
λ-calculus as a foundation of mathematics

Klaus Grue∗

August 28, 1997

Abstract

Church introduced λ-calculus in the beginning of the thirties as a foun-

dation of mathematics and map theory from around 1992 fulfilled that

primary aim.

The present paper presents a new version of map theory whose axioms

are simpler and better motivated than those of the original version from

1992. The paper focuses on the semantics of map theory and explains this

semantics on basis of κ-Scott domains.

The new version sheds some light on the difference between Russells

and Burali-Fortis paradoxes, and also sheds some light on why it is con-

sistent to allow non-well-founded sets in a ZF-style system.

∗DIKU, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark,

E-mail grue@diku.dk

1

Contents

1 Introduction 3

1.1 Differences with Churchs approach 4
1.2 Inclusion of non-functions . 4
1.3 Set abstraction versus λ-abstraction 5
1.4 Selection of well-behaved maps 5
1.5 Relation between MTW and MTC 5
1.6 The structure and contents of the paper 7

2 The semantics of MTC 7

2.1 Maps over finite sets . 7
2.2 Modelling of maps . 8
2.3 Partially ordered sets . 10
2.4 κ-continuity . 10
2.5 Maps over R and maps over maps over R 11
2.6 κ-premodels . 11
2.7 Classical maps . 13

3 Presentation of MTC 13

3.1 Syntax . 13
3.2 Proofs . 13
3.3 Truth, equality and application 14
3.4 Abstraction . 14
3.5 Selection . 15
3.6 Simple existential quantification 16
3.7 Hilberts ε-operator . 16

4 Conclusion 17

A Outline of a model of MTC 18

A.1 The κ-denotational semantics . 18
A.2 Outline of a model . 19

B Summary of MTC 21

B.1 Syntax . 21
B.2 Priority . 21
B.3 Associativity . 21
B.4 Definitions used in axioms . 21
B.5 Axioms and inference rules . 23

Index 25

References 27

2

1 Introduction

As mentioned in the abstract, Church introduced λ-calculus [4, 5, 6] in the
beginning of the thirties as a foundation of mathematics and map theory from
around 1992 fulfilled that primary aim.

In the meanwhile, λ-terms have shown very useful for expressing semantics in
computer science, but there has been no natural choice of a theory for reasoning
about these λ-terms.

In the lack of such a natural choice, computer science has turned to syntactic
methods in which one reasons about the structure and conversion of λ-terms
rather than their meaning.

Mathematics, on the contrary, has had set theory which allows to reason
about sets rather than syntax. Set theory offers the luxury of referential trans-
parency, in which every term has a meaning and every term implicitly denotes
that meaning.

Map theory resembles set theory in that it assigns meaning to λ-terms and
treats λ-terms in a referentially transparent fashion. Map theory also resembles
set theory when comparing metamathematical power: For every consistent set
theory Z there is a consistent map theory M more powerful than Z and vice
versa. The deepest difference between set and map theory shows up in the
treatment of infinite looping: Russell’s sentence {x | x 6∈ x} ∈ {x | x 6∈ x} is just
a term that takes infinitely long time to compute, but set theory deals with this
sentence by forbidding it rather than taking its value serious. Map theory, on
the contrary, assigns meaning to the corresponding term (λx.¬(xx))(λx.¬(xx)).

Map theory is not a marriage of convenience between λ-calculus and set
theory [7]. Rather, map theory is a theory based entirely on λ-calculus in which,
among other, set membership, logical connectives, and quantification over all
sets are definable concepts and in which all axioms and inference rules of ZFC
are provable without resort to any syntactical considerations.

Map theory has the potential to serve as a foundation of both mathemat-
ics (due to its power that is equivalent to that of set theory) and of computer
science (due to its treatment of λ-terms). Set and map theory are both inher-
ently difficult to learn due to their level of abstraction, but set theory has the
advantage of a century of pedagogical engineering that has made it easier to
approach. On the contrary, the version of map theory from 1992 appears as a
somewhat random collection of axioms that accidentally have the power of set
theory and accidentally describe λ-terms.

Since 1992 it has turned out, however, that map theory is a natural choice of
a theory of λ-calculus. More specifically, it has turned out that every sufficiently
large so-called κ-Scott domain D for which D ∼= [D → D] ⊕⊥ 1 where 1 is a
one-element set contains a model for map theory [2]. When Dana Scott invented
what is now known as Scott domains he was fully aware that the notion could
be generalised to κ-Scott domains, but did not publish this finding as he saw no
application of them at that time. Hence, in some sense, a λ-based foundation
of mathematics has been around for a long time without anybody recognising
it.

3

The present paper presents a new version of map theory which will be re-
ferred to as MTC (Map Theory with Classical maps) as opposed to the version
from 1992 which will be referred to as MTW (Map Theory with Well-founded
maps). The axioms of MTC are simpler and better motivated than those of
MTW. The step from MTW to MTC is intended as a step in the direction of a
theory that is easier to learn and teach. The paper focuses on the semantics of
MTC and explains this semantics on basis of κ-Scott domains.

1.1 Differences with Churchs approach

It is a pity that Church did not find a theory like map theory right away since
that could have saved a lot of work in computer science. There are, however,
three good reasons why that did not happen, and these reasons are stated in
the next three sections.

1.2 Inclusion of non-functions

The first reason is that Churchs theory may be seen as a theory about functions
only, and as such is a theory about only one concept. Classical logic is built
around the distinction between truth and falsehood, i.e. the semantic distinction
between two concepts. The semantic nature of classical logic and set theory
stems from this distinction. λ-calculus, on the contrary, deals with functions
only, and in a theory with only one concept it is impossible to make a semantic
distinction. For that reason, λ-calculus can merely deal with the provability or
non-provability of the equivalence of λ-terms which is syntactic of nature.

In map theory, this problem is solved by insisting that the universe of map
theory must contain at least one non-function. Just one non-function is enough
to make a distinction, namely a distinction between functions and non-functions.
In map theory, the minimalistic approach has been taken to include only one
non-function.

Having both functions and non-functions in map theory allows to represent
truth and falsehood, and the convention has been chosen to let functions rep-
resent falsehood and let non-functions represent truth. This convention has
been chosen very carefully on basis of what makes definitions inside map theory
easiest to read, but this issue will not be treated here.

Since there is only one non-function in map theory, it is convenient to intro-
duce a name for that non-function, and since the non-function represents truth,
the name T has been chosen.

In addition to functions and non-functions, the universe of map theory con-
tains an element which is neither a function, nor a non-function. That element
is denoted ⊥ and represents infinite looping. This element violates the axiom
of Tertium Non Datur, which in this context says that every object is either a
function of a non-function. Nevertheless map theory is still classical of nature
because it has another axiom called Quartum Non Datur which says that any
map is either a function or T or ⊥, there is no fourth possibility.

4

The inclusion of the non-function T in map theory is a trivial step, but it is
a step that is very important for the semantic nature of the theory.

1.3 Set abstraction versus λ-abstraction

Set theory has set abstraction {x | p(x)} and λ-calculus has λ-abstraction
λx.p(x). It is tempting to identify the two kinds of abstraction and try to repre-
sent the class {x | p(x)} by λx.p(x), i.e. to represent classes by their character-
istic functions. This approach, however, has not succeeded, and set abstraction
and λ-abstraction seem to be two completely different kinds of abstraction.

In map theory, a function g does not represent the class {x | g(x) = T}.
Rather, g represents the class {g(x) | x ∈ S} where S is a fixed class of maps.
In MTW, S is the class W of well-founded maps, and in MTC, S is the class C

of classical maps. {g(x) | x ∈ S} contains at least one element, so to allow to
represent the empty set, the non-function T is taken to represent that set.

With this encoding, all sets of ZFC can be represented by well-founded maps
in MTW and by classical maps in MTC. And, opposite, all well-founded maps
in MTW and all classical maps in MTC represent sets. Classes may also be rep-
resented, but they are represented by maps that are not well-founded/classical.

In conclusion, the non-identification of set abstraction and λ-abstraction has
been an important point in turning λ-calculus into a foundation.

1.4 Selection of well-behaved maps

The third problem in turning λ-calculus into a foundation of mathematics was
to find a class S of maps that was sufficiently well-behaved to represent the sets
of ZFC. In MTW, the class W of well-founded maps was chosen and in MTC,
the class C of classical maps was chosen.

Insisting that {g(x) | x ∈ S} should be a set of ZFC for all g ∈ S puts many
restrictions on S, and insisting that all sets of ZFC should be representable
by an element of S puts strong requirements on the size and richness of S.
Nevertheless, these restrictions by no means determine S uniquely, and finding
a natural S is no trivial task.

1.5 Relation between MTW and MTC

One advantage of MTC over MTW is that eleven complicated axioms and in-
ference rules that describe well-foundedness in MTW has been replaced by a
single definition of classicality in MTC.

Another advantage is that MTC contains some inference rules that were
missing in MTW. These are rules Y , M and E in Appendix B.5. In particular,
rule Y says that the fixed point operator generates a minimal fixed point. It is
interesting that the theorem of transfinite induction is provable in MTC from the
minimality of fixed points combined with the recursive definition of classicality
used in MTC. The details are worked out in [12].

5

A third advantage is the distinction between discontinuous and continuous
occurrences of variables introduced in Section 3.1 which allows to treat equations
as terms. The syntax of MTW specifies the syntax of terms and well-formed
formulas. MTC is simpler in that it does not distinguish between terms and
well-formed formulas. This may turn out to be convenient in computer assisted
proof systems for MTC because it allows to represent both theorems and in-
ference rules as terms. The notion of discontinuous occurrences permits the
inference rule a = T ⊢ a which is also valid in the systems of Feferman [8] and
Flagg and Myhill [10]. The notion of discontinuous occurrences also permits the
opposite rule a ⊢ a = T . The distinction between discontinuous and continuous
occurrences of variables seems to be new way to deal with the anomalies of
equality.

MTW and MTC may be compared both on a syntactic and a semantic basis.
A syntactic comparison is made in [12] with the following result:

If the classicality predicate of MTC is used to simulate the well-foundedness
predicate in MTW, then all axioms and inference rules of MTW except Ax-
iom Well-2 in [11] are provable in MTC. Axiom Well-2 in MTW is disprov-
able in MTC, which is just a consequence of the slight difference between well-
foundedness and classicality. In [11], Axiom Well-2 is only used to prove Lemma
C-K and Lemma C-P, both of which are provable in MTC. Hence, all theorems
of MTW proved in [11] are also provable in MTC.

Among other, [11] proves all axioms and inference rules of ZFC in MTW.
Combining these observations we have that all axioms and inference rules of
ZFC are provable in MTC. This shows that MTC is adequate as a foundation
of mathematics (provided ZFC is considered adequate).

MTW and MTC may also be compared semantically. This paper introduces
the semantics of MTC by means of a κ-Scott domain D = (D,≤) where D is the
universe of all maps and ≤ is a partial order on all maps. The κ-Scott domain
used has the property that it models both MTW and MTC, so it makes sense
to compare MTW and MTC in this particular model. A class A of maps will
be said to be “coherent” if any two elements of A has an upper bound in D.
The correspondence between the classes W and C of well-founded and classical
maps, respectively, may now be formulated as follows:

• Any well-founded map is classical.

• Any non-empty, coherent class of well-founded maps has a greatest lower
bound, and that greatest lower bound is classical.

• Any classical map is the lower bound of a coherent class of well-founded
maps.

Hence, the class C of classical maps can be seen as the closure of W under
greatest lower bounds of non-empty, coherent sets. An important difference
between W and C is:

• For all well-founded maps g except T there exists a well-founded map h

such that h < g.

6

• For all classical maps g there exists a minimal classical map h such that
h ≤ g (h is a minimal classical map if h′ ≤ h ⇒ h′ = h for all classical
maps h′).

1.6 The structure and contents of the paper

Section 2 describes the semantics of MTC based on the κ-denotational frame-
work developed in [2]. Section 3 gives a rather quick tour through the syntax,
axioms and inference rules of MTC. Section 4 concludes by remarks on Russells
and Burali-Fortis paradoxes and non-well-founded sets. Appendix A outlines a
model of MTC based on the model of MTW in [2]. Merely the definition of the
model is stated. The satisfaction of the axioms and inference rules remains to
be proved. Appendix B summarises MTC.

A more detailed description of the individual axioms and inference rules and
explanations of how they are used may be found in [12]. Note that the system
in [12] contains an inconsistent axiom as pointed out by Chantal Berline. [12]
plus errata may be obtained from //www.diku.dk/~grue.

2 The semantics of MTC

2.1 Maps over finite sets

In the following, words in italics and mathematical concepts in boxes occur in
the index. Figure 1 shows a map over the set I = {1, 2, 3}.

f

t b f

t t b

1 2 3

1 2 3

¡¡ @@

¡¡ @@

Figure 1: A map over {1, 2, 3}

In general, a map over I is a tree where each node is labelled by t , f or

b , where each edge is labelled by an element of I, where each node labelled
f has one downward edge for each element of I, and where each node labelled
t or b has no downward edges. Maps may be infinitely deep. As an example,
Figure 2 shows a map over {1, 2}.

If I is a set, if x ∈ I and if g is a map over I, then we define g applied to

x, denoted g′x , to be the subtree of g attached to the edge labelled x that

extends downwards from the root of g. As an example, if g is the map in Figure
1 then Figure 3, 4 and 5 shows g′1, g′2 and g′3, respectively.

7

f

t f

f b

t f

b
...

1 2

1 2

1 2

1 2

·· TT

·· TT

·· TT

·· TT

Figure 2: A map over {1, 2}

t

Figure 3: The map T

Application is left associative so that e.g. g′3′1 means (g′3)′1. If g is the
map in Figure 1 then g′3′1 is the map in Figure 3. If h is the map in Figure 2
then h′2′1 = h.

The trees in Figure 3 and 4 will be denoted T and ⊥ , respectively. No
edges extend downwards from the roots of T and ⊥, so the definition of g′x does
not make sense for g = T and g = ⊥. To make g′x defined for all x ∈ I and all
maps g over I, we more or less arbitrarily define:

T
′x = T

⊥′x = ⊥

2.2 Modelling of maps

Let t, f and b be three distinct objects. For all maps g over I we define r(g)

to be the label of the root of g. Hence, r(T) = t, r(⊥) = b and r(g) = f for all
maps g over I except T and ⊥.

Let I<ω denote the set of finite lists 〈x1, . . . , xn〉 of elements of I. For all
maps g over I and all x = 〈x1, . . . , xn〉 ∈ I<ω let g[x] denote g′x′

1 · · ·
′ xn. As

an example, h[〈2, 1, 2, 1, 2, 1〉] = h where h is the map in Figure 2. If x is the
empty tuple 〈 〉, then g[x] denotes g itself.

If g is a map over I and if x ∈ I<ω, then r(g[x]) will be referred to as the
label indexed by x. As an example, if g is the map in Figure 1, then the labels
indexed by 〈1〉, 〈3〉 and 〈3, 3〉 are t, f and b, respectively. The label indexed by

8

b

Figure 4: The map ⊥

f

t t b

1 2 3¡¡ @@

Figure 5: A map over {1, 2, 3}

〈3, 3, 2〉 is also b as shown by the following:

g[〈3, 3, 2〉] = g′3′3′2
= (g′3′3)′2
= ⊥′2
= ⊥

Hence, computation of r(g[〈3, 3, 2〉]) depends on the convention that ⊥′x = ⊥.
In general, if r(g[〈x1, · · · , xm〉]) = b then r(g[〈x1, · · · , xm, y1, · · · , yn〉]) = b.

Now for all x, y ∈ I<ω let x · y denote the concatenation of the tuples x and

y. We have

r(g[x]) = b ⇒ r(g[x · y]) = b

r(g[x]) = t ⇒ r(g[x · y]) = t

These two statements may be combined into one:

r(g[x]) 6= f ⇒ r(g[x · y]) = r(g[x])

Now let L = {t, f, b}. For all functions u let dom u and rngu denote the

domain and range of u, respectively. For all sets G and H let G → H denote
the set of functions u for which domu = G and rngu ⊆ H.

If g is a map over I and if x ∈ I<ω, then r(g[x]) ∈ L. Two maps u and v

over I are considered equal if r(g[x]) = r(h[x]) for all x ∈ I<ω. Hence, a map g

may be modelled by the function ĝ ∈ I<ω → L for which ĝ(x) = r(g[x]) for all
x ∈ I<ω. From now on, maps are modelled this way which motivates to define
the set MI of maps over I by

MI = {g ∈ I<ω → L | ∀x, y ∈ I<ω : (g(x) 6= f ⇒ g(x · y) = g(x))

9

2.3 Partially ordered sets

A p.o D is a partially ordered set (D,≤). As an example, L = (L,≤L) is a p.o
where

p ≤L q ⇔ p = b ∨ p = q

For all non-empty sets I, MI = (MI ,≤) is a p.o where

g ≤ h ⇔ ∀x ∈ I<ω : g(x) ≤L h(x)

For all p.o’s D = (D,≤) define the p.o D<ω by D<ω = (D<ω, ≤∗) where

〈x1, . . . , xm〉 ≤∗ 〈y1, . . . , yn〉 ⇔ m = n ∧ x1 ≤ y1 ∧ · · · ∧ xm ≤ ym

For all p.o’s D = (D,≤) and E = (E,≤) let x ∈ D, A ⊆ D and g ∈ D → E be
shorthand for x ∈ D, A ⊆ D and g ∈ D → E, respectively.

For all non-empty sets I define ⊥I , TI , FI ∈ MI by

⊥I(〈x1, . . . , xn〉) = b

TI(〈x1, . . . , xn〉) = t

FI(〈 〉) = f

FI(〈u, x1, . . . , xn〉) = t

for all n ≥ 0 and all u, x1, . . . , xn ∈ I. ⊥I is the unique bottom element of MI .
TI and FI are two among many maximal elements.

2.4 κ-continuity

For all sets A and κ, A is said to be κ-small if A has cardinality strictly less
than κ. From now on let κ be an infinite set.

An element x of a p.o D = (D,≤) is said to be an upper bound of A ⊆ D
if ∀y∈A : y ≤ x. A subset H ⊆ D is said to be a κ-chain if all κ-small subsets
of H have an upper bound in H. In particular, the empty set must have an
upper bound in H so any κ-chain is non-empty. A p.o D = (D,≤) is a κ-cpo

if every κ-chain H ⊆ D has a supremum supH in D. As an example, for all

non-empty sets I, MI and (MI)
<ω are κ-cpo’s. MI is an example of a κ-cpo

with a bottom element and (MI)
<ω is an example of one without.

For all κ-cpo’s D and E , a function g ∈ D → E is said to be κ-continuous if

g(supH) = sup {g(x) | x ∈ H}

for all κ-chains H ⊆ D. Let [D → E]κ denote the κ-cpo of κ-continuous g ∈

D → E , ordered by pointwise ordering. For all D = (D,≤) define

Mκ
D

= {g∈MD | g ∈ [D<ω → L]κ}

Mκ
D

= (Mκ
D

,≤)

We shall refer to elements of Mκ
D

as κ-continuous maps over D.

10

2.5 Maps over R and maps over maps over R

At this point a few examples may show useful. Let R be the set of real numbers,
let Z ⊆ R be the set of integers, and let G = (G,≤) = MR be the p.o of maps
over R. We have that Z is R-small since Z has cardinality strictly less than R.

For all A ⊆ R define the characteristic map χA ∈ G by

χA(〈 〉) = f

χA(〈u, x1, . . . , xn〉) =

{

t if u ∈ A

b otherwise

As an example of a non-trivial R-chain in G<ω we have

H = {〈χA〉 | A ⊆ R ∧ A is R-small}

The supremum supH of this chain is 〈χR〉.
Now consider the set MG of maps over G = MR, i.e. of maps over maps over

R. For all B ⊆ R define ∀B ∈ MG by

∀B(〈 〉) = f

∀B(〈u, x1, . . . , xn〉) =

b if ∃v∈B : u(〈v〉) = b

t if ∀v∈B : u(〈v〉) = t

FG(x1, . . . , xn) otherwise

∀B satisfies

∀B
′u =

⊥G if ∃v ∈ B : u′v = ⊥R

TG if ∀v ∈ B : u′v = TR

FG otherwise

If we take T, F and ⊥ to represent truth, falsehood and undefined, respectively,
then ∀B represents a universal quantifier that quantifies over B. The quantifier
is strict in the sense that ∀Bg is undefined if gx is undefined for some x ∈ B.

We have ∀R(sup H) = t and sup {∀R(x) | x ∈ H} = b which shows that ∀R

is R-discontinuous. On the contrary it is straightforward to prove that ∀Z is
R-continuous (the proof is a somewhat lengthy proof by cases, but the point
in the proof is that for all R-chains H ′ there exists a function h′′ ∈ H ′ such
that ∀n∈Z:h′′(n) = h′(n) where h′ = supH ′). In general, ∀B is R-continuous
if and only if B is R-small. Even more generally, quantification over a set B is
κ-continuous if and only if B is κ-small.

2.6 κ-premodels

We have now seen maps over {1, 2, 3}, maps over R and R-continuous maps
over maps over R. The maps of MTC are κ-continuous maps over maps of
MTC. In other words, the domain D of all maps of MTC satisfies D ∼= Mκ

D
.

If D is a κ-Scott domain [2], if σ is a strongly inaccessible ordinal [3], if κ

is a regular cardinal [3] greater than σ and if D ∼= Mκ
D

then it follows from [2]

11

that D can be expanded into a model of MTW (to see that one needs to prove
D ∼= Mκ

D
⇒ D ∼= [D → D]κ ⊕⊥ {TD}; then let A ∈ D → [D → D]κ ⊕⊥ {TD} be

an order isomorphism, let λ be the inverse of A and apply Theorem 7.2.1 in [2]
to (D, A, λ)).

A model of MTC needs to satisfy more than this, partly because of the
classical maps, partly because MTC contains inference rules that were missing
in MTW.

From now on assume that there exist strongly inaccessible ordinals, assume
that σ is the least strongly inaccessible ordinal and assume that κ is a regular
cardinal greater than σ.

A κ-premodel P of MTC is a structure (D, a, C, q) which satisfies the five
properties below plus one more property which is stated in Section 2.7.

• D = (D,≤) is a κ-Scott domain (and, in particular, a κ-cpo)

• a ∈ [D → Mκ
D

]κ is an isomorphism

• C ⊆ D is a κ-small set of so-called κ-compact elements (c.f. [2] and Ap-
pendix A.1).

• q is a choice function over D, i.e. q(A) ∈ A for A ⊆ D, A 6= ∅

• q(∅) ∈ C

κ-premodels are introduced here to present the intuitions behind MTC. The
construction of a κ-premodel is outlined later. The detailed development and
the verification of axioms and inference rules of MTC remains to be done. Now
define

a is the inverse of a

T = a(TD)

⊥ = a(⊥D)

F = a(FD)

For all g, x ∈ D let g′x be the unique element of D for which

a(g′x)(〈y1, . . . , yn〉) = a(g)(〈x, y1, . . . , yn〉)

This defines the notion of applying a map g to an argument x which was first
mentioned in Section 2.1. This concludes a circle: informal considerations about
application of maps led to a representation of maps which was refined into a
model of maps which allows to define application.

12

2.7 Classical maps

For all S ⊆ D and x, y ∈ D define x =S y ⇔ ∀z ∈ S<ω: a(x)(z) = a(y)(z). For

all x, y ∈ D<ω define x =∗
S y by

〈x1, · · · , xm〉 =∗
S y〈y1, · · · , yn〉 ⇔ m = n ∧ x1 = y1 ∧ · · · ∧ xm = ym

Let Pσ(A) denote the set of σ-small subsets of A. Let C ′ be the least subset

of D which satisfies

g ∈ C ′ ⇔ ∀x ∈ C : g′x ∈ C ′ ∧
∃V ∈ Pσ(C ′)∀x, y ∈ C<ω: (x =∗

V y ⇒ a(g)(x) = a(g)(y))

The existence of such a C ′ is easy to verify. For all x ∈ D and A ⊆ D let

↑x = {y ∈ D | x ≤ y} and ↑A =
⋃

{↑x | x ∈ A}. A κ-premodel P of MTC is

a structure (D, a, C, q) which satisfies the five properties in Section 2.6 plus the
one below:

• C ′ = ↑C

3 Presentation of MTC

3.1 Syntax

The syntax V of variables and T of terms of MTC reads:

V ::= x1 | x2 | · · ·
T ::= V | T | T T | λV.T | P | ε | ∃̄ | ǫ(T) | T = T

The construct T T has higher priority than λV.T , which in turn has higher
priority than T = T , so that e.g. λx1.x1x1 = x2 means (λx1.(x1x1)) = x2.

An occurrence of a variable v in a term t is said to be discontinuous if v occurs
free in a subterm t′ of t which has one of the forms ǫ(t′′) or t′′ = t′′′. Occurrences
that are not discontinuous are said to be continuous. As an example, the second
occurrence of x1 in Px1x2(x1 = λx1.x1) is discontinuous whereas the other
occurrences of variables are continuous.

The following purely syntactical restriction is put on terms of MTC: Discon-
tinuous occurrences of variables are not allowed to be bound. As an example,
λx1.(x1 = T) is not a well-formed term.

3.2 Proofs

A proof in MTC is a sequence of terms in which each term is either an instances
of an axiom scheme of follows from previous terms in the sequence by an in-
ference rule. All axioms and inference rules of MTC are listed in Appendix
B.5.

The interpretation of a proof is that it proves the last term in the proof, i.e.
it proves that the last term in the proof equals T for all values of free variables.

13

3.3 Truth, equality and application

The term T in Section 3.1 denotes the value T defined in Section 2.6. The term
a = b equals T when a equals b and a = b equals F otherwise. The value of
a = b may depend on the values of free variables in a and b. As an example,
x1 = T equals T when x1 equals T and equals F otherwise. The inference rules
of truth and equality read:

T Transitivity a = b; a = c ⊢ b = c.
SA Substitutivity a = c; b = d ⊢ ab = cd.
Sλ Substitutivity a = b ⊢ λx.a = λx.b.
Sǫ Substitutivity a = b ⊢ ǫ(a) = ǫ(b).
=⊢ Equality a = T ⊢ a

⊢= Equality a ⊢ a = T

In inference rules, a, b, c, d, g and h denote arbitrary terms whereas x, y and z

denote arbitrary, distinct variables.
The inference rule a = T ⊢ a is inspired by [8, 10]. The opposite rule

a ⊢ a = T is made possible by the notion of discontinuous occurrences of
variables which seems to be a new way of dealing with the discontinuity of
equality.

For all terms a and b, ab denotes a applied to b, i.e. ab denotes a′b. Since
T applied to anything equals T by convention, we have the axiom

AT Application Ta = T.
As an example of a proof we have

1 AT Ta = T

2 AT Ta = T

3 1, 2, T T = T

4 3,=⊢ T

3.4 Abstraction

For all variables x and terms A of ZFC let x 7→ A be shorthand for {(x,A) | x ∈
D}, i.e. let x 7→ A be the unique function g for which dom g = D and g(x) = A.
For all g ∈ [D → D]κ let λ(g) be the unique element of D for which

λ(g)(〈 〉) = f

λ(g)(〈u, x1, . . . , xn〉) = g(u)(〈x1, . . . , xn〉)

Finally define

λx.A = λ(x 7→ A)

whenever (x 7→ A) ∈ [D → D]κ, i.e. whenever x 7→ A is a κ-continuous function
from maps to maps.

If x is a variable and A is a term of MTC, then (x 7→ A) ∈ D → D. If,
furthermore, there are no discontinuous free occurrences of x in A then x 7→ A
is κ-continuous so that (x 7→ A) ∈ [D → D]κ and (λx.A) ∈ D. This gives

14

an interpretation of λx.A whenever λx.A is a well-formed term. We may now
formulate two more axioms, namely

Aλ Application (λx.a)b = 〈a | x:=b〉
if b is free for x in a.

R Renaming λx.〈a | y:=x〉 = λy.〈a | x:=y〉.
if x is free for y in a and vice versa.

Here 〈a | x:=b〉 is the term that arises when replacing all free x in a by b. See

[14] for a definition of free for. Axiom R allows renaming of bound variables and
Axiom Aλ expresses that two terms are equal if they are β-equivalent. (Note,
however, that terms may be equal in map theory without being β-equivalent.
This holds even for terms that contain only variables, abstraction and applica-
tion. The notion of equality in map theory is the semantic notion introduced in
Section 2.2 and this semantic notion is not fully captured by β-equivalence).

Having abstraction and application allows to define the fixed point operator
Y and the bottom element ⊥:

Y = λf.(λx.f(xx))λx.f(xx)

⊥ = Yλx.x

Having the bottom element we may state one more axiom and one more inference
rule:

A⊥ Application ⊥a = ⊥.
QND Quartum Non Datur aT = bT; a⊥ = b⊥; aλy.xy = bλy.xy

⊢ ax = bx.
Axiom A⊥ expresses that ⊥ applied to anything yields ⊥. Inference rule QND
expresses that the root of any map is t, f or b, there is no fourth possibility.
QND together with the map P described in Section 3.5 allows to develop classical
propositional calculus (c.f. [11, 2, 12]). In the present paper, only the intended
meaning of axioms and inference rules will be stated. The details of why they
express the intended meaning and how they are used is stated in [12].

3.5 Selection

The map P is best described by the following three axioms:
PT Selection PabT = a.
Pλ Selection Pabλx.c = b

P⊥ Selection Pab⊥ = ⊥.
The map P allows to define many auxiliary concepts such as logical connectives
(c.f. Appendix B.4) and to develop classical propositional calculus on basis of
QND.

For a, b ∈ D = (D,≤), the constructs introduced so far allow to define a ¹ b

such that a ¹ b equals T if a ≤ b and equals F otherwise. The definition of
a ¹ b is stated in Appendix B.4 and reads

a¹b
.
= (a = a↓b)

15

where a↓b is defined on basis of P in Appendix B.4. The definition of ¹ uses =
which is a discontinuous construct in the sense that free occurrences of variables
in a = b are discontinuous occurrences. ¹ inherits the discontinuity from = so
that free occurrences of variables in a ¹ b are discontinuous, and no λ is allowed
to bind a variable occurrence that is free in a subterm of form a ¹ b.

We may now state three further inference rules and one more axiom:
Y Minimality ga ¹ a ⊢ Yg ¹ a.
M Monotonicity b ¹ c ⊢ ab ¹ ac.
E Extensionality ≀gxy = ≀hxy; gxyz = gab;hxyz = hab ⊢ gxy = hxy

if x, y and z are not free in g and h

!= Equality !(a = b)
Rule Y states that Yg is minimal among all fixed points of g (this does not hold
in all κ-premodels, but it holds in the particular one outlined in Appendix A).
Rule M states that all maps a are monotonic in the sense that b ≤ c implies
ab ≤ ac. Rule E states that two maps g and h are equal if a(g)(x) = a(h)(x) for
all x ∈ D<ω (see [12] for details on the interpretation and applications of rule
E). Axiom != states that a = b is either true or false.

3.6 Simple existential quantification

The quantifier ∃̄ is a particularly primitive quantifier. ∃̄g = T if gx = T for
some x ∈ D and ∃̄g = ⊥ otherwise. Contrary to ∃, which is defined in Section
B.4, ∃̄g cannot be false. ǫ(g) is an x ∈ D such that gx = T if such an x exists.
More formally, define E ∈ D → D by

E(g) =

{

T if ∃x ∈ D: gx = T

⊥ otherwise

Then define

∃̄ = λ(E)
ǫ(g) = q({x ∈ D | gx = T})

Here we use the choice function q from the premodel (D, a, C, q). The require-
ment q(∅) ∈ C ⊆ D ensures that ǫ(g) is a map even when gx 6= T for all maps
x. The following axioms describe ∃̄:

→∃̄ Existence ab → ∃̄a

∃̄→ Existence ∃̄a → aǫ(a)
?∃̄ Existence ∃̄a = ?∃̄a

Axiom →∃̄ expresses that if ab is true for some particular b, then ∃̄a is true.
Axiom ∃̄→ expresses that if ax is true for some x then, in particular, it is true
for x = ǫ(a). Axiom ?∃̄ expresses that ∃̄a equals either T or ⊥. See Appendix
B.4 for definitions of a → b and ?a.

16

3.7 Hilberts ε-operator

Define

Q(g) =

{

⊥ if ∃x ∈ C: gx = ⊥
q({x ∈ C | gx = T}) otherwise

ε = λ(Q)

The map ε is Hilberts ε-operator [13]. The map ε allows to define many auxiliary
concepts such as the universal and existential quantifiers (c.f. Appendix B.4) and
to develop first order predicate calculus. Furthermore, C is rich enough to allow
all sets of ZFC to be modelled by classical maps which allows to define set
membership and prove all axioms and inference rules of ZFC inside MTC. The
details may be found in [11, 12].

The constructs introduced so far allows to define the map ℓ (the definition
is stated in Appendix B.4). Now let

C ′ = {x ∈ D | ℓx = T}

(this C ′ is actually the same C ′ as the one defined in Section 2.7). The axioms
that describe ε read:

Q1 Quantification ℓa ∧ ∀b → ba

Q2 Quantification εx: a = εx: ℓx ∧ a

Q3 Quantification ℓ(εx: a) = ∀x: !a
Q4 Quantification !∀x: a = ∀x: !a.

Axiom Q1 states C ′ ⊆ C and Axiom Q2 states C ⊆ C ′ so that C = C ′ as in Sec-
tion 2.7. Axiom Q2 furthermore expresses Ackermanns axiom ([9], p.244). The
definition of ε entails that εg ∈ C if ∀x∈C: gx 6= ⊥ and εg = ⊥ if ∃x∈C: gx = ⊥.
The former is expressed directly by Axiom Q3 and the latter is expressed indi-
rectly by Axiom Q4.

4 Conclusion

The most immediate translation of Russells paradoxical sentence {x | x 6∈ x} ∈
{x | x 6∈ x} into MTC is the term (λx.¬(xx))(λx.¬(xx)) whose value is ⊥.
Hence, Russells paradox is essentially avoided by having a third truth value ⊥
which is the value of terms that make a computer loop indefinitely. An im-
portant point in MTC is that this third truth value can be introduced without
loosing the classical, semantic flavour of the theory and without resort to intu-
itionistic logic.

The above translation of Russells paradox to MTC translates set abstraction
to λ-abstraction, which gives insight to how Russells paradox is avoided. As
noted in Section 1.3, set abstraction is not the same as λ-abstraction, so one
may also look at how Russells paradox is avoided when modelling set abstraction
as in [11]. This turns out to be trivial, however, since that modelling ensures
that all sets are well-founded so that all sets x satisfy x 6∈ x. Furthermore, that
modelling ensures that classes that contain all sets are not sets themselves.

17

A map x in MTC is classical if ℓx = T where

ℓ
.
= λf.f

{

T

(∀x: ℓ(fx)) ∧ ∃̄S: ℓS ∧ ∀x∀y:x ∼2
S y ⇒ fx ∼ fy

The precise structure and meaning of this definition is not important here. The
important observation is that the definition of ℓ is recursive in that ℓ occurs on
the right hand side of

.
= (recursive definitions are shorthand for definitions that

use the fixed point operator Y explicitly).
The two occurrences of ℓ in the definition combined with the minimality of

fixed points implies that classical maps are well-founded in two, distinct ways.
The first occurrence of ℓ makes classical maps well-founded in the sense that for
all classical maps g, x1, x2, . . . there exists an n such that gx1 · · ·xn = T. This
kind of well-foundedness corresponds to the well-foundedness of sets expressed
by the axiom of restriction in ZFC (no infinitely descending ∈-chains).

The second occurrence of ℓ makes classical maps well-founded in a much
more subtle sense. The closest analogue in ZFC to this well-foundedness is the
limitation of size present in ZFC. However, maps contain more structure than
sets and the second kind of well-foundedness is more a limitation of complexity
than just a simple limitation of size. In any case, it is this second kind of
well-foundedness that avoids Burali-Fortis paradox.

The first kind of well-foundedness does not avoid paradoxes. If the first kind
of well-foundedness is abandoned, if the second kind is kept, and if the repre-
sentation of sets used in [11] is used, then the representable sets become those
of Aczel’s AFA set theory [1] (the one in which the equation X = {X} has ex-
actly one solution). Hence, it is consistent to allow infinite descending ∈-chains
because the paradoxes are avoided by the second kind of well-foundedness.

As noted by Aczel, all known theories about non-well-foundedness share the
peculiarity that they start by constructing a well-founded universe and then
proceed to the non-well-founded. It is an interesting topic for further work to
try to formulate a version of map theory which does not share this peculiarity.
Such a theory could be a theory about non-well-founded, classical maps, i.e.
maps that satisfy the second kind of well-foundedness without satisfying the
first.

Acknowledgement

My thanks are due to the referee from who’s report I copied a paragraph to the
abstract.

A Outline of a model of MTC

A.1 The κ-denotational semantics

The following exposition follows [2] except that in the following exposition, the
empty set is κ-small and κ-cpos need not have a bottom element.

18

A p.o D is a partially ordered set, (D,≤). We use x ∈ D and x ⊆ D as

shorthand for x ∈ D and x ⊆ D, respectively. ↓u means {v | v ≤ u}. A ⊆ D

is κ-chain if every κ-small B ⊆ A is bounded by an element of A. D is a κ-cpo

if every κ-chain A has a sup (i.e. least upper bound). D is a κ-ccpo if moreover
every bounded A has a sup (hence, like in [2], every κ-ccpo has a bottom). A
κ-compact element of a κ-cpo D is an element u ∈ D such that, for all κ-chains

A, u ≤ sup (A) implies u ≤ v for some v ∈ A. Dc is the set of κ-compact

elements and ↓cu = ↓u∩Dc. A κ-ccpo D is a κ-Scott domain iff for all u ∈ D,

u = sup ↓cu. A prime element of a κ-ccpo D is an element u such that, for all

bounded A, u ≤ supA implies u ≤ v for some v ∈ A. Dp is the set of prime

elements of D, and ↓pu = ↓u ∩ Dp. A κ-Scott domain is κ-prime algebraic if

for all u ∈ D, u = sup ↓pu.

A.2 Outline of a model

A model of MTC is outlined in the following. Merely the definition of the model
will be stated. The satisfaction of the axioms and inference rules remains to be
proved.

The model construction has many similarities with the construction in Sec-
tion 8 of [2]. The construction below differs from that in [2] in the following
ways: (1) The domain of the model is constructed as coherent, complete, ini-
tial segments of κ-compact elements rather than coherent, initial segments of
κ-prime elements and the PCS of κ-prime elements is not constructed at all
below. (2) The model construction is based on two fixed point constructions
rather than one. The first fixed point generates the σ-compact maps of MTW
which is a set large enough to contain the well-founded maps of MTW. Then
the well-founded maps are turned into classical maps by discarding information,
and then a second fixed point construction is used to generate the κ-compact
maps of MTC. Finally, the κ-premodel of MTC is constructed from coherent,
initial segments of κ-compact elements.

To simplify the exposition, assume that κ is strongly inaccessible, i.e. assume
σ is the least strongly inaccessible ordinal and assume κ is a strongly inaccessible
ordinal greater than σ. The assumption that κ is inaccessible rather than just
regular is merely a luxury.

For all relations ¹ define ¹∗ by

〈x1, . . . , xm〉 ¹∗ 〈y1, . . . , yn〉 ⇔ m = n ∧ x1 ¹ y1 ∧ · · · ∧ xm ¹ ym

An applicative structure D is a pair (D, a) where D is a set and a ∈ D → MD.

For applicative structures D = (D, a) define ≤D and MD by

x ≤D y ⇔ a(x) ≤ a(y)
MD = {g∈MD | ∀x, y∈D<ω: (x ≤∗

D
y ⇒ a(g)(x) ≤L a(g)(y))}

19

An applicative structure D = (D, a) is said to be monotonic if ⊥D ∈ rng a ⊆
MD. For all monotonic applicative structures D = (D, a) define

DD = D ∪ MD

a+

D
∈ DD → MD a+

D
(x) =

{

a(x) if x ∈ D

x otherwise
g ¹D h ⇔ a+

D
(g) ≤ a+

D
(h)

aD ∈ DD → MDD aD(g)(x) = sup {a+

D
(g)(y) | y ∈ D<ω ∧ y ¹∗

D
x}

D+ = (DD, aD)

To ensure the soundness of the definition, we make the arbitrary convention
that supA = b when A ⊆ L has no supremum.

For applicative structures D = (D, a) and D′ = (D′, a′) define D ⊑ D′ ⇔

D ⊆ D′ ∧ ∀g∈D∀x∈D<ω: a(g)(x) = a′(g)(x). We have D ⊑ D+. Now define

Dα for all ordinals α by transfinite induction as follows:

D0 = D
Dα+1 = (Dα)+

Dδ = ⊔α∈δD
α for limit ordinals δ

Above, ⊔α∈δ has the obvious interpretaion, i.e. if Dα = (Dα, aα) then Dδ =
∪α∈δDα and aδ(g)(x) = aα(g)(x) whenever g∈Dα and x∈D<ω

α .

Let ⊥ be an arbitrary element of the universe of ZFC which is not a func-

tion, let D1 = (D1, a1) where D1 = {⊥} and where a1 ∈ D1 → (D<ω
1 → L)

is defined by a1(g)(x) = b. Furthermore, let D2 = (D2, a2) = Dσ
1 . D2 is

essentially the set of σ-compact elements of MTW.

Let S∞ denote the set of infinite lists of elements of S. For all x = (x1, . . .)

and n ∈ ω let (x|n) denote the tuple 〈x1, · · · , xn〉.

Define G◦ = {g∈D2 | ∀x∈D∞
2 ∃n∈ω: a2(g)(x|n) = t}, and let Φ be the

least subset of D2 for which G◦◦ ⊆ Φ whenever G ⊆ Φ is σ-small. This Φ is
essentially the set of well-founded maps introduced in [2, 11].

Now let D3 = (D3, a3) where D3 = Φ∪{⊥} and where a3 ∈ D3 → (D<ω
3 →

L) is defined by a3(g)(x) = a2(g)(x). D3 is Φ from which some information
is discarded, namely the information about the applicative behaviour of well-
founded maps when applied to non-well-founded maps. This makes D3 useful
as a model of the classical maps.

Now let D4 = (D4, a4) = Dκ
3 . D4 is essentially the set of κ-compact

elements of MTC. Transfinite induction up to κ gives the κ-compact elements
because κ is assumed inaccessible. More care would be needed in the definition
of D+ and Dα if κ was not assumed inaccessible.

A ⊆ D4 is an initial segment if A is non-empty and x ≤D4
y∧y ∈ A ⇒ x ∈ A.

A is coherent if any two elements of A have an upper bound in D4. A is complete
if any subset of A that has an upper bound in D also has an upper bound in
A. Let D5 be the set of coherent, complete, initial segments and define the

20

relation ≤5 on D5 by x ≤5 y ⇔ x ⊆ y. Define a5 ∈ D5 → (D<ω
5 → L) by

a5(g)(〈x1, . . . , xn〉) = sup {a4(h)(〈y1, . . . , yn〉) | h ∈ g ∧ y1 ∈ x1 ∧ · · · ∧ yn ∈ xn}.
Define C5 = {↓x | x ∈ D3 \ {⊥}} and let q ∈ P(D5) → D5 satisfy q(A) ∈ A

when A is non-empty and q(A) ∈ C5 when A is empty.
P = ((D5,≤5), a5, C5, q5) is claimed to be a κ-premodel which satisfies all

axioms and inference rules of MTC.

B Summary of MTC

B.1 Syntax

V ::= x1 | x2 | · · ·
T ::= V | T | T T | λV.T | if(T , T , T) | ε | ∃̄ | ǫ(T) | T = T

B.2 Priority

The priority is as follows. Functional application fx has highest priority and
appears at the top of the table. Operators on the same line have the same
priority.

fx

x, y

x ↓ y ↓x
x ∼ y x∈y x∈∈y x ∼2

S y

¬x ≀x !x ?x
x ∧ y x ∧̃ y

x ∨ y x ∨̃ y

x ⇒ y x ⇒̃ y x ⇔ y

x

{

y

z

λx.y

x = y x ¹ y

x → y

B.3 Associativity

fx, x ∧ y, x ∧̃ y, x ∨ y and x ∨̃ y are left associative so that e.g. fxy means
(fx)y.

x ∼ y, x∈y, x∈∈y, x ∼2
S y, x ⇒ y, x ⇒̃ y, x ⇔ y, x = y, x ¹ y, and

x → y are “and”-associative so that e.g. x ∼ y ∼ z means (x ∼ y)∧ (y ∼ z) and
x ⇒ y ⇒ z means (x ⇒ y) ∧ (y ⇒ z).

B.4 Definitions used in axioms

F
.
= λx.T

21

x

{

a

b

.
= Pabx

Y
.
= λf.(λx.f(xx))(λx.f(xx))

⊥
.
= Yλx.x

¬x
.
= x

{

F

T

≀x
.
= x

{

T

F

!x
.
= x

{

T

T

?x
.
= x

{

T

⊥

x ∧̃ y
.
= x

{

y

F

x ⇒̃ y
.
= x

{

y

T

x ∧ y
.
= x

y

{

T

F

y

{

F

F

x ⇒ y
.
= x

y

{

T

F

y

{

T

T

x ⇔ y
.
= (x ⇒ y) ∧ (y ⇒ x)

x → y
.
= x ∧̃ y = x ∧̃ T

∃
.
= λf.≀f(εf)

∃x: a
.
= ∃λx.a

∀x: a
.
= ¬∀x:¬a

∀
.
= λf.∀x: fx

f ∼ g
.
= f

g

{

T

F

g

{

F

∀λx.fx ∼ gx

x ∈ y
.
= y

{

F

∃z:xz ∼ y

x ∈∈ y
.
= ∃z:x ∈ z ∧ z ∈ y

∀x∈∈a: b
.
= (λy.∀x:x ∈∈ y ⇒̃ b)a

22

f ∼2
S g

.
= f

g

{

T

F

g

{

F

∀x∈∈S: fx ∼2
S gx

ℓ
.
= λf.f

{

T

(∀x: ℓ(fx)) ∧ ∃̄S: ℓS ∧ ∀x∀y:x ∼2
S y ⇒ fx ∼ fy

x ↓ y
.
= x

y

{

T

⊥

y

{

⊥
λz.xz ↓ yz

x ¹ y
.
= x = x ↓ y

B.5 Axioms and inference rules

Below, a, b, c, d, f and g denote arbitrary terms whereas x, y and z denote
arbitrary, distinct variables.

23

T Transitivity a = b; a = c ⊢ b = c.
SA Substitutivity a = c; b = d ⊢ ab = cd.
Sλ Substitutivity a = b ⊢ λx.a = λx.b.
Sǫ Substitutivity a = b ⊢ ǫ(a) = ǫ(b).
PT Selection PabT = a.
Pλ Selection Pabλx.c = b

P⊥ Selection Pab⊥ = ⊥.
AT Application Ta = T.
Aλ Application (λx.a)b = 〈a | x:=b〉

if b is free for x in a.
A⊥ Application ⊥a = ⊥.
R Renaming λx.〈a | y:=x〉 = λy.〈a | x:=y〉.

if x is free for y in a and vice versa.
QND Quartum Non Datur aT = bT; a⊥ = b⊥; aλy.xy = bλy.xy

⊢ ax = bx.
Q1 Quantification ℓa ∧ ∀b → ba

Q2 Quantification εx: a = εx: ℓx ∧ a

Q3 Quantification ℓ(εx: a) = ∀x: !a
Q4 Quantification !∀x: a = ∀x: !a.

Y Minimality ga ¹ a ⊢ Yg ¹ a.
M Monotonicity b ¹ c ⊢ ab ¹ ac.
E Extensionality ≀gxy = ≀hxy; gxyz = gab;hxyz = hab

⊢ gxy = hxy

if x, y and z are not free in g and h

→∃̄ Existence ab → ∃̄a

∃̄→ Existence ∃̄a → aǫ(a)
?∃̄ Existence ∃̄a = ?∃̄a

=⊢ Equality a = T ⊢ a

⊢= Equality a ⊢ a = T

!= Equality !(a = b)

24

Index

(x|n), 20
G → H, 9
G◦, 20
I<ω, 8
S∞, 20
[D → E]κ, 10
Φ, 20
⊥, 8, 12, 15, 20
⊥I , 10
κ, 12
〈a | x:=b〉, 15
≤∗, 10
≤D, 19
x · y, 9
¹∗, 19
σ, 12
ab, 14
g ≤ h, 10
g′x, 7, 12
x =∗

S y, 13
x =S y, 13
D ⊑ D′, 20
D<ω, 10
Dα, 20
↓u, 18
↑x, 13

a, 12
applicative structure, 19
applied to, 7

b, 7

Dc, 19
↓cu, 19
κ-ccpo, 18
κ-chain, 10, 18
κ-compact, 19
continuous, 13
κ-continuous, 10
κ-continuous maps over D, 10
κ-cpo, 10, 18

D1, 20

D2, 20
D3, 20
D4, 20
discontinuous, 13
dom u, 9

F, 12
FI , 10
f, 7
free for, 15

indexed, 8

L, 9
p ≤L q, 10
L, 10

MI , 9
MD, 19
Mκ

D
, 10

MI , 10
Mκ

D
, 10

map, 7
monotonic, 19
MTC, 4
MTW, 4

Pσ(A), 13
Dp, 19
↓pu, 19
partially ordered set, 10
p.o, 10
κ-premodel, 12
prime, 19
κ-prime algebraic, 19

r(g), 8
regular cardinal, 11
rngu, 9

κ-Scott domain, 11, 19
κ-small, 10
strongly inaccessible ordinal, 11
supH, 10

25

T, 8, 12
TI , 10
t, 7

upper bound, 10

Y, 15

26

References

[1] P. Aczel. Frege structures and the notions of proposition, truth and set. In
J. Barwise, H. J. Keisler, and K. Kunen, editors, The Kleene Symposiom,
pages 31–59, Amsterdam, 1980. North-Holland.

[2] C. Berline and K. Grue. A κ-denotational semantics for Map Theory in
ZFC+SI. Theoretical Computer Science, 179(1–2):137–202, June 1997.

[3] C. C. Chang and K. J. Keisler. Model Theory, volume 73 of Studies in

Logic and the Foundations of Mathematics. North-Holland, 1973.

[4] A. Church. A set of postulates for the foundations of logic I. Ann. Math.,
1933.

[5] A. Church. A set of postulates for the foundations of logic II. Ann. Math.,
1934.

[6] A. Church. The Calculi of Lambda Conversion. Princeton University Press,
1941.

[7] S. Feferman. Recursion theory and set theory, a marriage of convenience. In
J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors, Generalized Recursion

Theory II, Proceedings of the 1977 Oslo Symposium, pages 55–98. North-
Holland, 1978.

[8] S. Feferman. Toward useful type-free theories.I. Journal of Symbolic Logic,
49:75–111, 1984.

[9] U. Felgner. Choice functions on sets and classes. In Sets and Classes: On

the works by Paul Bernays, pages 217–255. North-Holland, 1976.

[10] R.C. Flagg and J. Myhill. A type-free system extending ZFC. Annals of

Pure and Applied Logic, 43:79–97, 1989.

[11] K. Grue. Map theory. Theoretical Computer Science, 102(1):1–133, July
1992.

[12] K. Grue. Stable map theory. DIKU Report 96/10, Department of Computer
Science, University of Copenhagen, DIKU, Universitetsparken 1, DK–2100
Copenhagen, Denmark, April 1996. Available from //www.diku.dk/~grue.

[13] D. Hilbert and P. Bernays. Grundlagen der Mathematic, volume 2.
Springer-Verlag, 1939.

[14] E. Mendelson. Introduction to Mathematical Logic. Wadsworth and Brooks,
3. edition, 1987.

[15] D. Scott. Models for various type-free λ-calculi. In Studies in Logic and

The Foundation of Mathematics, volume 74, pages 157–187. Proceedings of
the IVth Int. Congress for Logic, Methodology and Philosophy of Science,
1973.

27

