 1997, [1] showed that MT has a quite natural Scott model. That made
MT much easier to understand.

MT from 1992 has a peculiar, ad hoc list of ’construction’ axioms. A version
where all the construction axioms are replaced by a definition was published in
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2002 [4], but the consistency has never been proved and a model of the version
in [4] is likely to be much less natural than the one in [1].

The present paper proposes a new axiomatization. This new version still
replaces the construction axioms by a definition. But the model in [1] is expected
to satisfy the new version. Furthermore, the new version is expected to be able
to prove all axioms and inference rules of ZFC. Verification of the last two
claims, however, is future work.

2 The M programming language

2.1 Syntax

The programming language M underlying MT has the following BNF syntax:1

V ::= v1 | v2 | v3 | · · · (object Variable)
U ::= T (Uhr element)
F ::= λV.T (Function)
N ::= U | F (Normal form)
A ::= T T (functional Application)
B ::= if(T , T , T ) (Branch)
D ::= T ‖T (parallel Disjunction)
E ::= ET (pure Existence)
R ::= A | B | D | E (Reducible term)
T ::= V | N | R (Term)

As an example, λv1.if(v1, v2, T) is a term:

λv1.if(v1, v2, T) ∈ T
Let C denote the set of closed terms (i.e. terms without free variables). As
examples, we have

λv1.v1 ∈ C
λv1.v2 /∈ C

2.2 The syntax expressed in ZFC

We now translate the BNF-definition of the previous section into ZFC. Define

vi
.= 〈0, i〉

T
.= 〈1〉

λx.y
.= 〈2, x, y〉

xy
.= 〈3, x, y〉

if(x, y, z) .= 〈4, x, y, z〉
x‖y .= 〈5, x, y〉
Ex

.= 〈6, x〉
1Readers with a λ-calculus background should note that M is an impure λ-calculus because

of the uhr-element and that the definition of ’normal form’ is highly non-standard.
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Let ω be the set of finite ordinals (i.e. the set of natural numbers). Let V, U ,
F , N , A, B, D, E , R, and T be the smallest sets such that

i ∈ ω ⇒ vi ∈ V (object Variable)
x = T ⇒ x ∈ U (Uhr element)
x ∈ V ∧ y ∈ T ⇒ λx.y ∈ F (Function)
x ∈ U ∪ F ⇒ x ∈ N (Normal form)
x, y ∈ T ⇒ xy ∈ A (functional Application)
x, y, z ∈ T ⇒ if(x, y, z) ∈ B (Branch)
x, y ∈ T ⇒ x‖y ∈ D (Parallel disjunction)
x ∈ T ⇒ Ex ∈ E (pure Existence)
x ∈ A ∪ B ∪ D ∪ E ⇒ x ∈ R (Reducible term)
x ∈ N ∪R ⇒ x ∈ T (Term)

2.3 Semantics

The semantics of M is a mathematical description of what a computer is sup-
posed to do with terms t.

The semantics of M only considers closed terms t ∈ C. Given a closed term
t, a computer is supposed to reduce t, i.e. to transform t according to certain
reduction rules until t is transformed into normal form, if possible. Hence, the
semantics of M is a function f∗ of type

f∗: C → N
where f∗(t) is defined iff t can be reduced to normal form. The function f∗ is
partial in the sense that it is not defined for all t ∈ C.

2.4 Reduction steps

A computer is supposed to reduce t one step at a time, i.e. to compute a reduction
sequence

t0 → t1 → t2 → · · ·
of closed terms such that t0 = t and ti+1 = f1(ti) where f1: C → C defines what
to do in one step. If ti ∈ N for no i then f∗(t) is undefined. If ti ∈ N for some
i then f∗(t) = ti. The definition of f1(t) reads:

f1(t) =





t if t ∈ N
fA(t) if t ∈ A
fB(t) if t ∈ B
fD(t) if t ∈ D
fE(t) if t ∈ E

The function f1 is total in the sense that f1(t) is defined for all t ∈ C.
As an example, the reduction sequence of T is

T → T → T → · · ·
so f∗(T) = T.
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2.5 Branch

The function fB is defined as follows for all x, y, z ∈ C:

fB(if(x, y, z)) =





y if x ∈ U
z if x ∈ F
if(f1(x), y, z) if x ∈ R

As an example, the reduction sequence of if(if(T, T,T), λv1.v1, T) is

if(if(T, T, T), λv1.v1, T) → if(T, λv1.v1, T) → λv1.v1 → λv1.v1 → · · ·

so f∗(if(if(T, T,T), λv1.v1, T)) = λv1.v1.

2.6 Application

For all a, b ∈ T and v ∈ V define 〈 a |v:= b 〉 as the result of replacing all free
occurrences of v in a by b with suitable renaming of bound variables to avoid
variable clashes. We shall assume that renaming is done in some deterministic
way which we shall not specify any further. Now define apply:F ×T → T such
that

apply(λv.a, b) = 〈 a |v:= b 〉

The function fA is defined as follows for all x, y ∈ C:

fA(xy) =





x if x ∈ U
apply(x, y) if x ∈ F
f1(x)y if x ∈ R

As an example, the reduction sequence of (λv1.v1v1)(λv1.v1v1) is

(λv1.v1v1)(λv1.v1v1) → (λv1.v1v1)(λv1.v1v1) → · · ·

so f∗((λv1.v1v1)(λv1.v1v1)) is undefined.

2.7 Parallel disjunction

The function fD is defined as follows for all x, y ∈ C:

fD(x‖y) =





T if x ∈ U or y ∈ U
λv1.(xv1)‖(yv1) if x ∈ F and y ∈ F
f1(x)‖f1(y) otherwise

Hence, x‖y is reduced by reducing x and y in parallel until one of them reduces
to T or both of them reduce to functions.
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2.8 Existence

The function fE is defined as follows for all x ∈ C:

S
.= λv1.λv2.λv3.v1v3(v2v3)

K
.= λv1.λv2.v1

B
.= λv1.λv2.λv3.if(v1, v2, v3)

D
.= λv1.λv2.v1‖v2

E
.= λv1.Ev1

A
.= λv1.Eλv2.Eλv3.v1(v2v3)

fE(Ex) = xS‖xK‖xT‖xB‖xD‖xE‖Ax

Essentially, Ex is reduced by reducing xy for all y ∈ C in parallel. Ex reduces
to T iff xy reduces to T for some y ∈ C. Ex is a very weak quantifier. At a
later stage, map theory is constructed by adding a different and much stronger
quantifier.

3 A theory of M

3.1 The M-computer

One may think of an implementation of the M programming language as an
M-computer with two lamps and a keyboard. The two lamps are labeled T and
F , and the keyboard has the symbols used in the BNF-definition in Section 2.1.
When a user enters a closed term on the keyboard, the computer starts reducing
the term. If the term reduces to a normal form, then the T and F lamp lights
if the result is in U and F , respectively2.

We shall say that a closed term t is a true, function, or bottom term if
f(t) ∈ U , f(t) ∈ F , or f(t) is undefined, respectively. Hence, if the M-computer
receives a true term, it lights the T lamp, if it receives a function term, it lights
the F lamp, and if it receives a bottom term then it will work indefinitely
without lighting either lamp.

Hence, an ordinary user of the M-computer can use it to verify that a term
is a true or a function term. It takes a clairvoyant user to verify that a term is
a bottom term.

We shall say that two closed terms r and s are root equivalent, written r ≈ s,
if they are both true, both function, or both bottom terms. Root equivalence
is not computable because it is undecidable whether or not a term is a bottom
term.

2Readers with a background in λ-calculus will note that this is very different from a typical
implementation of pure lambda calculus: in pure λ-calculus, the result of a computation is
a normal form; in M, the result of a computation is binary and the user cannot access the
normal form
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3.2 Equivalence

We shall say that two closed terms r and s are equivalent, written r ≡ s, if
tr ≈ ts for all closed terms t. Hence, two terms are equivalent if they behave
the same on the M-computer in any context t.

From the point of view of MT, r ≡ s expresses equality.
In the present paper, we use r = s to denote equality in ZFC. Hence, for

closed terms r and s, r = s expresses that r and s are the same term and
r ≡ s expresses that r and s are equal in MT. In the present paper, r ≡ s is an
equivalence relation in ZFC.

Some papers on MT is based on MT rather than ZFC. In those papers,
equality in MT is still written x ≡ y whereas x = y is used for quite another
purpose: to denote equality modulo identifications. So in those papers, x ≡ y
is equality whereas x = y merely is an equivalence relation.

We shall refer to the equivalence classes of the class division C/≡ as maps3.

3.3 Elementary properties

Let x ∝ 〈y|v:=z〉 denote that x is identical to 〈 y |v:= z 〉 except for renaming of
bound variables and define

⊥ .= (λv1.v1v1)(λv1.v1v1)
x ◦ y

.= (λv1.λv2.λv3.v1(v2v3))xy
? .= λv1.if(v1, T,⊥)
x → y ⇔ if(x, y, T) ≡ if(x, T,T)

We have that ⊥ is a bottom term, x◦y is functional composition, ? is a function
which maps T to T and anything else to ⊥, and x → y is one way to express
that x ≡ T implies y ≡ T in MT. We state without proof that the following

3So the set of maps is countable until further. The notion of a map is going to be generalized
when we introduce MT.
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hold for all terms x, y, z ∈ T and all variables v ∈ V:

x ≡ y ⇒ x ≡ z ⇒ y ≡ z4

x ≡ y ⇒ λv.x ≡ λv.y
x ≡ y ⇒ zx ≡ zy

if(T, y, z) ≡ y
if(λv.x, y, z) ≡ z
if(⊥, y, z) ≡ z

Ty ≡ T
(λv.y)z ≡ x if x ∝ 〈y|v:=z〉
⊥y ≡ ⊥

T‖x ≡ T
x‖T ≡ T
(λv.x)‖(λv.y) ≡ λv.(x‖y)
(λv.x)‖⊥ ≡ ⊥
⊥‖(λv.x) ≡ ⊥
⊥‖⊥ ≡ ⊥

ET ≡ T
E⊥ ≡ ⊥
E(x ◦ y) → Ex
E(? ◦ x) ≡ Ex

The statements above are the elementary axioms and inference rules of MT.

3.4 Quartum non datur

The rule of Quartum Non Datur (QND) reads:

xT ≡ yT ⇒ x(λv1.v2v1) ≡ y(λv1.v2v1) ⇒ x⊥ ≡ y⊥ ⇒ xv2 ≡ yv2

The rule says that any closed term is a true, function, or bottom term, there is
no fourth possibility. QND allows to prove a lemma by cases. Now define:

F
.= λv1.T

¬x
.= if(x, F, T)

x ∧ y
.= if(x, if(y, T,F), if(y, F, F))

We use F to represent falsehood and ¬x and x ∧ y express negation and con-
junction in M (and, thereby, in MT). We use ∧ for conjunction in both MT and
ZFC, but which one is meant should be clear from the context. As an example,
in the fact

(x ∧ y) ≡ T ⇔ (x ≡ T) ∧ (y ≡ T)
4We take ⇒ to be right associative so that A ⇒ B ⇒ C means A ⇒ (B ⇒ C) which is

equivalent to A ∧B ⇒ C.
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the leftmost ∧ is part of an MT term whereas the rightmost ∧ is part of a ZFC
formula. Note, by the way, that conjunction lives at the level of terms in MT
and at the level of formulas in ZFC. As we shall see later, the same holds true
for quantifiers. The elementary properties listed in Section 3.3 allow to prove
e.g.

¬T ≡ F T ∧ T ≡ T T ∧ F ≡ F T ∧ ⊥ ≡ ⊥
¬F ≡ T F ∧ T ≡ F F ∧ F ≡ F F ∧ ⊥ ≡ ⊥
¬⊥ ≡ ⊥ ⊥ ∧ T ≡ ⊥ ⊥ ∧ F ≡ ⊥ ⊥ ∧⊥ ≡ ⊥

QND is required to prove more general statements like v1 ∧ v2 ≡ v2 ∧ v1 and
¬¬¬v1 ≡ ¬v1. QND is unable to prove ¬¬v1 ≡ v1 for the simple reason that
¬¬v1 ≡ v1 does not hold in general (as an example, ¬¬λv1.⊥ ≡ ¬T ≡ F ≡
λv1.T 6≡ λv1.⊥).

3.5 The Scott order

Now define

Y
.= λv1.(λv2.v1(v2v2))(λv2.v1(v2v2))

x ↓ y
.= if(x, if(y, T,⊥), if(y,⊥, λz.xz ↓ yz))

x ¹ y ⇔ x ≡ x ↓ y

The elementary properties allow to prove Yx ≡ x(Yx) showing that Y is a
fixed point operator. Having a fixed point operator makes recursive definitions
like the second definition above permissible as any recursive definition can be
translated to a non-recursive one using Y.

In the ’standard model’ of MT, x ↓ y is the infimum (greatest lower bound)
of x and y w.r.t. the Scott order whereas x ¹ y expresses the Scott order itself.

Having defined the Scott order x ¹ y we can state two more rules about
maps, one which says that all maps are monotonic, and one which says that Y
produces minimal fixed points:

x ¹ y ⇒ zx ¹ zy
xy ¹ y ⇒ Yx ¹ y

In addition, M also satisfies the property of Scott continuity, but that prop-
erty is not included as an inference rule of MT since that would hinder the
introduction of genuine quantifiers (the Ex quantifier is not a genuine quanti-
fier; it can only return T and ⊥ but not F).

As proved in [1], full map theory has a generalized property known as κ-
Scott continuity where κ is a suitably chosen ordinal. As a special case of
κ-Scott continuity, ordinary Scott continuity is identical to ω-Scott continuity
where ω is the set of finite ordinals.
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3.6 Extensionality

ZFC has the extensionality property that the following are equivalent:

1. x ∈ z ⇔ y ∈ z for all sets z.

2. z ∈ x ⇔ z ∈ y for all sets z.

M happens to have a similar property which says that the following slightly
more complicated statements are equivalent:

1. zx ≈ zy for all z ∈ C.
2. xz1 · · · zn ≈ yz1 · · · zn for all n ∈ N and all z1, . . . , zn ∈ C.

Statement (1) above is the definition of x ≡ y and (2) follows from (1) according
to the elementary properties of M. Even though it may not be evident, the
following rule of extensionality expresses that (1) follows from (2):

¬¬(xu) ≡ ¬¬(yu) ⇒ xuv ≡ x(zuv) ⇒ yuv ≡ y(zuv) ⇒ xu ≡ yu

Above, u, v ∈ V must be distinct variables and x, y, z ∈ T must be terms in
which u and v do not occur free.

Extensionality allows to prove x ↓ x ≡ x, x ↓ y ≡ y ↓ x, and x ↓ (y ↓ z) ≡
(x ↓ y) ↓ z (c.f. [5]). These results in turn allow to prove x ¹ x, x ¹ y ⇒ y ¹
x ⇒ x ≡ y, and x ¹ y ⇒ y ¹ z ⇒ x ¹ z.

4 Models

4.1 Trees

As mentioned in Section 3.6, two maps x and y are equal iff

xz1 · · · zn ≈ yz1 · · · zn for all n ∈ N and all z1, . . . , zn ∈ C

That property may be used as basis for a useful mental picture of what a map
looks like. The mental picture described in the following is a graphical one
which we illustrate by ‘drawing’ the map I = λx.x.

Among other, the map I has the following properties:

I ∈ F
IT ∈ U
IF ∈ F
IF⊥ ∈ U

The information above may be represented by the following graphical construc-
tion:
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In the drawing, nodes labeled t and f represent the sets U and F , respectively.
The f in the root represents the F in I ∈ F . The t in the bottom right corner
represents the U in IF⊥ ∈ U .

In general, in a drawing of a map m, if mx1 · · ·xn ∈ F then there is a node
labeled f and a path from the root to that node labeled x1, . . . , xn.

We do not allow downward edges from nodes labeled t, so the rule for nodes
labeled t is a bit more complicated: If mx1 · · ·xn ∈ U and if mx1 · · ·xm /∈ U for
all m < n then there is a node labeled t and a path from the root to that node
labeled x1, . . . , xn.

A drawing like the one above only records positive information of form
mx1 · · ·xn ∈ U or mx1 · · ·xn ∈ F . It does not record negative information
of form mx1 · · ·xn ≡ ⊥.

The drawing above merely is an approximation of I since it does not record
all paths x1 · · ·xn for which Ix1 · · ·xn 6≡ ⊥. The picture above may be seen as
a drawing of

λx.if(x⊥,T, λy.T)

since that is the smallest map w.r.t. the Scott order which has the illustrated
properties. That map is indeed an approximation of I in the sense that

λx.if(x⊥,T, λy.T) ¹ I

A full drawing of I would be infinitely large.

4.2 Compact maps

We shall say that a map c is compact iff there exists a map χc such that χcd ≡ T
iff c ¹ d for all maps d. The compact maps are exactly those which are also
compact in the standard model of map theory.

In drawings, one may restrict edge labels to compact maps without loss of
information. From now on, we assume that edge labels are restricted to be
compact maps.
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In the drawing of I in Section 4.1, the edge labels T, F, and ⊥ are themselves
maps and may themselves be drawn instead of referred to. A drawing of T
consists of a single node labeled t. A drawing of ⊥ is hard to see since it
consists of a tree with no nodes. A drawing of F may look thus:

f

t

The drawing consists of an f-node and a t-node connected by an edge labeled
⊥. The ⊥ can (or, rather, cannot) be seen next to the label.

All compact maps of M happen to have finitely large drawings5. This holds
true even if one insists that all edge labels have to be drawn themselves. Com-
pact maps of full MT need not have finitely large drawings.

4.3 Prime maps

The map drawn in Section 4.1 may be seen as the least upper bound of the
following two maps:

T

f

F

f

t

⊥

f

t

We shall say that a map is prime if it has finitely many nodes and each node has
at most one downward edge. The prime maps are exactly those which are also
prime in the standard model of map theory. As a technicality we require prime
maps to have at least one node so that we expel ⊥ from the society of prime
maps. The two maps above constitute a prime factoring of the map drawn in
Section 4.1.

5More precisely: for all compact maps c there exists a finitely large drawing which repre-
sents c. Drawings may contain redundant information and a compact map can easily have
many finite as well as many infinite drawings.
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4.4 Coherent maps

We shall say that two maps x and y are coherent, written x _̂ y, if they have
an upper bound, i.e. if there exists a map z such that x ¹ z and y ¹ z. The
two prime maps in Section 4.3 are coherent.

If two maps x and y have a common upper bound z then they also have a
least upper bound lub(x, y, z) where

lub(x, y, z) .= if(z, x : y : T,¬x : ¬y : λu.lub(xu, yu, zu))
x : y

.= if(x, y,⊥)

For coherent maps x and y, let x ↑ y denote the least upper bound of x and
y. For any finite set S of pairwise coherent maps let ↑S denote the least upper
bound of all the maps in S.6

4.5 Model building kit

For compact c and maps m let c 7→ m denote λx.if(χcx,m,⊥). Furthermore,
let t and f denote T and λx.⊥, respectively. A number of drawings illustrate
the capabilities of t, f , ↑, and 7→:

t

t

f

f

T

f

f

T 7→ f

F

f

⊥

f

t

F 7→ ⊥ 7→ t

¢
¢
¢
T

A
A

A
F

f

t

⊥

f

t

T 7→ t ↑ F 7→ ⊥ 7→ f

We have, t = T, ↑∅ = ⊥, and (↑∅) 7→ t = F, so we may also express the rightmost
tree above as

t 7→ t ↑ ((↑∅) 7→ t) 7→ (↑∅) 7→ t

Now define x↪→y = (↑x) 7→ y. This allows to express the rightmost tree above
as the least upper bound of

{{t}↪→t, {∅↪→t}↪→∅↪→t}
6That least upper bound is guaranteed to exist in the ‘standard model’ of MT
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4.6 Model building

All prime maps can be expressed using only t, f , x↪→y, and the ability to form
finite sets of pairwise coherent maps. Furthermore, all maps can be expressed
as supprema of prime maps. These properties allow to define e.g.

t = 〈0〉
f = 〈1〉
x↪→y = 〈2, x, y〉

Then one may define a set P which models prime maps and a set C which
models compact maps by defining P and C as the smallest sets such that

1. P contains t and f and also contains x↪→y for all x ∈ C and y ∈ P .

2. C is the set of finite sets of coherent elements of P .

In (2) above, one needs to know which elements of P are coherent. The cases
where elements of P are coherent are the following:

1. t _̂ t.

2. f _̂ f .

3. f _̂ x↪→y for all x ∈ C and y ∈ P .

4. x↪→y _̂ f for all x ∈ C and y ∈ P .

5. x↪→y _̂ x′↪→y′ iff x 6_̂ x′ ∨ y _̂ y′ for x, x′ ∈ C and y, y′ ∈ P .

In (5) above, one needs to know which elements of C are coherent. Two elements
x and y of C are coherent when all elements of x are coherent with all elements
of y.

The rules above allow to define P , C, and coherence by mutual recursion
which allows to construct a model of the M programming language and the
axioms and inference rules stated so far.

To get a model of full map theory, one has to use a large cardinal κ and
define C as the set of sets with cardinality less than κ of coherent elements of
P (to be precise, one has to use an inaccessible ordinal σ and then choose κ as
a regular ordinal larger than σ). A consistency proof of map theory based on
these ideas can be found in [1].

5 Quantification

5.1 Choices to be made

Map theory (MT) is an extension of the theory from Section 3. We obtain MT
by adding a quantifier to the syntax and by extending the collection of axioms.
When doing so, two choices must be made.
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First, one has to decide which kind of quantifier to add. The obvious pos-
sibilities are the universal quantifier ∀, the existential quantifier ∃, or Hilberts
epsilon operator ε.

Second, one has to decide which domain to quantify over. The quantifier of
ZFC quantifies over all sets, so the obvious choice for MT would be to quantify
over all maps. That turns out to be a bad idea, however.

5.2 Choice of quantifier

Concerning the choice of quantifier, it does not matter whether one chooses ∀
or ∃ since each one is easy to define from the other. So let us rule out ∃.

One can define ∀ from ε, but the opposite is not possible, so the choice
between ∀ and ε does matter.

Since ε is stronger than ∀, ε is the most obvious candidate. Including ε in
MT gives the axiom of choice for free. Furthermore, the combination of ε and
the fixed point operator Y allows to give a particularly easy proof of the well-
ordering theorem: one can simply well-order any set by recursive application of
ε in a very natural way. One can say more pro and cons ε, however.

5.3 New function letters

The ε quantifier has a less celebrated property, which may be of increasing
importance in the future: It makes it much simpler to introduce new functions
in a theory. As an example, in Mendelsons system S (Peano arithmetic, [7]),
one can prove the existence and uniqueness of quotient and remainder:

∀a, b∃1q, r: b 6= 0 ∧ a = bq + r ∧ r < b ∨ b = 0 ∧ q = 0 ∧ r = a

According to the meta-theorem of new constants and function letters (c.f. [7]),
the theorem above allows to construct an extended system S′ with two new
function letters, x/y and x%y, and a new axiom,

∀a, b: b 6= 0 ∧ a = b(a/b) + a%b ∧ a%b < b ∨ b = 0 ∧ a/b = 0 ∧ a%b = a

The meta-theorem of new function letters says that if S is consistent then S′ is
also consistent and is a conservative extension of S, so that one may just as well
work in S′. That works fine for human mathematicians, but it is cumbersome
to change theory when doing machine verification. Having ε one may simply
define x/y and x%y thus:

a/b = εq∃r: a = bq + r ∧ r < b
a%b = εr∃q: a = bq + r ∧ r < b

These definitions are easy to deal with in mechanical proof systems.
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5.4 Problems with ε

If one includes ε in MT then the Axiom of Choice (AC) becomes provable in
MT. So objections against AC may be taken as objections against ε.

AC was first formulated by Zermelo even though it had been in use before.
Zermelo used AC for proving Zorns lemma, and it is said that Zermelo was
taunted for AC since it seemed too easy to prove lemmas if one was allowed to
invent new axioms for each new lemma.

The objections against AC seems to be:

• AC is dangerous. AC was formulated during the third fundamental crisis
where new dubious axioms were probably not particularly welcome. As
ZF and ZFC have been shown to be equiconsistent, however, this objection
is no longer valid.

• AC is superflous. At the time of Zermelo, it must have been the hope
to be able to prove Zorns lemma without the use of new axioms. As the
independence of AC from ZF has been shown, this objection is no longer
valid either.

• AC has peculiar consequences like the ability to divide a sphere into two
spheres of the same size of the original. This seems to be inevitable for
axioms about infinities. Even the axiom of infinity has a peculiar con-
sequence: together with the power set axiom it entails that there exist
infinities of different sizes.

• AC is unnecessary. One can develop substantial amounts of mathematics
without AC. The same objection can be raised against e.g. the law of
excluded middle or the axiom of replacement, and it is of course a matter
of taste which assumptions to include in a theory.

It is the purpose of MT to be a convenient foundation for the working mathe-
matician, and for that reason ε has been included in it. The benefits are that
one can make definitions like those in Section 5.3 easily and one can use AC
freely. The drawback is that AC is hardwired into MT so that one cannot easily
drop it as one can with AC in ZFC.

5.5 Strict versus lazy quantifiers

In MT, ∀ lives at the level of terms and not at the level of well-formed formulas.
In MT, ∀ is a function which, when applied to an argument p as in ∀p, tests
whether or not px ≡ T for all x in the domain of quantification.

Let Φ denote the domain of quantification. The domain of quantification
is going to be defined in Section 6. Section 6.1 explains why Φ should not be
taken to be the set of all maps. Section 6 chooses a Φ which is neither the set
of all maps, nor the empty set.
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Like any other function of MT, ∀ must be monotonic such that p ¹ q implies
∀p ¹ ∀q. The two most obvious ways of achieving monotonicity are the following
strict and lazy quantifiers:

∀strictp =





T if px ≡ T for all x ∈ Φ
⊥ if px ≡ ⊥ for some x ∈ Φ
F otherwise

∀lazyp =





T if px ≡ T for all x ∈ Φ
F if px 6≡ T,⊥ for some x ∈ Φ
⊥ otherwise

The choice operator ε is also a function. When applied to an argument as in
εp, it returns an x ∈ Φ such that px ≡ T. There has to be two exceptions,
however. Firstly, if px 6≡ T for all x ∈ Φ then ε has to be excused for not
returning an x ∈ Φ such that px ≡ T. Secondly, like any other function, ε
has to be monotonic which puts further restrictions on ε. A strict ε has the
following properties:

• εp ≡ ⊥ if px ≡ ⊥ for some x ∈ Φ.

• εp ∈ Φ if px 6≡ ⊥ for all x ∈ Φ.

• p(εp) ≡ T if px 6≡ ⊥ for all x ∈ Φ and px ≡ T for some x ∈ Φ.

A lazy ε which satisfies

p(εp) ≡ T if px ≡ T for some x ∈ Φ (1)

is not tenable. To see that let a, b ∈ Φ be compact maps which satisfy a 6_̂ b.
If (1) holds then

• a ¹ εχa ¹ ελx.T

• b ¹ εχb ¹ ελx.T

contradicting a 6_̂ b.
It is possible to construct choice operators which are more lazy than the

strict one, but they are complicated and difficult to work with. For that reason,
we include the strict ε in MT. That settles the choice of universal quantifier in
favor of the strict one so that ∀ from now on denotes ∀strict.

5.6 The syntax of Map Theory

The syntax of Map Theory is the same as the one defined in Section 2.1 except
that ε is added as a new construct:

H ::= ε (Hilbert epsilon)
T ::= V | N | R | H (Term)
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Section 6 defines the domain Φ of quantification and also defines a map φ with
the following property:

φx =
{

T if x ∈ Φ
⊥ otherwise

We shall refer to elements of Φ as wellfounded maps. Section 6 defines φ using
the syntax of Map Theory given above. Now define

!x .= if(x, T, T)
∃ .= λp. ¬¬(p(εp))
∃x:P .= ∃(λx. P )
∀x:P .= ¬∃x:¬P
∀ .= λp. ∀x: px
εx:P .= ε(λx. P )

We have that !x ≡ T iff x is Boolean, i.e. iff x 6≡ ⊥ and that ∀p ≡ T if px ≡ T
for all wellfounded x. The two negation signs in the definition of ∃ ensures that
∃p equals T or F or ⊥. The constructs ∃x: P , ∀x: P , and εx: P are introduced
for notational convenience.

5.7 Axioms of quantification

The axioms of quantification of Map Theory read:

φ(εp) ≡ ∀x: !(px)
!(∀p) ≡ ∀x: !(px)
∀p → φx → px
εp ≡ εx: φx ∧ px

The first axiom says that εp is wellfounded iff px is Boolean for all wellfounded
x. The second says that ∀p is Boolean under the same condition. The third
axiom says that if py is true for all wellfounded y and x is wellfounded then px
is true. The last axiom expresses Ackermanns axiom ([2], p.244).

The definition of Map Theory is now complete except that the definition of
φ is not yet stated.

6 Choice of domain

6.1 Size of domain

The choice of domain Φ remains. To simplify the discussion, we shall consider
the properties of ∀ instead of ε for each possible choice of Φ.

If we take Φ to be the set of all maps then, among other, ⊥ ∈ Φ. In this
case, monotonicity gives us

px ≡ T for all x ∈ Φ if and only if p⊥ ≡ T.
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so the quantifier becomes trivial:

∀ ≡ λp.¬¬(p⊥)

Hence, it is reasonable to require ⊥ /∈ Φ. The other extreme would be to let Φ
be the empty set, but then we would have

∀ ≡ λp.T

So Φ should neither be too big, nor too small. To ensure that Φ is of any use, Φ
must have an infinite subset Φ′ of compact maps such that for all x, y ∈ Φ′, x 6= y
we have

• x 6_̂ y

• (x ↓ y) /∈ Φ

6.2 Representation of sets

When MT was constructed first time [3], it was easy to see that Φ should not
contain maps like ⊥ and λx.⊥ but could safely contain maps like T and λx.λy.T.

One of the intensions of MT was to build a foundation on top of a program-
ming language which had the same strength as ZFC. For that reason, Φ had to
contain a subset Φ′ with the properties stated in Section 6.1 with the further
property that every set in the universe of ZFC should be representable by an
element of Φ′. Furthermore, it should be possible to model the membership
relation of ZFC by a function in MT.

To achieve this it is reasonable to consider how to represent sets of ZFC
by maps of MT. An obvious choice would be to let a map m represent the set
{x|mx ≡ T}. Trying that was unfruitful, however.

A representation of sets which turned out to work was the following: let T
represent the empty set. Furthermore, if m ∈ Φ and m 6= T then let m represent
the set {mx|x ∈ Φ}. This representation happens to work, and it immediately
hints at the following two properties for Φ:

• T ∈ Φ.

• x, y ∈ Φ ⇒ xy ∈ Φ.

So Φ should contain T and be closed under application.

6.3 Wellfoundedness

The axiom of restriction or wellfoundedness of ZFC hints at another property,
namely that elements of Φ should be wellfounded in a certain sense.

We shall say that a map g is wellfounded w.r.t. a set G of maps if, for all
infinite sequences x0, x1, x2, · · · ∈ G there exists a natural number n such that

gx0x1 · · ·xn−1 ≡ T
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For all sets G of maps let G◦ denote the set of maps that are wellfounded w.r.t.
G. The chosen representation of sets together with the axiom of wellfoundedness
entail that all elements of Φ should be wellfounded w.r.t. Φ:

Φ ⊆ Φ◦

It would be convenient to have Φ = Φ◦. To see that Φ = Φ◦ is not tenable,
however, we prove I ∈ Φ◦ and I /∈ Φ where I = λx. x.

I ∈ Φ◦: Suppose x0, x1, x2, · · · ∈ Φ. We shall find a natural number n such
that Ix0x1 · · ·xn ≡ T. From x0 ∈ Φ ⊆ Φ◦ we have x0 ∈ Φ◦. Hence, there exists
a natural number n such that x0x1x2 · · ·xn ≡ T so Ix0x1 · · ·xn ≡ T.

I /∈ Φ: Suppose I ∈ Φ. We have I, I, I, . . . ∈ Φ so I ∈ Φ◦ entails that there
exists a natural number n such that

I

n︷ ︸︸ ︷
II · · · I ≡ T

But the left hand side of the equation above equals I regardless of the value of
n which gives a contradiction. Hence, I /∈ Φ. This together with I ∈ Φ◦ gives

Φ ⊂ Φ◦

6.4 Continuity

From I ∈ Φ◦ and I /∈ Φ it is obvious that Φ = Φ◦ is not tenable, but there is
another reason why one should expect Φ = Φ◦ to have no solutions: one would
expect the cardinality of Φ◦ to be equal to that of the powerset of Φ and, hence,
greater than that of Φ. Nevertheless, if M denotes the set of all maps, then the
following properties would be convenient:

(6.4.1) Φ ⊆ M
(6.4.2) Φ = Φ◦

(6.4.3) M = (M → M) ∪ {T,⊥}

Equation (6.4.3) is not tenable because the set M → M of functions from M to
M has greater cardinality than M . So both (6.4.2) and (6.4.3) are impossible
for cardinality reasons.

The usual countermeasure for a domain equation like (6.4.3) is to restrict
M → M to functions which are continuous in some sense. For ordinary models
of lambda-calculus and related theories it is customary to use Scott-continuity.
For models of map theory one has to go to the generalized notion of κ-Scott-
continuity where κ is an ordinal.

So one may try the same on (6.4.2) and restrict Φ◦ to continuous functions.
But the notion of continuity used in (6.4.2) must be different from that used in
(6.4.3) because the identity function I must be continuous in the sense used in
(6.4.3) and discontinuous in the sense used in (6.4.2).
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6.5 κ-Scott Continuity

The simplest way to explain κ-Scott continuity is as follows: We say that c is
a κ-chain if c ∈ κ → M and ∀β∈κ∀α∈β: c(α) ¹ c(β). We require M to be
κ-complete in the sense that every κ-chain c has a supremum ↑c in M . Then a
function g ∈ M → M is κ-continuous if

g(↑c) = ↑(g ◦ c)

for all κ-chains c. This is equivalent to ordinary Scott-continuity for κ = ω.7

If two ordinals κ and κ′ have the same co-finality then the notions of κ- and
κ′-continuity are identical. Hence, it is reasonable to restrict κ to be regular,
i.e. restrict κ to be equal to its own co-finality.

Now let A
κ→ B denote the set of κ-Scott continuous functions from A to

B. If κ increases, then the notion of κ-Scott continuity becomes weaker and,
hence, A

κ→ B becomes bigger. Hence, to get a big universe for map theory one
should select a large cardinal κ and replace (6.4.3) by the following:

(6.4.3′) M = (M κ→ M) ∪ {T,⊥}

6.6 Uniform continuity

For all sets S let S∗ denote the set of finite lists of elements of S. For m ∈ M
and x = 〈x1, . . . , xn〉 ∈ M∗ let mx denote mx1 · · ·xn. For all sets U and V we
shall say that U is V -small if the cardinality of U is less than the cardinality
of V . Let PV (S) denote the set of V -small subsets of S. For all S ⊆ M
define ⇑ S = {y ∈ M |∃x ∈ S: x ¹ y}. For all x ∈ M and S ⊆ M define the
neighborhood

B(x, S) = {y∈M |∀s∈S∗:¬¬(xs) ¹ ¬¬(ys)}.
The set {B(x, S)|x ∈ M ∧ S ∈ Pκ(M)} of neighborhoods generates the κ-Scott
topology. A function g ∈ M → M is κ-continuous iff

∀x∈M∀U∈Pκ(M)∃V ∈Pκ(M)∀y∈B(x, V ): g(y) ∈ B(g(x), U)

We now define that a function g ∈ M → M is uniformly κ-continuous iff

∀U∈Pκ(M)∃V ∈Pκ(M)∀x∈M∀y∈B(x, V ): g(y) ∈ B(g(x), U)

Let S◦κ denote the set of maps which are wellfounded w.r.t. S and are uniformly
κ-continuous. We are now in a position to reformulate (6.4.2): Let σ be an
inaccessible ordinal, let κ be a regular cardinal greater than σ. Instead of
(6.4.2) we shall require:

(6.4.2′) Φ = ⇑ Φ◦σ
7κ-Scott-domains are κ-algebraic and continuity may be defined via commutation with

suprema of κ-chains as is done e.g. in [6] for ω-continuity, in [8] for ω1-continuity, and in [1]
for κ-continuity.
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6.7 A property of Φ

The treatment given so far hints at a way to construct a model for Map Theory
and hints at a way to define Φ. The model is developed in [1], but the definition
of Φ given there is a bit more convenient to work with: Φ is taken to be the
smallest subset of M for which

G ∈ Pσ(Φ) ⇒ (G◦ → G) ⊆ Φ

The definition of Φ above is the one we shall formalize in the following.

6.8 Classes

In the following, we use maps m to represent classes {x|mx ≡ T}. As mentioned
in Section 6.2, sets of ZFC are represented another way, and we use the term
class in the following to distinguish from ZFC sets. The classes considered in
the following are not the same as those of NBG set theory. Now define:

x < y
.= yx (class membership)

{x|P} .= λx.P (class comprehension)
V

.= {x|T} (universal class)
{T} .= {x|x} (class containing only T)⋃

x<G: H .= {m|Ex: x < G ∧m < H} (Union class)
.
In {x|P} and

⋃
x<G: H above, x may occur free in P and H.

6.9 The dual class

In line with Section 6.3, let G◦ denotes the class of maps which are wellfounded
w.r.t. the class G. We have G ¹ H ⇒ H◦ ¹ G◦ so monotonicity prevents us
from defining G◦ in map theory. But we can define a universal quantifier which
quantifies over G◦ and a set G◦ → H of functions with domain G◦ and range
H. To do so we define g|G such that g|G is the function g recursively restricted
to the class G.

g|G .= if(g, T, λx. if(x<G, (gx)|G,⊥))
∀x<G◦: P .= ∀x: (λx.P )(x|G)
G◦ → H

.= {g|∀x<G◦: gx < H}
Whenever g ∈ Φ and G ⊆ Φ we have g|G ∈ G◦. The definition of ∀x<G◦: P
references ∀ which already quantifies over wellfounded maps, so ∀x<G◦: P quan-
tifies over G◦ whenever G ⊆ Φ. G◦ → H is the set of functions with domain G◦

and range H whenever G ⊆ Φ. We may also define a lazy and a strict union:
⊎

x<G◦: H .= {m|Ex: φx ∧m < (λx.H)(x|G)}⋃
x<G◦: H .= (∀x<G◦: !H) : (

⊎
x<G◦: H)

The ] operator is a lazy union which treats ⊥ as the empty set. The ∪ operator
is a more strict union which treats ⊥ as undefined but treats λx.⊥ as the empty
set.
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6.10 The definition of φ

To define φ we first define Ca and Ga. Ca and Ga are defined such that Ca, Ga ∈
Pσ(Φ) for all maps a.

Ca
.= G◦a → Ga

Ga
.= if(a, {T}, ⋃ x<C◦aT:CaFx)

φ
.=

⋃
a<V : Ca

An inaccessible ordinal σ has the property that if a set S is σ-small then the
powerset P(S) is also σ-small. That ensures that if Ga is σ-small then so is Ca.
Furthermore, the union of a σ-small set of σ-small sets is in turn σ-small. That
ensures that if CaT is σ-small and if CaFx is σ-small for all x ∈ C◦aT then Ga

is σ-small. The strict union operator ∪ is used in the definition of Ga to avoid
problems with maps a for which aFb ≡ a for some b ∈ C◦aT.

7 Conclusion

The axioms and inference rules of Map Theory have been introduced. The
axiomatic system is considerably simpler than that of [3]. The model of Map
Theory given in [1] is supposed to carry over to the formulation given here. The
development of ZFC given in [5] is also supposed to carry over to the formulation
given here. The last two claims, however, are work of the future.
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