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Abstract

Many operations exist for constructing Scott-domains. This paper presents Dedekind
completion as a new operation for constructing such domains and outlines an appli-
cation of the operation. Dedekind complete Scott domains are of particular interest
when modeling versions of λ-calculus that allow quantification over sets of arbi-
trary cardinality. Hence, it is of interest when constructing models of powerful
specification languages and when using λ-calculus as a foundation for mathematics.

1 Introduction

As is well known, Scott domains and inverse limit constructions [12,1] are
convenient for solving domain equations and for constructing models of λ-
calculus, and thus they are convenient for modeling computable functions.

As was noted already by Scott, the notion of a Scott domain can be general-
ized to the notion of a κ-Scott domain [2,3,4] for any set κ whose cardinality is
regular (the notion merely depends on the cardinality of κ). N-Scott domains
(i.e. ordinary Scott domains) are suited for modeling computable functions.
R-Scott domains are suited for modeling parallelism or for modeling λ-calculi
that contain a quantifier that quantifies over some countable set. For suffi-
ciently large κ, κ-Scott domains can model theories that are strong enough to
prove the consistency of ZFC [2,4].

Since the inverse limit construction, other methods for constructing Scott
domains have been developed. Those methods often lead to models that are
easier to work with. In particular, as pointed out in [5], the inverse limit con-
struction is heavy to use in connection with construction of κ-Scott domains
for uncountable κ. One such alternative method is to use webbed domains as
presented in [11]. Two approaches to webbed domains are Girards coherent
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spaces [6] and Krivines initial segments [9,10]. The approach of this paper to
webbed domains follows [2].

The Dedekind operation defined later is useful in connection with webbed
domains. When applicable, it allows to find new solutions D to domain equa-
tions that have been solved before, but such that the new solutions have the
following closure property: Every set S of compact elements of D that has a
compact upper bound also has a “compact supremum”. A “compact supre-
mum” is the least upper bound of S among all compact elements of D (a set
S may have both a compact supremum and an ordinary supremum, in which
case the compact supremum is greater than or equal the ordinary one). The
closure property also ensures existence of compact infima. Existence of such
suprema and infima can be handy when introducing quantifiers into lambda
calculi.

The paper starts with some chores such as defining what a pcs is. Section
3 describes how to construct Scott domains from pcs’s. Section 4 describes
operations on pcs’s that are well known. Section 5 gives an example of how
to solve a domain equation with the given machinery.

Section 6 defines the notion of a Dedekind cut in the context of pcs’s and
Scott domains. That section also defines the Dedekind operation presented in
this paper. Section 7 states that, under reasonable conditions, the Dedekind
operation commutes with most of the standard operations. Commutation is
what allows the Dedekind operation to find new solutions to given domain
equations, i.e. to perturb solutions without changing their equational prop-
erties. Section 8 gives an example of finding a new solution to the domain
equation from Section 5.

Section 9 hints at the application for which the Dedekind operation was
originally devised: the Dedekind operation is needed in a crucial step deep
inside a rather large consistency proof for the theory presented in [8] (the
consistency proof itself is not yet published). The consistency proof builds on
the domain from Section 8.

The present paper, however, focuses on the Dedekind operation as a gen-
eral, new tool for constructing Scott domains and investigates the general
properties of the operation.

Non-trivial proofs are in the appendix. Trivial proofs are omitted.

2 Preordered coherent spaces (pcs’s)

We shall say that a triple P = 〈A,B,C〉 is a triplet if A is a set and B

and C are relations over A (i.e. B,C ⊆ A × A). We shall say that a triplet
P = 〈A,B,C〉 is a preordered, coherent space (pcs) if

• B is reflexive and transitive on A,

• C is reflexive and symmetric on A, and

• B and C are compatible in the sense defined in a moment.
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For all triplets P = 〈A,B,C〉 and all x, y ∈ A we shall say that x is below
y (w.r.t. P ), written x ¹P y, if 〈x, y〉 ∈ B. If x ¹P y then we shall also say
that y is above x, that x is an inferior of y, and that y is a superior of x.

We shall say that x is coherent with y (w.r.t. P ), written x ∼P y, if
〈x, y〉 ∈ C. If x ∼P y then we shall also say that x and y are coherent.

We shall refer to A as the domain of P . We shall use DP to denote the
domain of P .

The definition of the notion of a pcs referred to the notion of “compatibil-
ity”. For a triplet P = 〈A,B,C〉, B and C are “compatible” if the following
holds: If x and y are compatible, then all inferiors of x are compatible with
all inferiors of y.

In summary, a triplet P is a pcs if the following hold:

∀x∈DP :x ¹P x

x ¹P y ∧ y ¹P z ⇒ x ¹P z

∀x∈DP :x ∼P x

x ∼P y ⇒ y ∼P x

x ∼P y ∧ x ¹P x ∧ y ¹P y ⇒ x ∼P y

We shall say that x and y are consistent if they have a common supe-
rior. A pcs S is a κ-Scott pcs if 〈DS,¹S〉 is a κ-Scott domain and if the
coherence relation of S coincides with the consistency relation (i.e. x ∼S y ⇔
∃z∈DS:x ¹S z ∧ y ¹S z).

Hence, a κ-Scott pcs is just a κ-Scott domain with an extra relation x ∼S y.
In a κ-Scott pcs, x ∼S y merely contains redundant information.

There clearly is a one-to-one correspondence between κ-Scott domains and
κ-Scott pcs’s. We merely introduce κ-Scott pcs’s here for notational conve-
nience.

3 Construction of κ-Scott pcs’s

The motivation for looking at pcs’s is that one can construct κ-Scott domains
from them. The power pcs operator defined below shows how to do that.

Let P be a pcs and let A,B ⊆ DP . A is an initial segment (w.r.t. P ) if all
superiors of all elements of A are themselves elements of A. A is self-coherent
(w.r.t. P ) if all elements of A are coherent to each other (i.e. ∀x, y∈A:x ∼P y).
A and B are set-coherent (w.r.t. P ), written A ∼∗

P B, if all elements of A are
coherent to all elements of B. A is set-below B, written A ¹∗

P B, if all elements
of A have a superior in B. Let the power pcs P(P ) denote the unique triplet
R for which:

DR is the set of self-coherent, initial segments of P(1)

x ¹R y ⇔ x ¹∗
P y(2)
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x ∼R y ⇔ x ∼∗
P y(3)

Note that one can always define a triplet R uniquely by specifying DR,
x ¹R y, and x ∼R y. In (2) and (3) it is understood that x and y range over
DR and that x ¹R y and x ∼R y are false when x 6∈ DR ∨ y 6∈ DR. This
generally is to be understood in definitions of triplets.

The power pcs operator is useful for constructing κ-Scott pcs’s because of
the following simple fact:

Lemma 3.1 If P is a pcs then P(P ) is a κ-Scott pcs.

In other words, one may construct κ-Scott domains thus: Construct a pcs P .
As long as P is a pcs,

〈DP(P ),¹P(P )〉

is a κ-Scott domain. Hence, the more operations one has available on pcs’s,
the more κ-Scott domains will one be able to construct.

A more verbose formulation of the lemma above reads: If P is a pcs then
P(P ) is a κ-Scott pcs for all sufficiently large κ.

4 Standard operations on pcs’s

Now that we have seen that operations on pcs’s are useful, it is worth looking
at the “standard” operations on pcs’s rather than jumping to the Dedekind
operation, which is the new operation proposed in this paper. One reason is
that the Dedekind operation has the very convenient property that it com-
mutes with the “standard” operations, so the “standard” operations have to
be defined somewhere in the paper anyway. This section defines the following
operations:

• E: the empty pcs.

•
⋃

S: the union of a set of pcs’s.

• U(a): the unit pcs (that merely contains the object a).

• Pa: the pcs P with a added at the bottom.

• P ⊕Q: the direct sum of the pcs’s P and Q.

• lP : the pcs P reversed bottom-up.

• P ⊗Q: an operation that is useful for defining P → Q.

• P → Q: a model for functions from the pcs P to the pcs Q.

• Pκ(P ): a bounded power pcs operator. A set A is said to be B-small if the
cardinality of A is less than the cardinality of B. As examples, N and Z are
R-small whereas N is not Z-small. Pκ(P ) is a pcs of κ-small subsets of DP .

Table 1 defines all the concepts above except P → Q whose definition reads

P → Q = lP ⊗Q
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DR x ¹R y x ∼R y

R=E ∅ 0=1 0=1

R=
⋃

S
⋃

P∈S DP ∃P∈S:x¹Py ∃P∈S:x∼Py

R=U(a) {a} 0=0 0=0

R=Pa DP∪{a} x=a ∨ x¹Py x=a ∨ y=a ∨ x∼Py

R=P⊕Q DP∪DQ x¹Py ∨ x¹Qy x∼Py ∨ x∼Qy

R=lP DP y¹Px x 6∼Py

R=P⊗Q DP×DQ x1¹Py1 ∧ x2¹Qy2 x1∼Py1 ∨ x2∼Qy2

R=Pκ(P ) (*) x¹∗
Py x∼∗

P y

(*) the set of κ-small, self-coherent subsets of P .

Table 1
Definitions of various triplets R

As an example of reading Table 1, the fifth line says that P ⊕Q is the unique
triplet R for which DR = DP∪DQ, x¹Ry ⇔ x¹Py ∨ x¹Qy, and x∼Ry ⇔
x∼Py ∨ x∼Qy. In the table, 0=0 and 0=1 are used as statements that are
always true and false, respectively. In the penultimate line of Table 1, xn and
yn denote the n’th element of the tuples x and y, respectively.

Under reasonable conditions, the above triplets are pcs’s:

Lemma 4.1 E is a pcs.

For triplets P = 〈A,B,C〉 and Q = 〈A′, B′, C ′〉 define

PvQ⇔ A⊆A′ ∧B⊆B′ ∧ C⊆C ′

A set S of pcs’s is a chain if ∀P,Q∈S:P v Q ∨Q v P .

Lemma 4.2
⋃

S is a pcs for all chains S of pcs’s.

Lemma 4.3 U(a) is a pcs for all objects a (of ZFC).

Lemma 4.4 If P is a pcs and a 6∈ DP then Pa is a pcs

Lemma 4.5 If P and Q are pcs’s and DP and DQ are disjoint, then P ⊕Q

is a pcs.

A triplet P is an anti-pcs if it is a pcs except that x ∼P y is anti-reflexive:
∀x∈DP :x 6∼P x.

Lemma 4.6 lP is an anti-pcs for all pcs’s P .

Lemma 4.7 P ⊗Q is a pcs for all anti-pcs’s P and all pcs’s Q.

Lemma 4.8 P → Q is a pcs for all pcs’s P and Q.

Lemma 4.9 Pκ(P ) is a pcs for all pcs’s P and all sets κ.
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5 Example of solving a domain equation

A κ-Scott domain that satisfies the domain equation

M = (M →M)⊥ + {T}(4)

may be constructed thus:

t = 0(5)

f = 1(6)

Hκ(P ) = (Pκ(P )→ P )f ⊕ U(t)(7)

Mα =
⋃

{Hκ(Mβ)|β ∈ α}(8)

γ is large enough to satisfy Mγ =Mγ+1(9)

M = P(Mγ)(10)

The operations in (4) are the normal Scott operations rather than those defined
in the previous section. Definition (8) is by transfinite recursion in α. The
constructed κ-Scott domain is 〈DM ,¹M〉. For further information on the
construction above consult [2].

6 Dedekind cuts

¿From now on, if P is a triplet then x ∈ P and S ⊆ P are shorthand for
x ∈ DP and S ⊆ DP , respectively.

Let P be a pcs and let S ⊆ P . x is an upper bound of S if x is above all
elements of S; x is a lower bound of S if it is below all elements of S. The
upper cone, denoted ∨P (S), is the set of all upper bounds of S. The symbol ∨
is used to denote upper cones because it looks like a cone that stands on its
sharp end. In ∨P (S), the index P prevents confusion with “logical or”. The
lower cone, denoted ∧P (S), is the set of all lower bounds of S.
Informally, a Dedekind cut is a pair 〈L,U〉 of non-empty subsets of P

such that U is the upper cone of L and L is the lower cone of U . It is
inconvenient, however, to represent Dedekind cuts by pairs of sets when they
can be represented equally well by either their lower or upper cone. In the
following, the arbitrary convention is made to represent Dedekind cuts by
their upper cones:

Definition 6.1 For all triplets P , U is a Dedekind cut in P if

U ⊆ DP ,

U 6= ∅,

∧P (U) 6= ∅, and

U = ∨P (∧P (U)).

The pcs D(P ) of Dedekind cuts in P is defined thus:

Definition 6.2 For all triplets P , let D(P ) denote the triplet R for which
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DR is the set of Dedekind cuts in P ,

x ¹R y ⇔ y ⊆ x

x ∼R y ⇔ ∧P (x) ∼
∗
P ∧P (y)

Lemma 6.3 For all (anti-)pcs’s P , D(P ) is an (anti-)pcs.

The following lemma says that if one identifies elements x of DP with ∨P ({x}),
then P becomes a subpcs of D(P ):

Lemma 6.4 If P is an (anti-)pcs and x, y ∈ P then

∨P ({x}) ∈ DD(P ),

x ¹P y ⇔ ∨P ({x}) ¹D(P ) ∨P ({y}), and

x ∼P y ⇔ ∨P ({x}) ∼D(P ) ∨P ({y}).

If P and Q are triplets, then φ is an isomorphism from P to Q if φ is a
bijective function from DP onto DQ which satisfies x ¹P y ⇔ φ(x) ¹Q φ(y)
and x ∼P y ⇔ φ(x) ∼Q φ(y). P and Q are isomorphic, written P ∼= Q, if
there exists an isomorphism from P to Q. The following lemma expresses that
the Dedekind operation is a closure operation:

Lemma 6.5 D(D(P )) ∼= D(P ) for all pcs’s P .

7 Commutation rules

Before outlining applications of the Dedekind operation, it will be stated that,
under suitable conditions, the Dedekind operation commutes with the stan-
dard operations. Non-trivial proofs are in the appendix. Trivial ones are
omitted.

Lemma 7.1 D(E) ∼= E

Lemma 7.2 D(U(a)) ∼= U(a) for all objects a (of ZFC).

Lemma 7.3 If P is a pcs and a 6∈ P,D(P ) then D(Pa) ∼= D(P )a

Lemma 7.4 If P and Q are pcs’s and P and Q are disjoint then D(P ) and
D(Q) are disjoint, and D(P ⊕Q) ∼= D(P )⊕D(Q).

A pcs P is said to be consistently coherent if bounded, set-coherent subsets of
P have coherent upper bounds. In other words, P is consistently coherent if

∨P (A)6=∅ ∧ ∨P (B)6=∅ ∧ A∼
∗
PB ⇒ ∃a∈∨P (A)∃b∈∨P (B): a∼P b

Lemma 7.5 For all consistently coherent pcs’s P , D(lP ) ∼= lD(P )

Lemma 7.6 D(P ⊗Q) ∼= D(P )⊗D(Q) for all anti-pcs’s P and pcs’s Q.

Lemma 7.7 D(P → Q) ∼= D(P )→ D(Q) for all pcs’s Q and all consistently
coherent pcs’s P .

A pcs P is said to be κ-consistently coherent if it is consistently coherent and,
furthermore, any κ-small subset A of P that has a lower bound also has a
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greatest lower bound. The greatest lower bound will be referred to as the
infimum of A.

Lemma 7.8 For all κ-consistently coherent pcs’s P , Pκ(P ) is consistently
coherent.

Lemma 7.9 D(Pκ(P )) ∼= Pκ(D(P )) for all sets κ and all κ-consistently co-
herent pcs’s P .

8 Examples of using Dedekind cuts

In continuation of Section 5, consider the following lemmas:

Lemma 8.1 D(Hκ(P )) ∼= Hκ(D(P )) if P is a κ-consistently coherent pcs.

Lemma 8.2 Mγ is a κ-consistently coherent pcs.

Lemma 8.3 Hκ(D(Mγ)) ∼= D(Mγ)

Section 5 stated that

P(Mγ)

was a solution to the domain equation

M = (M →M)⊥ + {T}

Lemma 8.3 above has the consequence that

P(D(Mγ))

is another solution to that equation; it is closed under compact suprema and
infima as mentioned in Section 1.

9 Intended application

While the Dedekind operation has properties that look interesting in them-
selves, it was developed with a particular application in mind, namely to
simplify the use of λ-calculus as a foundation of mathematics.

In the following, let ⊥= (λx.xx)(λx.xx). To use λ-calculus as a foundation
of classical mathematics,

(i) one must be able to represent truth and falsehood,

(ii) one must have a selection function if(x, y, z) whose value is y or z or ⊥
depending on x, and

(iii) one must have a quantifier.

The second requirement rules out pure λ-calculus since the range of any func-
tion in pure λ-calculus has either one or infinitely many elements.

An obvious choice then is to include two Ur-elements T and F in λ-calculus
to stand for truth and falsehood. A slight simplification can be obtained,
however, by using the trick to let e.g. λx.x stand for falsehood so that one
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merely has to include T . A model of such a λ-calculus must satisfy the domain
equation (4) considered in Section 5 and 8. In the following, suppose M
satisfies the given domain equation.

To satisfy the third requirement, one has to find a suitable subset Φ of M
which the quantifier should quantify over. To model classical mathematics, Φ
must have complexity like the universe of ZFC. The choice of Φ made in [2]
and [7] is the following: Let σ be an inaccessible ordinal. Let κ = P(σ). Let
M be a κ-Scott domain that satisfies (4). Let xy denote x applied to y, and
let it be defined on M as in [2]. For all subsets G of M define

G◦ = {x∈M |∀y1, y2, . . .∈G∃n∈N:xy1y2 · · · yn = T}

Then let Φ be the least subset of M for which G◦◦ ⊆ Φ for all κ-small subsets
G of Φ.

The resulting theory has consistency power like ZFC and is suited as a
foundation of mathematics, but the axiomatization [7] is rather complicated
and non-intuitive.

This is where the Dedekind operation comes in. If one usesM = P(D(Mγ))
as the domain for the theory, then one can extend Φ in such a way that every
chain in Φ has an infimum in Φ; it is the Dedekind operation that guarantees
the existence of such infima. This gives rise to a theory with much nicer
properties and a much simpler axiomatization. The simplified axiomatization
is presented in [8]. The model construction has about the same size as [2] so,
unfortunately, a detailed example of use of the Dedekind operation does not
fit the present paper.

10 Conclusion

The Dedekind operation has been introduced and a number of lemmas have
been stated. The general nature of the operation has been investigated and
one application has been sketched.

A Proofs

This appendix contains proofs; it also contains some auxiliary definitions and
lemmas. Trivial proofs are omitted.

Let S be a subset of a triplet P . S is said to be upward bounded (w.r.t P )
if S has an upper bound. In other words, S is upward bounded if the upper
cone of S is non-empty. Likewise, S is downward bounded if the lower cone of
S is non-empty.

Lemma A.1 If P is a triplet and S, T ⊆ P then

• If S ⊆ T then ∨P (T ) ⊆ ∨P (S).

• If S ⊆ T then ∧P (T ) ⊆ ∧P (S).
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• If S is non-empty and upward bounded and if T = ∨P (S) then T is a
Dedekind cut. Furthermore, T is the least element of D(P ) (least w.r.t.
¹D(P ), largest w.r.t. ⊆ ) whose lower cone contains S.

• If S is non-empty and downward bounded and if T = ∨P (∧P (S)), then T

is a Dedekind cut. Furthermore, T is the greatest element of D(P ) which
contains S.

Lemma A.2 If P is consistently coherent then for all x, y ∈ D(P ) we have
x ∼D(P ) y ⇔ ∃x∈x∃y∈y:x ∼P y.

Proof of 7.5 We shall construct an isomorphism φ from lD(P ) to D(lP ).
Elements of lD(P ) are upper cones of Dedekind cuts in P . Elements of D(lP )
are lower cones of Dedekind cuts in P . For all x ∈ lD(P ) define

φ(x) = ∧P (x)

To see that φ is an isomorphism, proceed thus: Clearly, φ is injective and the
range of φ is D(lP ). If x, y ∈ lD(P ) then

φ(x) ¹D(lP ) φ(y)⇔∧P (x) ¹D(lP ) ∧P (y)

⇔∧P (y) ⊆ ∧P (x)

⇔x ⊆ y

⇔ y ¹D(P ) x

⇔x ¹lD(P ) y

φ(x) ∼D(lP ) φ(y)⇔∧P (x) ∼D(lP ) ∧P (y)

⇔∀x∈∧lP (∧P (x))∀y∈∧lP (∧P (y)):x ∼lP y

⇔∀x∈∨P (∧P (x))∀y∈∨P (∧P (y)):x ∼lP y

⇔∀x∈x∀y∈y:¬(x ∼P y)

⇔¬∃x∈x∃y∈y:x ∼P y

⇔¬(x ∼D(P ) y)

⇔x ∼lD(P ) y

2

Definition A.3 For all sets R define

dom(R)= {x|∃y: 〈x, y〉 ∈ R}

rng(R)= {y|∃x: 〈x, y〉 ∈ R}

Lemma A.4 If P and Q are triplets and if R ⊆ P ⊗Q then

∧P⊗Q(R)=∧P (dom(R)× ∧Q(rng(R))

∨P⊗Q(R)=∨P (dom(R)× ∨Q(rng(R))

Lemma A.5 If P and Q are triplets and if R ∈ D(P ⊗Q) then

R = dom(R)× rng(R)

dom(R) ∈ D(P )

rng(R) ∈ D(Q)

10



Grue

Proof of 7.6 For all R ∈ D(P ⊗Q) define

φ(R) = 〈dom(R), rng(R)〉.

For all R ∈ D(P ⊗ Q) we have φ(R) ∈ D(P ) ⊗ D(Q), and φ is clearly both
injective and surjective. It is trivial to prove

φ(R1) ¹D(P )⊗D(Q) φ(R2)⇔ R1 ¹D(P⊗Q) R2.

Finally, let R1 = P1 × Q1 ∈ D(P ⊗ Q) and R2 = P2 × Q2 ∈ D(P ⊗ Q). We
have

R1 ∼D(P⊗Q) R2

⇔P1 ×Q1 ∼D(P⊗Q) P2 ×Q2

⇔∀〈p1, q1〉∈∧P⊗Q(P1 ×Q1)∀〈p2, q2〉∈∧P⊗Q(P2 ×Q2):

〈p1, q1〉 ∼P⊗Q 〈p2, q2〉

⇔∀p1∈∧P (P1)∀q1∈∧Q(Q1)∀p2∈∧P (P2)∀q2∈∧Q(Q2):

p1 ∼P p2 ∧ q1 ∼Q q2

⇔ (∀p1∈∧P (P1)∀p2∈∧P (P2): p1 ∼P p2) ∨

(∀q1∈∧Q(Q1)∀q2∈∧Q(Q2): q1 ∼Q q2)

⇔P1 ∼D(P ) P2 ∨Q1 ∼D(Q) Q2

⇔〈P1, Q1〉 ∼D(P )⊗D(Q) 〈P2, Q2〉

⇔φ(R1) ∼D(P )⊗D(Q) φ(R2)

2

Lemma A.6 If P is a κ-consistently coherent pcs and if A is a κ-small self-
coherent subset of D(P ), then there exists a κ-small self-coherent subset A of
P that intersects all elements of A.

Proof of A.6 Let f :A× A→ P satisfy

∀x∈∧P (x):x ¹P f(x, y) and

f(x, y) ∼P f(y, x)

for all x, y ∈ A. f exists because P is consistently coherent. We have f(x, y) ∈
x. For all x ∈ A define

S(x) = {f(x, y)|y ∈ A}.

S(x) is a subset of x and x is a Dedekind cut, so any element of the lower
cone of x is a lower bound of S(x). Furthermore, S(x) is κ-small. Now let
h(x) be the infimum of S(x). h(x) is greater than any element in the lower
cone of x so h(x) ∈ x. Furthermore, if x, y ∈ A then h(x) ¹P f(x, y) and
h(y) ¹P f(y, x) which gives h(x) ∼P h(y). Hence, A = {h(x)|x ∈ A} satisfies
the lemma. 2

Proof of 7.8 In this proof,
⋃

denotes the union set operator of ZFC.

Assume A and B are bounded, set-coherent subsets of Pκ(P ). Let a and
b be upper bounds of A and B, respectively. For all x ∈ a define a(x) =
{y ∈

⋃

A|y ¹P x}. Define b(x) similarly. Let Ã = {a(x)|x ∈ a} \ {∅} and
B̃ = {b(x)|x ∈ b} \ {∅}. We have
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⋃

A=
⋃

Ã
⋃

B=
⋃

B̃

The sets A and B are bounded, set-coherent sets of κ-small, bounded, set-
coherent subsets of P whereas Ã and B̃ are κ-small, bounded, set-coherent
sets of bounded, set-coherent, non-empty subsets of P .

Let f(x, y) satisfy

∀x∈x:x ¹P f(x, y) and

f(x, y) ∼P f(y, x)

for all x, y ∈ Ã ∪ B̃. f exists because P is consistently coherent. For all
x ∈ Ã ∪ B̃ define

S(x) = {f(x, y)|y ∈ Ã ∪ B̃}

S(x) is κ-small. All elements of S(x) are greater than all elements of the non-
empty set x , so S(x) has an infimum h(x) which is greater than all elements
of x. Furthermore, S(x) ∼P S(y) for all x, y ∈ Ã ∪ B̃. Now define

A= {h(x)|x ∈ Ã}

B= {h(x)|x ∈ B̃}

A andB are κ-small, self-coherent subsets of P soA,B ∈ Pκ(P ). Furthermore,
A ∼Pκ(P ) B. Finally,

∀ã∈
⋃

Ã∃a∈A: ã ¹P a

∀b̃∈
⋃

B̃∃b∈B: b̃ ¹P b

so A and B are bounds of A and B, respectively. The existence of A and B
proves that Pκ(P ) is consistently coherent.

2

Proof of 7.9 In this proof,
⋃

denotes the union set operator of ZFC.

Let choice(x) have the property

choice(x) ∈ x

for all non-empty sets x. For all x ∈ D(Pκ(P )) and all p ∈ P define

c(x, p) = {y ∈
⋃

∧Pκ(P )(x)|y ¹P p}

Furthermore define

L(x) = {c(x, p)|p ∈ choice(x)} \ {∅}

For all x ∈ D(Pκ(P )) we have
⋃

∧Pκ(P )(x) =
⋃

L(x)

∧Pκ(P )(x) is a bounded set of self-coherent, κ-small subsets of P whereas L(x)
is a self-coherent, κ-small set of bounded, non-empty subsets of P . Now define

φ(x) = {∨P (y)|y ∈ L(x)}.

12
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We have φ(x) ∈ Pκ(D(P )).
We now prove that φ is injective. If φ(x) = φ(x) then L(x) = L(x) so

⋃

∧Pκ(P )(x) =
⋃

∧Pκ(P )(x)

which entails

x = ∨Pκ(P ){
⋃

∧Pκ(P )(x)} = ∨Pκ(P ){
⋃

∧Pκ(P )(x)} = x

Hence, φ is injective.

To prove that φ is surjective, assume y ∈ Pκ(D(P )), let

L= {∧P (y)|y ∈ y}

x=∨Pκ(P ){
⋃

L}

and let A be a κ-small set of pairwise coherent elements of P that intersects
all elements of y (such an A exists according to Lemma A.6). We have that
x is non-empty since it contains A and that the lower cone of A is non-empty
since it contains the empty set, so x is a Dedekind cut. Furthermore, y = φ(x)
so φ is surjective.

Now let x, x ∈ D(Pκ(P )). We have

x ¹D(Pκ(P )) x⇔∀p∈P : c(x, p) ⊆ c(x, p)

⇔∀z∈L(x)∃z∈L(x): z ⊆ z

⇔∀z∈φ(x)∃z∈φ(x): z ¹D(P ) z

⇔φ(x) ¹Pκ(D(P )) φ(x)

x ∼D(Pκ(P )) x⇔∀y∈∧Pκ(P )(x)∀y∈∧Pκ(P )(x): y ∼Pκ(P ) y

⇔∀y∈
⋃

∧Pκ(P )(x)∀y∈
⋃

∧Pκ(P )(x): y ∼P y

⇔∀y∈
⋃

L(x)∀y∈
⋃

L(x): y ∼P y

⇔∀y∈L(x)∀z∈y∀y∈L(x)∀z∈y: z ∼P z

⇔{∨P (y)|y ∈ L(x)} ∼Pκ(P ) {∨P (y)|y ∈ L(x)}

⇔φ(x) ∼Pκ(D(P )) φ(x)

2
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