
A κ-denotational semantics for Map Theory in

ZFC + SI

Chantal Berline∗ Klaus Grue†

April 15, 1996

Abstract

Map theory, or MT for short, has been designed as an “integrated”
foundation for mathematics, logic and computer science. By this we mean
that most primitives and tools are designed from the beginning to bear
the three intended meanings: logical, computational, and set-theoretic.

MT was originally introduced in [18]. It is based on λ-calculus in-
stead of logic and sets, and it fulfills Church’s original aim of introducing
λ-calculus. In particular, it embodies all of ZFC set theory, including
classical propositional and classical first order predicate calculus. MT
also embodies the unrestricted, untyped lambda calculus including unre-
stricted abstraction and unrestricted use of the fixed point operator. MT
is an equational theory.

We present here a semantic proof of the consistency of map theory
within ZFC + SI, where SI asserts the existence of an inaccessible car-
dinal. The proof is in the spirit of denotational semantics and relies on
mathematical tools which reflect faithfully, and in a transparent way, the
intuitions behind map theory. This gives a consistency proof, but also for
the first time gives a clear presentation of the semantics of map theory in
a traditional framework. Furthermore, the proof seems to indicate that
all “big” models of (a very weak extension of) λ-calculus can be expanded
to models of MT.

From the metamathematical point of view the strength of MT lies
somewhere between ZFC and ZFC+SI. The lower bound is proved in [18]
by means of a syntactical translation of ZFC (including classical proposi-
tional and predicate calculus) into map theory, and the upper bound by
building an (exceedingly complex) model of map theory within ZFC+SI.
The present paper confirms the upper bound by providing much sim-
pler models, the “canonical models” of the paper, which are in fact the
paradigm of a large class of quite natural models of MT.

That all these models interpret a model of ZFC is a consequence of the
syntactic translation, which is a difficult theorem of [18]. We can however

∗Equipe de Logique Mathématique, CNRS (URA 753), Université Paris 7, (case 7012), 2
place Jussieu, 75251 PARIS Cedex 05, France, E-mail berline@logique.jussieu.fr

†DIKU, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark,
E-mail grue@diku.dk

1

give here a direct proof of a stronger result, namely that they interpret
some (Vσ,∈), where σ is an inaccessible cardinal.

Finally we return to the “canonical” models and show that they are
adequate for the notion of computation which underlies MT.

2

Contents

1 Introduction 4
1.1 Presentation of MT . 4
1.2 Intended meaning of constants 5
1.3 Intuitive description of the axioms 5
1.4 Links to set theory . 7
1.5 Description of the paper . 8
1.6 Comparison with Flagg-Myhill’s system 12

2 The κ-denotational semantics 17
2.1 κ-cpo’s and κ-continuous functions 18
2.2 κ-compact elements and κ-Scott domains 19
2.3 Pointwise sups and infs . 20
2.4 κ-prime algebraic domains . 20
2.5 Traces of continuous functions . 21
2.6 Reflexive κ-cpo’s and the interpretation of λ-calculus 21

3 κ-continuous premodels 22
3.1 Premodels . 23
3.2 Modelling λ-calculus . 24
3.3 Modelling the λ-calculus axioms of map theory and the QND′-

principle . 28
3.4 Interpretation of propositional calculus in a premodel 29

4 Relative interpretation of ε and φ, and of predicate calculus in
a premodel 30
4.1 Interpretation of ε . 31
4.2 Quantifiers . 31
4.3 Satisfaction of predicate calculus axioms 32

5 Satisfaction of the well-foundedness axioms if σ < κ 34
5.1 The strong Induction Principle and the Generic Closure Property 35
5.2 Closure properties of Φ and Φ◦ and satisfaction of the axioms . . 36

6 Duality, types and arrows in a premodel 39
6.1 Duality and types . 39
6.2 Arrows . 43

7 The existence of a well behaved Φ 45
7.1 Solving the Generic Closure Property 45
7.2 Conclusion . 48

8 Elementary construction of a premodel 49
8.1 Preordered coherent spaces . 49
8.2 Transferring the problem to pcs’s 50
8.3 Solving C = H(C) . 51

3

9 Conclusion 52

10 Acknowledgement 53

A Further properties of κ-continuous models 53
A.1 Structural properties of Φ and Φ◦ 53
A.2 The size of Φ/=Φ . 55
A.3 Models of ZFC within models of MT 58
A.4 Finding Vσ in a κ-continuous model 59

B Computational adequacy of the canonical model 60

C Syntax and axioms of map theory 64

Index 67

References 71

1 Introduction

1.1 Presentation of MT

Since all of part I of [18] is a presentation of the semantics and computational
ideas behind the present axiomatisation of MT, we will just present here the
most simple intuitions. In particular, we will just consider 3-valued first order
predicate calculus and usual ZFC set theory, and we will not say much about
the computational aspects.

The syntax and axioms of MT is recalled in Appendix C. The syntax and
variables, terms and well-formed formulas reads:

variable ::= x | y | z | . . .
term ::= variable | λvariable.term | (term term) | T | ⊥ | if | ε | φ
wff ::= term = term

A proof in MT is a sequence of well-formed formulas where each formula is
an axiom or follows from previous formulas by an inference rule.

As an equational theory, MT is an extension of the theory of β-equivalence.
Its language is very simple since it is that of untyped λ-calculus, namely abstrac-
tion and application, augmented by five constants if, T, ⊥, φ and ε. The word
“equational” means, as is usual in the λ-calculus community that the axiom
schemes are equations or inference rules for deriving equations. Such a theory
T is consistent if one cannot derive A = B for all terms A and B. An equation is
inconsistent with T if adding it to the axioms produces an inconsistent theory.

The underlying notion of computation is obtained, as in λ-calculus, by turn-
ing some of the axioms into rewriting rules, in orienting them from left to right.
The model stated later is faithful to the computational aspect of MT as follows:
Let A be a term of MT which does not contain φ and ε. Now A = ⊥ in the

4

model iff straightforward normal order reduction using the rewrite rules of A
never terminates. If A 6= ⊥ in the model, then normal order reduction can
decide whether or not A = T in the model.

1.2 Intended meaning of constants

As mentioned in the abstract, most primitives and tools are designed from the
beginning to bear the three intended meanings: logical, computational, and
set-theoretic.

T represents “Truth” (and not “Top”) in the logical world, the empty set in
the set-theoretic world, and the empty list in the computational world.
⊥ represents “undefinedness” in the logical world, non-termination in the

computational world, and nothing in the set-theoretical world.
if is the McCarthy’s conditional ([26], p. 54). In the logical world, if allows

to define the usual logical connectives, in the computational world, if represents
forking and the pairing operator, and in the set-theoretic world, if represents the
pair set operator. When defining logical connectives, if is used in conjunction
with truth T and falsehood F. Falsehood F could be defined as any abstraction
λx.A or as any term provably equal in MT to an abstraction, but the canonical
choice F ≡ λx.T will be used here. In the computational context, F is the
constant function that always returns truth and in the set-theoretic context, F
happens to be {∅} (i.e. the ordinal 1).

ε is (a strict version of) Hilbert’s choice operator [20]. In the set-theoretic
world, ε implies the axiom of choice. In the logical world, ε allows to define
existential and universal quantification. ε is not computable by machine.

φ represents something like the “characteristic function” of the class of all
sets (here characteristic functions take values T and ⊥). In the logical world,
φ effectively allows to restrict free variables to range over exactly the same
collection that quantifiers range over. In the set-theoretic world it allows to
restrict free variables to range over sets only.

Notation. We write A =MT B if A = B is derivable (or provable) in MT.
All words in italics and all formulas in boxes appear in the index at the end of
the paper.

A term A will be called well-founded if φA = T holds in MT (i.e. provably
well-founded if φA =MT T and well-founded in a model if φA = T holds in that
model).

1.3 Intuitive description of the axioms

The axioms are listed in Appendix C, where they are divided into four groups:
λ-calculus, propositional calculus, predicate calculus, and set-theory.

The λ-calculus axioms express that =MT is a contextual equivalence relation
which contains β-equivalence; they also dictate the applicative behaviour of ⊥,
T and if. When orienting from left to right the “apply” and “select” axioms in
Appendix C, one obtains the rewrite rules mentioned in Section 1.1.

5

Note that the applicative behaviour of T and F, (respectively of ⊥ and λx.⊥)
will be the same, but that T = F (respectively⊥ = λx.⊥) is inconsistent with the
λ-calculus axioms. This is coherent with the logical and set-theoretic meaning
of T and F. Note also that a term B is equal to an abstraction λx.A iff B = F′B
where F′ ≡ λfλx.fx.

In the logical world, the λ-calculus axioms allow to interpret strict three-
valued propositional calculus, where “strict” means that all connectives return
⊥ as soon as one of their arguments is ⊥. This corresponds to Kleene’s weak
connectives. This choice differs from that of most authors, to begin with Kleene
himself (c.f. [10], p.87), it is neither the choice retained by Scott in [34]. For a
treatment of two-valued propositional calculus see Section 3.4.

The propositional calculus group of axioms merely contains one axiom (a rule
of inference, actually). The rule is called QND′ (for Quartum Non Datur) and
expresses that any object of MT can be given a meaning in three-valued logic
in MT. For a connective like ∧̇ (defined in Appendix C), the lambda calculus
axioms allow to prove statements like T∧̇F = F whereas QND′ allows to prove
more general tautologies like x∧̇y = y∧̇x. A strong way to ensure QND′ is of
course to find a model of λ-calculus where all elements x different from T and ⊥
satisfy F′x = x. This condition will later on be called SQND, for Strong QND,
and will be satisfied by our model.

The predicate calculus axioms express the semantics of the three quantifiers
ε, ∀ and ∃. Like in Hilberts approach [20], ∀ and ∃ are defined from ε (c.f. Section
4.2 and Appendix C). As noticed by Honsell the three quantifiers operate on
abstractions, so that there is only one notion of substitution, namely that of
λ-calculus; this is also the case for example in [34, 1, 13] for ∀ and ∃, and the
approach goes back to Church [8].

The choice of ε as the primitive for quantifications gives the axiom of choice
for free in the set-theoretic world. In the world of computation, ε would be
more convenient than ∀ and ∃ since it returns a richer structure than ∀ and ∃
that can merely return T, F and ⊥. This is somewhat hypothetical, though,
since none of the quantifiers are computable by machine. Furthermore, ε is
more natural in the computational world since it gives less bias towards the
three particular values of three-valued logic. Also in the set-theoretical world,
ε is more convenient than ∀ and ∃ because of the richness of the structures it
returns. This richness is not merely used in proving the axiom of choice. The
need for a choice operator pops up in such an unexpected place as the proof of
the axiom of comprehension in [18]. This is tightly connected to the scheme of
representation of sets introduced in [18].

Let very provisionally Φ be the set of well-founded objects of MT. Then
the axioms express first that quantification is relative to Φ, and second that the
quantifiers (including ε) are strict: ∀f is undefined as soon as fx is undefined
for some x ∈ Φ. Once more this choice differs from those quoted in ([10], p. 96)
and from [34].

At this point the axioms do not yet ensure that the interpretation of pred-
icate calculus will be satisfactory. In particular Φ could be “finite-like”, which

6

would be poor from the logical point of view, and it would be consistent to put
λx.x in Φ, which would amount to have a set of all sets (c.f. Section 4.3).

It is the role of the last group of axioms, the “set theory axioms” or “well-
foundedness axioms” to give MT the power of ZFC (including the well-foundedness
axiom AF) and, as a side-effect, to ensure that the interpretation of predicate
calculus is satisfactory. The price to pay for the entrance in the wide world
of Set Theory is that ε and the derived quantifiers ∀ and ∃ definitely become
uncomputable. The quantifiers still have an interpretation in the world of com-
putation. As an example, ∀f computes fx in parallel for all well-founded x and
bases its result on the results of all those parallel processes. Since there are as
many well-founded maps as there are sets in the universe of ZFC, this gives rise
to infinite parallelism far beyond what makes sense in the world of computation.

The direct meaning of the well-foundedness axioms, especially that of Well
2, C-M1 and C-M2, is not at all obvious at first sight, but in Section 5.2 it
is shown that the inference rule of induction is an approximation to a “Strong
Induction Principle” (SIP) and that the other axioms are all special cases of
a property that will be referred to as the “Generic Closure Property” (GCP).
The “totality theorem” in [18], p.51, defines a large syntax class Σ and states
that all terms in Σ denote well-founded maps (well-founded maps were called
“total maps” in early versions of [18], which explains the name of the theorem).
In the development of MT, the totality theorem was stated first, based on the
intuition formalised here by GCP, and axioms supporting the totality theorem
were formulated afterwards. For that reason, the well-foundedness axioms are
just echos of the syntax class Σ, and the individual axioms in general and C-M1
and C-M2 in particular do not make much sense when seen in isolation. It is
the hope that the formulation of GCP given in the present paper may help in
giving new formulations to the axioms.

1.4 Links to set theory

Concerning the link to usual set theory let us recall from [18] that there are two
combinators (closed terms) =̇ and ∈̇ which make (Φ/=̇, ∈̇) look like a model of
ZFC (=̇ is an equivalence relation over Φ and Φ/=̇ is an ordinary quotient).
Since MT is based on λ-calculus rather than logic, it is not quite enough to give
a definition of ∈̇ to establish a model. It is also necessary to simulate logic in
MT, i.e. to give definitions of ∀̇, ⇒̇ and ¬̇ such that ∀̇ quantifies over all sets
and such that ⇒̇ and ¬̇ express implication and negation, respectively. Since all
sets are represented by well-founded maps and all well-founded maps represent
sets, the construct ∀ defined in Section 4.2 may serve as ∀̇. The constructs ⇒̇
and ¬̇ are treated in Section 3.4.

The view of set theory in MT in general and the definition of ∈̇ in particular
differs from the traditional translation of set theory into λ-calculus. The idea
behind ∈̇ is that for any u and v in Φ, v 6= T (T represents the empty set),
we will have that u∈̇v equals T iff there is an x in Φ such that u=̇vx. This ∈̇
differs from ∈̃ defined by x∈̃S = Sx which is used e.g. in [34, 1, 11, 12, 13] and
corresponds to the view of propositions as functions, which comes back to Frege

7

[14] and Schönfinkel [31].
For a comparison of ∈̇ and ∈̃ let for a moment ⊥ represent falsehood, define

the ‘domain’ of a map f as the set of x for which fx 6= ⊥, and define the ‘range’
of a map f as the set of fx for which x ranges over all well-founded maps (as an
exception, the range of T is empty). With these conventions, x∈̃f states that
x belongs to the domain of f and x∈̇f states that x belongs to the range of f .
Hence, using ∈̃, a set S is represented by a truth valued map whose domain is
S; using ∈̇, S is represented by a map whose range is S. In this respect, ∈̇ and
∈̃ may be thought of as dual concepts.

In MT, ∈̇ is used to represent set membership, but ∈̃ is also used implicitly a
few places. As an example, a map x is well-founded iff x∈̃φ = T. In the present
paper, however, we write φx instead of x∈̃φ, e.g. in Appendix C.

The proof that (Φ/=̇, ∈̇) forms a model of ZFC is indeed a difficult theorem
in [18]. Actually, looking at the axioms of MT it is far from obvious that MT
contains ZFC. This is so because MT is really based on λ-calculus and, even
though it has the power of ZFC, it is fundamentally different and distant from
ZFC.

As noted in Appendix A.3, if SQND holds, then (Φ/=̇, ∈̇) is a model of ZFC
in the traditional sense, and if SQND does not hold, then the model may have
some pathological properties. It should be noted that it is still open whether or
not MT is strictly stronger than ZFC even though (Φ/=̇, ∈̇) is a model of ZFC
inside MT in some sense.

The relation between MT and ZFC is somewhat like the relation between
different programming languages. One could think of MT as the machine lan-
guage (foundation) and ZFC as a specialised high level language particularly
suited to deal with non-computable aspects of mathematics. In this view, ZFC
can be compiled into MT by replacing ∈, ∀, ⇒ and ¬ of ZFC by ∈̇, ∀, ⇒̇ and ¬̇
defined in MT. Compilation the other way is also possible, just more difficult,
and such a “compilation” from MT to ZFC (actually ZFC + SI) is exactly the
contents of the present paper. The aim of the present paper is to define each
primitive construct of MT in ZFC+SI in a way that is faithful to the intuitions
behind MT, and to prove that the constructs so defined form a model of MT.

1.5 Description of the paper

As is clear when reading [18], MT has been designed from semantic intuitions
(based on computational requirements), such as the principle that maps should
be monotonous for some partial order. As a matter of fact, MT is the equational
approximation of this semantic view.

The aim of this paper is to show that (a variation of) Scott’s denotational se-
mantics is indeed adequate to realise all the semantic ideas behind the (present)
axiomatisation of MT. More precisely that one can find a model M of MT, in
the spirit of denotational semantics, inside every model of ZFC + SI, where SI
asserts the existence of an inaccessible cardinal. We will thus get a semanti-
cal consistency proof of MT which is conceptually much simpler than the more
syntactic one in [18]. The model M , whose elements are called maps, will in

8

particular model usual λ-calculus. The model will also satisfy the Strong Quar-
tum Non Datur (SQND) which asserts that any map is true (= T), bottom
(= ⊥) or false (equal to some term of form λx.A). This, together with the fact
that T should be incompatible with any proper map in any non-trivial model,
leads us to solve the recursive domain equation:

D ∼= [D → D]⊕⊥ {T} (1)

in a suitable Cartesian closed category (ccc) of domains. Here {T} is the trivial
domain which has T as unique element and [D → D] is the domain of morphisms
from D to D. Domains are in particular partially ordered sets (p.o’s) with a least
element (called ⊥) and ⊕⊥ means that we take as resulting p.o the disjoint union
of the two p.o’s and add a (new) common least element below. This equation can
be solved, for example, in the ccc of Scott domains with continuous functions,
by taking D to be the inverse limit of a suitable projective system of adequate
domains, a method due to Scott [32] and well understood now, c.f. [4], p.477.

This is the starting point for the model construction. Now we have to in-
terpret in D the constants φ and ε, which are subject to axioms which prevent
them from being continuous. The reason why ε cannot be continuous is linked
to the fact that ∀ represents a very strong form of parallelism. Since maps
are intended to act as monotonous functions we are lead to introduce weaker
notions of continuity.

In Section 2 we present the κ-denotational semantics (κ any regular cardinal)
and the ccc of κ-cpos and κ-continuous functions, which is a generalisation of
Scott’s one (which is the case κ = ω): the κ-continuous functions are those
monotonous functions which commute with all sups of κ-directed sets. In a sense
this is a straightforward generalisation of the ω-case to any regular κ. We do
make a precise presentation anyway in order to make the paper accessible to the
readers interested in foundations, but with no knowledge of domain theory and
lambda calculus. A second reason why making a precise exposition is necessary
is that a weaker notion with the same name, which requires only commutation
with sups of κ-chains, also occurs in the literature (e.g. [27, 15]). For “small”
domains the two notions coincide (c.f. the remark at the end of Section 2.2).
Weak ω1-continuity was introduced by Plotkin (as mentioned already in [35])
to model countable non-determinism (in small models). The present choice is
more convenient for general treatments. It coincides with that of [11, 13] (which
was introduced also for consistency purposes), and with the case λ = 0 of the
κ-λ-topologies mentioned in [28].

In Section 3 we define “κ-continuous premodels” as the solutions of (1) in
the κ-ccc and show that, modulo the obvious interpretations of the constants
⊥, T and if, they satisfy the λ-calculus axioms of MT and the QND inference
rule (see Appendix C for the list of λ-calculus axioms).

The core of the paper is to show that any κ-continuous premodel may be
expanded to a model of MT, provided there is some inaccessible σ such that
σ < κ (as an example we may take κ = σ+). This is done in Sections 4 to 8
where we show that it is possible to choose a κ-open set Φ in such a way that

9

the characteristic function φ of Φ and some adequate choice function ε over Φ
are suitable interpretations of the remaining constants of MT.

In Section 4 we show that it is easy to satisfy the first-order predicate calculus
axioms of MT (c.f. Appendix C), even without assuming the existence of an
inaccessible ordinal. As noted in Section 4.3, the first-order predicate calculus
axioms in MT do not in themselves ensure a faithful representation of first-order
predicate calculus since they allow the domain Φ of quantification to be finite.

In Section 5 we introduce two semantic conditions on Φ, namely the Strong
Induction Principle (SIP) and the Generic Closure Property (GCP), and show
that their satisfaction implies satisfaction of the well-foundedness axioms of MT
(c.f. Appendix C). Elements of Φ will be called well-founded maps.

To express SIP and GCP, we first introduce some auxiliary concepts:

• Let M be a premodel and recall that elements of M are called “maps”.

• Let G and H be arbitrary sets of maps (i.e. let G,H ⊆ M). Elements of
G well be referred to as “G-maps” in the following.

• A map f is said to be well-founded w.r.t. G iff, for any infinite sequence
x1, x2, . . . of G-maps there exists an n such that fx1x2 · · ·xn = T.

• The dual of G, G◦ , is the set of maps that are well-founded w.r.t. G.

• SIP simply asserts Φ ⊆ Φ◦.

• G → H ≡ {f∈M | ∀x∈H: fx ∈ G} is the arrow operator attributed to
Scott e.g. by [9].

• GCP asserts that Φ equals the union of G◦ → Φ over a “suitable” collection
of G’s, where “suitable” has something with limitation of size to do. The
exact formulations are given in Section 5

The axiom of induction in Appendix C is an approximation of SIP whereas
all the other set theory axioms in Appendix C together form an approximation
of GCP. Section 5.2 verifies that all these axioms follow from SIP and GCP.

It remains to prove the existence of a Φ satisfying SIP and GCP in any
κ-premodel. A prerequisite for this is to develop the mathematical properties
of the dual and the arrow operators with particular emphasis on the nature and
size of G◦ → G. This development is done in Section 6, via the study of a
further notion from [18], namely that of the type over G of any element u of M ,
denoted t(u/G) or uG. The notions of duality, type and GCP are closely linked
to the intuitive (and purely semantic) notion of the inner range of a map. In
fact the GCP expresses that the elements of Φ are exactly those maps f which
admit an inner range H of cardinality less than the inaccessible σ (i.e. there is
a small H ⊆ Φ such that, for any x in Φ (or H◦), t(fx/Φ) only depends on
t(x/H); a concrete example is given in Appendix A.3).

This notion of type, which clearly has nothing to do with the usual notions
of types in typed λ-calculus, may on the other hand be related to the various

10

notions of types which occur in (general) Model Theory (c.f. [7, 30]) and in the
model theoretic study of algebraic structures. The type of u over H may be
seen indeed as the set of formulas with parameters in H and of a given shape,
which are satisfied by u in M .

Section 7 proves that if there is an inaccessible ordinal below κ, then any
κ-premodel contains a κ-open set Φ which satisfies SIP and GCP. We prove
first the existence of a set Ψ of κ-compact elements which satisfies properties
analogous to those of Φ but is more accessible to fixed point arguments, and take
for Φ the open subset generated by Ψ. Finally we prove in Appendix A.1 some
further properties of Φ concerning the size of Φ and embeddings of ZFC into Φ.
In particular we prove that for the models presented in this paper (defined inside
ZFC+SI), there is an isomorphism (in ZFC+SI) between (Φ/=̇, ∈̇) and (Vσ,∈),
and we support the conjecture that MT is stronger than ZFC by showing that
all models of MT which satisfy SQND interpret a model of ZFC, and with a
different and direct proof that our κ-continuous models interpret an ω-model of
ZFC.

It remains to exhibit a κ-continuous premodel, that is a κ-domain which is
a solution of (1) in the κ-ccc. Furthermore we want to get a model as easy to
handle as possible (for further investigations of MT).

A classical way to solve recursive domain equations in the ω-case is to use
Scott’s inverse limit construction. The problem with this method is that if
κ > ω there are limit ordinals α < κ. This adds theoretical difficulties (as
pointed out in [15]), and considerably increases the technical complexity of the
construction even if one succeeds in writing out a direct construction. Finally it
is always technically difficult to work concretely with models which are presented
as inverse limits, since the notations are very heavy, especially in the κ-case.

There is a way to overcome all these difficulties: it is to work only with do-
mains D uniformly built from “webs” D (which are simple relational structures
of a fixed signature), and to replace the inverse limit construction on domains
by an increasing union of webs. Not only do we get a presentation of the models
which is now much more easy to handle, even in the ω case, but it is now almost
trivial to deal with limit ordinal stages.

This general method of solving recursive equations on domains is presented
in [25] for ω-Scott domains; there the webs are Scott’s information systems [36].

The most simple classes of webbed-domains where one can solve recursive
equations are Girard’s coherent spaces [16], and Krivine’s spaces of initial seg-
ments [23, 24]. In the first case the webs are of the shape (D,∼) where D is
a set and ∼ is a reflexive and symmetric relation, and the domain D is the set
of “coherent subsets” of D, namely those subsets whose elements are pairwise
related by ∼. In the second case the webs are preordered sets (D,≤) and D is
the set of “initial segments” of D, namely those subsets which are downward
closed.

There is however no solution of (1) within Girard’s or Krivine’s spaces since
the first class is not closed under lifting and the second consists only of com-
plete lattices, but by merging these two classes we obtain a third simple class
where (1) can be solved. All three classes may be viewed as particular cases of

11

information systems, since even when working on coherent spaces it is the con-
tinuous semantics we are interested in here, not the stable one. Note however
that there seems to be no problem in giving a κ-stable semantics to the present
axiomatisation of MT, along the lines of the present paper.

In Section 8 we introduce the class of preordered coherent spaces, which will
be the webs of our domains, and give an explicit construction of a solution of
the κ-version of (1) in this class, the simplest one in fact.

Appendix A states further properties of κ-continuous models and studies
models of ZFC inside such models. Appendix B proves that the models defined
in this paper are faithful to the computational aspect of MT. Appendix C gives
a summary of MT. An index is included after Appendix C.

In summary, the sections of this paper serve the following purposes:

Section 8 proves the existence of solutions to (1) in the κ-ccc.

Section 7 proves that for any such solution there is a Φ that satisfies SIP and
GCP.

Section 5 proves that any Φ which satisfies SIP and GCP also satisfies the set
theory axioms in Appendix C.

Section 4 proves that any Φ whatsoever satisfies the predicate calculus axioms
in Appendix C.

Section 3 proves that any solution to (1) satisfies the remaining axioms of
Appendix C.

Section 2 and 6 give necessary background.

Appendix A states further properties κ-continuous models and studies models
of ZFC inside such models.

Appendix B proves that the models defined in this paper are faithful to the
computational aspect of MT.

Appendix C gives a summary of MT.

The order of presentation is chosen to give a natural progression. A bottom
up presentation may be found in the first version of the present paper [6].

1.6 Comparison with Flagg-Myhill’s system

Introduction

We will end this introduction with some elements of comparison between our
work and that of [13] which was pointed out by one of the referees. The system
EFL* of [13] and MT were designed (independently) from very different points
of view and behave very differently on the syntactical level, but they both aim
at combining ZFC-power with λ-calculus, and the consistency proofs of both
systems are formulated in similar κ-frameworks.

12

The two systems are different in spirit in several places: EFL* is more
syntactical of nature whereas MT is more semantical; the role of λ-calculus
is different; and MT has a stronger computational motivation of concepts.

Though the two systems are obviously very distant there are, at least, two
reasons why we can be interested in a comparison:

A clear common point is the introduction of the κ-continuous framework by
Flagg-Myhill and by us for consistency purposes. But this is rather superficial
since in both cases it was naturally introduced to keep what could be kept of
Scott’s continuous semantics.

The real point is to trace some resemblance at a deep level. Indeed the
syntactical tools used by Flagg an Myhill to inject Set Theory at the level of
axioms, have echos in semantic technical tools which are used in intermediate
steps in our consistency proof (c.f. the section labelled “monotonicity” below).

A brief survey of Flagg-Myhill’s system

System EFL* is the third in an increasing sequence of 4 systems: FL ⊆ EFL ⊆
EFL* ⊆ EFL**, which is issued from Frege’s work and [1]. The consistency
of FL is essentially due to Aczel and is rather similar to the consistency re-
sult that already appears in [34]. System EFL adds to FL a comprehension
rule for discrete classes and contains second-order arithmetic with full compre-
hension scheme. System EFL* adds, at the level of constants and axioms, a
well-ordering of the universe and an inaccessible cardinal; there is a syntactic
translation of ZFC in EFL*. Finally, EFL** adds to EFL* the requirement that
“discrete classes are closed under direct images”. The consistency of EFL** was
left open by Flagg and Myhill, but was reduced via a general model-theoretic
argument to a question of Friedman that Plotkin solved in his recent preprint
[29], namely that of the existence of a model of λη-calculus in which all finite
sets are separable.

The consistency proofs in Flagg-Myhill, Aczel and Scott [1, 11, 12, 13, 34],
follow the following pattern: take a model P of λ-calculus, then interpret all
constants in the model in a semi-Gödel-like fashion (“semi” takes into account
that the interpretation of quantifiers is done via λ-abstraction); then define by
mutual induction two disjoint predicates of Truth and Falsity (T and F , on P,
in such a way that the interpretations of all provable terms are true, and finally
prove that it is not possible that A and ¬A are simultaneously true. Such
a triple (P, T ,F) was called a Frege structure by Aczel. With the exception
of EFL**, which needs Plotkin’s model, all P’s are chosen as Scott’s solution
of P ∼= [P → P] in the ccc of complete lattices and continuous functions (κ-
continuous functions for EFL*).

From now on we will only be concerned with EFL*.

Syntactic versus semantic nature

The following observations support the informal assertion that EFL* is more
syntactic and MT more semantic of nature; some of them will be elaborated

13

below.

1. Most logical and set theoretic concepts are primitive constants in EFL*,
while they are defined concepts in MT.

2. Their behaviour is axiomatised in a natural deduction style, while MT
is an equational extension of ∼=β (where the extension has a semantic
definition rather than one based on conversion, c.f. the section titled
“extensionality” below).

3. Models of EFL* (Frege structures) are based on models of λ-calculus but
need furthermore Truth and Falsity predicates, which are defined by mu-
tual ordinal induction following the structural rules of the system.

4. The interpretation of EFL* terms in Frege structures relies on a semi-
Gödel-like encoding of constants, while the interpretation of (the few) MT
constants follows semantic intuitions.

5. EFL* admits monotonous (even κ-continuous) models, but monotonicity
is of no use in EFL*. Indeed relevant monotonicity is ruled out in EFL* at
the level of axiomatisation. Also Truth (and Falsity) are non-monotonic
concepts in the semantics of EFL*, while they are monotonic in that of
MT.

6. Finally one can also say that extensionality has a more semantic and
deeper meaning in MT than in EFL*.

The language of EFL*

The terms of EFL* are those of λ-calculus with the following primitive constants
added: =, N , P , ∧, ∨, ⇒, ∀, ∃, ≺, and κ. Note that = is really a term in
EFL*. The intended meaning of the non-logical constants is: N is the class of
integers, P the class of propositions, ≺ a well-ordering of the universe, and κ is
an inaccessible cardinal. The behaviour of constants is axiomatised by rules in
a natural deduction style. In what follows, 0 and 1 are Church integers.

Derivability and provability

EFL* derives or “proves” terms. Let us call all terms of form = AB “term-
equations”. We denote them [A = B] in infix notation. Similarly there are
(term-)inequations [A 6= B], where 6= is the term λx.λy.([x = y] ⇒ [0 = 1]).
Thus EFL* is able to prove term-equations [A = B] as well as term-inequations
[A 6= B]; in the first case we will say that A and B are provably equal and in
the second that they are provably unequal.

MT derives equations A = B between terms of MT, but neither = nor A = B
are terms in MT, and inequations and contradictions do not belong to the scope
of MT. Among others, MT is able to derive equations of the form A = T; one
will say that the corresponding A’s are the “provable” or “provably true” terms
of MT.

14

It is obvious from this latter definition (by the transitivity of = in MT) that
any two provable terms of MT are provably equal.

By way of contrast it is easy to find, as follows, two EFL*-terms A and B
which are provable, and provably unequal:

Given any provable term A, e.g. [0 = 0], we may choose any term B such
that the term-equation [B = [A 6= B]] is provable: since 6= is a definable term of
EFL*, and since = is an internalised βη-equivalence, such a term can be found
via a fixed point combinator. It is rather easy to show from the rules of EFL*
that B and [A 6= B] are provable.

The role of λ-calculus in EFL*

Besides the management of logical substitution via the encoding of quantifiers
in a semi-Gödel encoding way, λ-calculus is used for the definition of class-
membership, in the traditional way recalled in Section 1.3, and for class forma-
tion.

As already mentioned, there exists a syntactic translation of ZFC into EFL*.
There, set-membership is a defined concept as in MT: two terms ∈V and =V are
defined as double fixed points of EFL*-combinators (c.f. [13], p.89). However,
the idea underlying ∈V is the traditional view of set-membership as application
and, hence, is dual to that of MT.

The formalisation of set membership in EFL* is much heavier than in MT
since the ordinal inductive definition of V (including a name for κ) is part of
the definition of ∈V and =V . The role of V in EFL* is similar to the role of Φ
in MT.

Computational motivation

All terms in MT have a computational motivation. The computational moti-
vation of λ-abstraction, functional application, T and if are obvious as these
constructs are directly implementable on machine. The computational motiva-
tion of ⊥ is also obvious in the sense that it represents infinite looping. Machine
implementations of λ-abstraction, functional application, T and if are “com-
plete” in the following sense: If A is a term built up from the above then A = ⊥
in the canonical models built in Section 8 iff computation of A never ends (c.f.
Appendix B). Furthermore, if A 6= ⊥ then computation of A will in finite time
determine whether or not A = T (i.e. whether or not A is “true”). The re-
maining constructs φ and ε of MT are not computable by machine but their
properties are still motivated in a computational setting. Both φ and ε can
be thought of as parallel operators that start up infinitely many processes in
parallel. This is of course impossible on a finite computer, but still motivates
the properties assigned to these operators.

In particular, the semantics of all terms of MT are born monotonic.
In contrast, EFL* has several constructs whose semantics is alien to com-

putation, to begin with = and N which are interpreted by total predicates in
Frege structures, which makes it impossible to them to be monotonic.

15

It is worth noting that λ-calculus plays a very active role in MT and that
surprisingly many concepts can be represented by computable functions (i.e.
without using ε and φ). As an example, the set ω of positive integers is rep-
resented by a computable function in A.3. Subsets of ω are representable by
computable functions iff they are recursively enumerable. Also some sets of
larger cardinality such as the power set of ω is representable by computable
functions. In [18], the union set axiom is proved using a computable function
as union set operator, and a computable power set operator is deviced though
it is not used in the actual proof of the power set axiom.

The role of monotonicity

As a matter of fact monotonicity is of no real use for EFL*; this is confirmed
by the fact that EFL* can be modelled by a Frege structure based on Plotkin’s
model [29], which is anti-monotonic by essence (any non-trivial partial order
on it contradicts the monotonicity of application since any two elements of the
model are separable, which implies that they can be exchanged by a repre-
sentable function). In fact, monotonicity is ruled out already at the level of the
axiomatisation of EFL*, since discrete classes, which are the basic concept of
the set theoretical axioms, can only be interpreted by separable sets of elements,
and hence in any monotonous semantics, by sets of incompatible elements.

There is some flavour of this too in our semantics of MT since the δ(G◦),
which are also sets of incompatible elements, happen to be important tools.
However they do not appear at all at the level of syntax, even in an implicit way.
Furthermore, at the semantic level they appear only as tools in the proof that
there exists an open set which is a solution of the GCP. The same remark applies
to our strict arrow →G, which can be viewed as the semantic MT-counterpart
of the syntactic EFL*-arrow →∗.

Extensionality

Equality in ZFC is semantically defined thus: Two sets are equal if they contain
the same elements. In other words, two sets A and B are equal if the truth
value of x ∈ A equals the truth value of x ∈ B for all x. This is often referred
to as extensionality. The important thing to note here is that equality of sets is
defined from the simpler concept of equality of truth values.

Equality in MT is defined semantically in much the same way, but the def-
inition is complicated by two things: first, MT includes a third truth value ⊥,
second, MT treats truth values as defined rather than as fundamental concepts.
In the following, a map will be said to have the truth value “true” if it equals
T, “undefined” if it equals ⊥, and “false” in all other cases. Two maps U and
V will be said to satisfy U ↔ V if they have the same truth value. Now, two
sets A and B were equal if

x ∈ A⇔ x ∈ B

16

for all sets x. Similarly, two maps f and g are equal if

fx1 · · ·xn ↔ gx1 · · ·xn

for all n ≥ 0 and all maps x1, . . . , xn. In conclusion, equality in MT is concep-
tually based on a semantic notion of extensionality.

In λ-calculus and EFL* there is also a property called extensionality, namely
the property that if Ax = Bx for all x then A = B. This holds both in λη-
calculus and in EFL* (and it almost holds in MT; in MT it is necessary to assume
that A and B differ from T and ⊥). This kind of extensionality is different from
that of ZFC, however. The extensionality of ZFC links equality of sets with
the simpler concept of equality of truth values, and thereby defines equality of
sets from a simpler concept. The extensionality of λ-calculus and EFL* links
function equality with function equality itself, so this kind of extensionality does
not define function equality from a simpler concept.

The equality in EFL* resembles the syntactic β-equivalence more than the
semantic ZFC-equality. One place this shows up is in the example with the
provable terms A and B in EFL* which are provably unequal.

In EFL*, the second kind of extensionality is axiomatised by Ax = Bx `
A = B. In MT, it is axiomatised by A = B ` λx.A = λx.B. In λη-calculus,
it is typically axiomatised by one of these two formulations. The present paper
considers the version of MT presented in [18], and in that version there is no
formalisation of the first kind of extensionality. The first kind of extensionality
has been formalised in [17].

Final remark

That the intended semantics of MT is monotonous from the beginning does not
rule out the possibility that MT could admit a non-monotonic one. In particular
one could ask whether the methods of Plotkin [29] could be exploited to provide
a model of MT, as they can be to give a model to Flagg-Myhill’s systems. The
QND inference rule is the first obstacle to be passed (and might be the only one),
while the stronger extensionality rule of EFL* gives for free a Church-Rosser
conversion underlying λ-calculus, namely λη-conversion.

2 The κ-denotational semantics

From now on κ is a regular cardinal ≥ ω (c.f. [7] for definitions of “regular”
and “inaccessible”). For any cardinal χ, χ-small will mean: non-empty and of
cardinality strictly less than χ; we will only use it for χ = κ and χ = σ where
σ is an inaccessible below κ. α, β, . . . denote ordinals. (Note that all concepts
written in italics occur in the index).
Pχ(E) will denote the set of χ-small subsets of the set E; if χ is regular,

Pχ(E) is closed under unions of χ-small families.
A p.o D is a partially ordered set, (D,≤). We use x ∈ D and x ⊆ D as

shorthand for x ∈ D and x ⊆ D, respectively. Elements and subsets of D will

17

be denoted by the letters u, v and A,B,U,G,H, respectively. A set of compatible
elements is just a subset of D which has an upper bound in D, such a set is also
called consistent or a bounded subset of D in the literature.

Further notations: ↑u means {v | v ≥ u}, ↓u means {v | v ≤ u}, ↑G
means

⋃{↑u | u ∈ G} and ↓G means
⋃{↓u | u ∈ G}. (Note that all boxed

entities occur in the index).

2.1 κ-cpo’s and κ-continuous functions

A ⊆ D is κ-directed if A 6= ∅ and every κ-small B ⊆ A is bounded by an element
of A. A is a strict κ-directed set if moreover it has no maximal element (note
that a κ-directed set has at most one maximal element).
D is a κ-cpo (a ‘κ-complete p.o’) if it has a bottom (denoted ⊥D , or simply

⊥ if there is no ambiguity) and every κ-directed A has a sup; it is a κ-ccpo (for
‘consistently κ-complete p.o’) if moreover every bounded A has a sup. It follows
immediately from the definition that in a κ-ccpo every non-empty set A has an
inf.

The κ-topology is the topology over D whose open sets are the subsets U of
D such that (i) U = ↑U and (ii) sup A ∈ U implies A∩U 6= ∅, for all κ-directed
A.

Fact 2.1.1 Any intersection of a κ-small family of open sets is open.

Thus, the ω-topology is the usual Scott topology. The κ-continuous functions
that we are going to define now are exactly the continuous functions for the κ-
topology.

Let D and E be κ-cpos, then f : D → E is κ-continuous iff f(supA) =
sup f(A), for all non-empty κ-directed A; [D → E]κ will denote the space of all
κ-continuous functions on D, endowed with the pointwise ordering of functions,
while D×E is the Cartesian product (with coordinate-wise partial ordering). It
is easy to see that both are κ-cpo’s, and that, as in the ω-case, we are working
here with a ‘Cartesian closed category (ccc) with enough points’, in particular,
for any three cpos D, E and F the canonical function from [D × E → F]κ to
[D → [E → F]κ]κ is a κ-isomorphism, i.e. a bijective κ-continuous function the
inverse of which is κ-continuous too. Note that a κ-isomorphism is nothing
more than an order-isomorphism between cpos. A few categorical words will be
employed, either for ease of terminology, or to make links with some standard
framework, but no knowledge of category theory is really needed here.

Remarks:

1. f : D → E is κ-continuous iff it is monotone and f(sup A) ≤ sup f(A) for
all non-empty κ-directed A.

2. If κ ≤ κ′ and D is a p.o, then all κ′-directed A ⊆ D are κ-directed, so,
if D is a κ-cpo, then D is a κ′-cpo, and κ-continuous functions of D are
κ′-continuous; in particular ω-continuous functions are κ-continuous for

18

all κ. This has to be contrasted with the framework of [27, 15], where ω-
and ω1-continuity are independent notions.

3. If D has no strict κ-directed subset, which is in particular the case if | D |<
κ, then the κ-continuous functions are exactly the monotone functions.

The notion of a premodel of map theory that we will define in Section 3 will
rely on the more restricted class of κ-Scott domains. This will enable us to keep
a control on the width of the open subsets needed to model φ, and on φ itself.
This limited size of φ will in turn enable us to model ε; we will also need sups
of bounded subsets. So the notions of κ-compact elements, and of κ-algebraic
and κ-Scott domains, are essential for our purpose. This is not the case for
that of prime elements, κ-prime algebraic domains, and traces of κ-continuous
functions, which, from a purely deductive point of view, could as well have
been omitted; their presence below is due to the fact that they enlighten the
construction of the premodel in Section 8 (which is indeed a κ-prime algebraic
domain), and, of course, as their classical analogues, they are basic tools for
further developments.

2.2 κ-compact elements and κ-Scott domains

A κ-compact element of a κ-cpo D is an element u ∈ D such that, for all κ-
directed A, u ≤ sup (A) implies u ≤ v for some v ∈ A (thus the κ-compact
elements are exactly the elements u of D such that ↑u is open). Dc is the set

of κ-compact elements and ↓cu = ↓u∩Dc. We will constantly use the following
easy fact:

Fact 2.2.1 Dc is closed under sups of κ-small subsets.

Note that we do not intend here that such sups always exist.
A cpo D is κ-algebraic if, for all u ∈ D, ↓cu is κ-directed and u = sup ↓cu.

As in the ω-case we have:

Fact 2.2.2 If D is κ-algebraic, then f is κ-continuous iff f(u) = sup f(↓cu).

Fact 2.2.3 If D is κ-algebraic, then the following are equivalent for any subset
G of D:

G is open (2)

G = ↑G and ∀u∈G : G ∩ ↓cu 6= ∅ (3)

∃H⊆Dc : G = ↑H (so H ⊆ G ∩ Dc and G = ↑(G ∩ Dc)) (4)

Moreover, even if the cpo D is not algebraic, G is open iff, for all fixed v 6= ⊥

χG is continuous, (5)

19

where χG : D → D is the function which takes value v on G and ⊥ elsewhere.
A κ-ccpo D is a κ-Scott domain iff for all u ∈ D, u = sup ↓cu.
Since in any κ-ccpo ↓cu is κ-directed (and is strictly directed iff u 6∈ Dc),

the κ-Scott domains are exactly the κ-algebraic κ-ccpo’s. κ-Scott domains are
closed under products or spaces of κ-continuous functions, and form also a ccc.

Remark. If D is κ-algebraic and if |Dc| ≤ κ, then every strict κ-directed
A ⊆ D has a cofinal κ-chain (of compact elements) and in such a D it is enough
to define κ-continuity via a commutation with sups of κ-chains. Here a κ-chain
S is a monotone sequence indexed by κ, and S is cofinal to some κ-directed A
if A ⊆ ↓S and sup S = sup A (we do not ask for S ⊆ A). Such a presentation
has been chosen e.g. in [24] (ω-topology) and [27] (ω1-topology). The model we
build in Section 8 (κ-topology) satisfies also this strong hypothesis.

2.3 Pointwise sups and infs

A step in proving that [D → E]κ is a κ-Scott domain if D and E are is to show:

Lemma 2.3.1 Let D and E be κ-Scott domains. Then the pointwise sup of
any bounded subset B of [D → E]κ is κ-continuous and hence is the sup of B
in [D → E]κ.

The analogue for infs is:

Lemma 2.3.2 If B is a κ-small non-empty subset of [D → E]κ then the point-
wise inf, inf B, of the elements of B is κ-continuous, and thus is the inf of B in
[D → E]κ.

Proof. Let f = inf B and a = sup A where A is a κ-directed subset of D. We
have to prove that f(a) ≤ sup {f(v) | v ∈ A}; and for this it is sufficient to
prove that for any κ-compact u ≤ f(a) there is a v ∈ A such that u ≤ f(v).
Now u ≤ g(a) for all g ∈ B; since the g’s are continuous there are vg ∈ A such
that u ≤ g(vg); now, the set of all vg’s is κ-small, hence bounded by a v ∈ A;
by monotonicity of the g’s we have u ≤ g(v) for all g, hence u ≤ f(v). ♦

2.4 κ-prime algebraic domains

A prime element is an element u ∈ D such that, for all bounded A, u ≤ sup A
implies u ≤ v for some v ∈ A. Thus prime elements of κ-cpo’s are κ-compact,
and ⊥ is prime. Exercise: An element p ∈ D is prime iff it is κ-compact and,
for all bounded κ-small B ⊆ D, we have u ≤ supB ⇒ u ≤ v for some v ∈ B.

Remark. Prime elements need not be minimal in D − {⊥}, nor incompa-
rable.

Notations. Dp is the set of prime elements of D, and ↓pu = ↓u ∩ Dp.
Definition. A κ-Scott domain is κ-prime algebraic if for all u ∈ D, u =

sup ↓pu.

20

It is easy to see that in κ-prime algebraic domains the κ-compact elements
are exactly the sups of the κ-small bounded sets of prime elements. (The non-
trivial direction uses the fact that if D is κ-Scott and A ⊆ D is bounded, then
sup A = sup d(A) where d(A) is the κ-directed set whose elements are the sups
of κ-small families of elements of A).

Preordered coherent spaces (pcs’s), as defined in Section 8, will convey the
significant part of the structure of the Dp’s associated with simple κ-prime
algebraic domains D.

Remarks. If κ ≤ κ′ and if D is a κ-cpo then D is a κ′-cpo, as we have
already seen. Now κ-compact elements of D are obviously κ′-compact and the
κ′-compact elements of D are the sups of κ′-small sets of compatible κ-compact
elements. This ensures that the set of κ′-compact elements below some u ∈ D
is κ′-directed. Hence, if D is κ-Scott, then D is κ′-Scott. In particular, for every
κ, every compact element is κ-compact, every Scott domain is a κ-Scott domain
and every prime-algebraic domain is a κ-prime algebraic domain.

2.5 Traces of continuous functions

Suppose that D is a κ-Scott-domain. From the fact that any function f : D → D
is indeed a graph and that D is κ-algebraic, we have that any function f is
determined by:

T1(f) = {(u, v) ∈ D ×Dc | v ≤ f(u)}

If f is κ-continuous, and since the v’s are compact, it is sufficient to consider:

T2(f) = {(u, v) ∈ Dc ×Dc | v ≤ f(u)}

If moreover D is κ-prime algebraic, then it is sufficient to know:

T (f) = {(u, v) ∈ Dc ×Dp | v ≤ f(u)}

The pairs (u, v) are in one–one correspondence with the ‘step functions’ εu,v

(εu,v(x) = v if x ≥ u and εu,v(x) = ⊥ otherwise). The trace of εu,v, ordered by
(u′, v′) ≤ (u′′, v′′) iff u′ ≥ u′′ and v′ ≤ v′′ (which corresponds to the pointwise
ordering of step functions εu′,v′ , εu′′,v′′), contains (u, v) as maximal element.

2.6 Reflexive κ-cpo’s and the interpretation of λ-calculus

As we already mentioned, κ-Scott domains (or κ-cpo’s) and κ-continuous func-
tions form a ccc (with ‘enough points’), say the κ-ccc. Now, any reflexive object
of such a ccc (and not only solutions of (1)) can model pure (i.e. untyped)
λ-calculus; let us tell what reflexive means in the case of the κ-ccc (the general
definition can easily be extrapolated).
D is a reflexive object of the κ-ccc if there are two κ-continuous functions:

A : D → [D → D]κ (6)

21

λ : [D → D]κ → D (7)

such that

A ◦ λ = id (8)

In particular λ is injective and A is surjective.
Then there is a standard way to interpret terms of λ-calculus, where parame-

ters in D are allowed (sketched in Section 3, c.f. also [4], Chapter 5, Paragraph
4), and (8) ensures that any two β-equivalent terms get the same interpretation.

If furthermore λ ◦ A = id, then D ∼= [D → D]κ, the model is called exten-
sional, and any two η-equivalent terms get the same interpretation. Solving (1)
amounts to finding an almost extensional reflexive model of λ-calculus, ‘almost’
getting here a totally accurate meaning if we take into consideration the two
small elementary axioms of map theory which specify the applicative behaviour
of ⊥ and T.

The coding of unary continuous functions inD by means of λ generalises to n-
ary κ-continuous functions as follows: we define λn : [Dn → D]κ → D by induc-
tion on n: λ1 = λ, and λn+1(f [x1, . . . , xn+1]) = λ(u1 7→ λn(f [u1, x2, . . . , xn+1])).
Indeed we can easily prove, by induction, that λn is well-defined and κ-continuous
(using that a k-ary function is κ-continuous iff it is component-wise κ-continuous).

Notations. Finite sequences of elements of D are denoted by ū, v̄, etc
and the length of ū by `(ū). We will use the following simplified notation of
application:

uv = A(u)(v)
uv̄ = uv1 · · · vn if v̄ = (v1, . . . vn) and n ≥ 1
uv̄ = u if `(v̄) = 0
uwv̄ = (uw)v̄

With this notation, and a repeated use of (8) we get:

Fact 2.6.1 For any f ∈ [Dn → D]κ and any ū ∈ Dn we have

λn(f)u1 · · ·un = f(u1, . . . , un)

3 κ-continuous premodels

T̃ and ⊥̃ are two objects of the universe (sets), which are not sets of pairs, and
hence are not functions (graphs).

Definition. For any κ-Scott domain (E ,≤) such that T̃, ⊥̃ 6∈ E we denote

by E ⊕⊥̃ {T̃} the κ-Scott domain (E ′,≤′) such that E ′ = E ∪{T̃, ⊥̃} and x ≤′ y

iff: x = ⊥̃ or x = y = T̃ or (x, y ∈ E and x ≤ y).

22

3.1 Premodels

Definition. A κ-continuous premodel of map theory, or simply a premodel, is
a triple P = (M, Ã, λ̃) where M is a κ-Scott domain and

M
Ã
−→
←−
λ̃

[M→M]κ ⊕⊥̃ {T̃}

are two inverse order-isomorphisms.
Notation. ⊥ ≡ ⊥M, hence ⊥ = λ̃(⊥̃); T ≡ λ̃(T̃); F ≡ M \ {⊥,T}.

Elements of M are called maps, and elements of F proper maps.
The root function r : M → M is defined by r(⊥) = ⊥, r(T) = T, and

r(u) = F ≡ λx.T if u is a proper map. Using Fact 3.1.1 below it is easy to
prove that r is κ-continuous and that r commutes with all existing sups and
with infs of κ-small bounded subsets. The definition of r was a key one in the
original consistency proof where r operates on terms of map theory and where
the definition of r takes up all of page 95 in [18]. The model construction in the
present paper is, structurally, considerably more simple and conceptual than
the original one among other because it is based on κ-denotational semantics
instead of a syntactic definition of r.

The following fact will be used constantly.

Fact 3.1.1 (a) For all bounded, and hence for all κ-directed, B ⊆M, we have

sup B = T iff B = {T} or B = {T,⊥}
sup B = ⊥ iff B = {⊥} or B = ∅
sup B ∈ F iff B ⊆ F ∪ {⊥} and B ∩ F 6= ∅

(b) For all non-empty B ⊆M, we have:

infB = T iff B = {T}
infB = ⊥ iff ⊥ ∈ B or (T ∈ B and B ∩ F 6= ∅)
infB ∈ F iff B ⊆ F

We now define

M
A
−→
←−
λ

[M→M]κ

by A(u) = Ã(u) if u is a proper map, A(⊥) = x 7→ ⊥, and A(T) = x 7→ T;
λ(f) = λ̃(f) for any κ-continuous function f . It is very easy to prove, using
Fact 3.1.1 (a):

Lemma 3.1.2 (M, A, λ) is a reflexive κ-Scott domain

23

and we also have:

Lemma 3.1.3 A and λ are inverse κ-isomorphisms between the p.o’s F and
[M→M]κ.

The premodel we build in Section 8 is a strong premodel in the sense that
Ã (or, equivalently, A, because of Fact 3.1.1) is additive (in the sense that it
commutes with all existing sups) and commutes with infs of non-empty κ-small
subsets. Strong premodels have some nice supplementary properties (c.f. the
exercise in Section 6.1 for an example).

We now adopt the simplified notations introduced in Section 2.6: uv for
(A(u))(v) and its generalisation to uv. λx.f [x] for λ(f), and λx1 . . . xn.f [x1, . . . , xn]
for λn(f) if f is n-ary. F ′ ≡ λx.λy.xy, so for all u ∈M, F ′u = λy.uy ∈ F .

Lemma 3.1.4 For all u ∈M, Tu = T and ⊥u = ⊥.

Lemma 3.1.5 (SQND) F = {u | F ′u = u} = {u | ∃v : F ′v = u}
Proof. The two sets are included in F (already seen). Conversely, suppose
u ∈ F , then F ′u = λy.uy = λ(y 7→ A(u)(y)) = λ(A(u)) = u. ♦
Lemma 3.1.6 (Weak extensionality) For all u, v ∈ F , u ≤ v (u = v) iff
∀x ∈M : ux ≤ vx (∀x ∈M : ux = vx).

From Lemmas 3.1.4 and 3.1.6 one can deduce the following easy facts, which
are left as exercises.

Fact 3.1.7 (a) The sequence λx1 . . . xn.⊥, n ∈ N, is an increasing sequence of
elements of F .
(b) The elements λx1 . . . xn.T, n ∈ N, are incompatible maximal elements of F .
(c) λx1 . . . xm.⊥ ≤ λx1 . . . xn.T iff m ≤ n.

For any u, v ∈ M, u ◦ v ≡ λx.u(vx). Thus u ◦ v is always a proper map; if
moreover u, v ∈ F and are respectively the codes of the functions f and g, then
u ◦ v is the code of f ◦ g.

For u ∈M, G ⊆M define uG = {ux | x ∈ G} and u−1G = {x | ux ∈ G}.
For u ∈ M and H κ-open, H ⊆ dom u, the restriction of u to H is the

code v of the κ-continuous function f defined by f(x) = ux if x ∈ H and ⊥
otherwise.

For G ⊆M, the characteristic function of G is the function χG :M→M
which takes value T on G and ⊥ elsewhere; as already mentioned in Section 2.2,
χG is κ-continuous iff G is κ-open.

3.2 Modelling λ-calculus

The formalism we use here, namely to work with terms with parameters, is the
usual one in model theory. It is more convenient for algebraic computations
than the use of open terms within environments, which is usual in theoretical
computer science. It also allows us to keep close to the notation in [18].

24

Language

The three following sets are supposed to be disjoint.

V is a countable set of variables x, y, . . .

C is a set of constants c

M is a κ-cpo

Finite sequences of variables (respectively of elements of M) are denoted
x, y (respectively u, v) and include the empty one. When necessary they are
identified with their underlying set or the corresponding tuple. We only consider
sequences of distinct variables. “For all x, u” means “for all sequences x of
distinct variables and all u ∈ M(<ω) such that `(u) = `(x)”. Here, `(u)
denotes the length of the sequence u.

In the case of map theory, C = {⊥, T, if, φ, ε} (the underlining will be
omitted soon).

λ-terms

The set ΛM,C of λ-terms with constants in C and parameters in M, or simply
“λ-terms” or even “terms”, is defined inductively by:

A ::= x | c | u | (AA) | λx.A

Otherwise stated, ΛM,C is the smallest set of terms containing V ∪ C ∪M and
closed under the usual operations of λ-calculus.

• A, B and C always denote elements of ΛM,C .

• FV(A) is the set of free variables in A.

• ΛC and Λ are the sets of those terms which do not contain elements ofM
and M∪ C, respectively. Elements of Λ are also called pure λ-terms.

• AB1 · · · Bm is shorthand for (· · · ((AB1)B2) · · · Bm).

Substitution

[A/x1 := A1, · · · , xm := Am] is defined if the xi are distinct and no free variables
of any Ai occur bound in A; it is then the term resulting from the simultaneous
substitution of the Ai’s to all free occurrences of the corresponding xi. So
[A/x1 := u1, · · · , xm := um] makes sense for all A, and all x, u, and will be
abbreviated

[A/x := u]

Calculus

α (renaming) and β conversions (or equivalences) are defined as usual.

25

Interpretation of terms

For a given interpretation j of constants in M, i.e. a function j : C → M,
we define the interpretation |[A/x := u]| of all closed λ-terms [A/x := u] by
elements of M by induction in the structural complexity of A. If FV(A) ⊆ x
then

|[A/x := u]| ≡ j(c) if A ≡ c ∈ C
≡ ui if A ≡ xi ∈ x
≡ u if A ≡ u ∈M
≡ |[B/x := u]||[C/x := u]| if A ≡ BC
≡ λ(v 7→ [[B/y := v]/x := u]) if A ≡ λy.B

Interpretation | • | (which should in fact be denoted | • |j) is well defined and
assigns the same interpretation to terms that are α- or β-equivalent like in the
ω-case. For a proof, mimic [4], Chapter V, §4. The point is to show:

Fact 3.2.1 ∀A ∈ ΛM,C , ∀x, u such that FV(A) ⊆ x, u 7→ [A/x := u] is a
κ-continuous function.

Notation for constants

If we adopt the simplified notations of Section 2.6 for the “semantic operators”
λ and A, then the only difference between a closed term of ΛM,C and its inter-
pretation in M is that each c ∈ C is replaced by j(c). If we happen to keep
the same notation for c and j(c) (for example c) then the same expression will
denote as well a closed term and its interpretation inM. It will always be clear
from the context what we are really meaning. We will do this in particular with
map theory, whose constants are directly named ⊥, T, if, φ and ε.

Equations and inference rules

E and Ei will denote equations between terms of ΛM,C and
∧ Ei is the conjunc-

tion of the Ei. If E ≡ A = B then FV(E) = FV(A) ∪ FV(B), and for all x, u,
[E/x := u] ≡ [A/x := u] = [B/x := u].

An inference rule is an object R of shape E1, . . . , En ` E . FV(R) is the set
of variables which are free in E1, . . . En, E .

An equational theory is a set of equations and rules of inferences, where
terms range over ΛC .

Satisfaction

We are going to define (P, j) |= E where E is either an equation, a finite con-
junction of equations, or an inference rule. This has to be read: “the premodel
P satisfies E (w.r.t. j : C → M)”. Let us first assume that (Ei)i≤n is a set of
equations between closed terms (Ei ≡ Ai = Bi). Then

(P, j) |=
∧
Ei

26

means that ∀i ≤ n : |Ai| = |Bi| (in M). In the general case we define:

(P, j) |=
∧
Ei

if ∀x ⊇ FV(
∧ Ei)∀u : (P, j) |= ∧

[Ei/x := u]. Since the interpretation of a term
depends only on the values given to its free variables, this definition is equivalent
to the one obtained by replacing ‘∀x’ by ‘∃x’. This equivalence is used implicitly
in several places, e.g. to check that (P, j) |= Trans.

Suppose now R is the rule E1, . . . , En ` E , then there are different ways in
which (P, j) may satisfy R: the weakest is the following:

(P, j) |= R if (P, j) |= ∧ Ei ⇒ (P, j) |= E

the strongest is:

(P, j) |=s R if ∀x ⊇ FV(R)∀u : ((P, j) |= ∧
[Ei/x:=u]⇒ (P, j) |= [E/x:=u]

Of course there is no difference between the two notions if the premisses of R
are closed.

It is clear that to prove the consistency of map theory it is enough to prove
that some κ-continuous premodel P satisfies all axioms, and weakly satisfies all
rules (since e.g. P 6|= ⊥ = T). Strong satisfaction has a much more semantic
flavour but restriction to weak satisfaction (or intermediate versions like in [4],
p.100) is forced upon us by the rules Sub2 and Induction (c.f. Appendix C).

Non-monotonic implication

An important shorthand used in map theory is the non-monotonic implication
→ . For any terms A1, . . . ,An,B, C let A1, . . . ,An → (B = C) denote the

equation which is defined inductively by

A → (B = C) ≡ ifABT = ifAC T

and

A1, . . . ,An → (B = C) ≡ A1, . . . ,An−1 → (An → (B = C))

if n > 1. Furthermore,

A1, . . . ,An → C ≡ A1, . . .An → (C = T)

It is easy to see:

Fact 3.2.2 Let P be any premodel, A1, . . . ,An, C ∈ ΛM,C and consider the
following assertions:

(a) P |= A1, . . . ,An → C.
(b) ∀x ⊇ FV(

∧Ai, C)∀u : (P |= ∧
[Ai/x:=u] = T⇒ P |= [C/x:=u] = T).

27

(c) P |= ∧Ai = T⇒ P |= C = T.

(d) P |= ∧Ai = T ` C = T.

Then (a)⇔ (b)⇒ (c); (d) is a reformulation of (c) in case there is no parameters
and finally (a)⇔ (c) if all Ai are closed terms of ΛM,C .

As a corollary we have for the parameter free case:

Fact 3.2.3 For all A1, . . . ,An, C ∈ ΛC the following are equivalent:

(a) P |= A1, . . . ,An → C
(b) P |=s

∧
(Ai = T) ` C = T

3.3 Modelling the λ-calculus axioms of map theory and
the QND′-principle

The fact that P is a model of λ-calculus as seen (but not formulated) in Section
3.2, can be rephrased by saying that, whatever j we will chose, (P, j) will satisfy
all those λ-calculus axioms of map theory which contain no explicit mention of
the constants. These axioms (Trans, Sub1,2, Apply2 and Rename [c.f. Appendix
C]), are of course the usual λ-calculus axioms if we restrict A, B and C to range
over pure λ-terms.

Suppose now we choose j such that j(⊥) = ⊥ and j(T) = T. Then it is easy
to check that the axioms Apply1 and Apply3 are satisfied and that the inference
rule QND′ is strongly satisfied. For the latter we write out the (trivial) proof
only for the case where FV(R) = {x}.

We have to show that for all u ∈M, if (P, j) satisfies :

[[A = B/x := T]/x := u], i.e. [A = B/x := T]
[[A = B/x := ⊥]/x := u], i.e. [A = B/x := ⊥]
[[A = B/x := F′(x)]/x := u], i.e. [A = B/x := F′(u)]

then (P, j) satisfies : [A = B/x := u]. But this is immediate from SQND.
To satisfy the Select1,2,3 axioms it is clearly sufficient to interpret if by the

code if ≡ λ3(If) of the ternary κ-continuous function If :M3 →M defined by:

If(u, v, w) =

v if u = T
w if u ∈ F
⊥ if u = ⊥

To prove that If is κ-continuous it is sufficient to check it w.r.t. each component.
For the first component this follows from Fact 3.1.1. For the other two it is clear;
indeed, when two components, including the first one, are fixed, then If acts on
the last as the identity or as a constant map. In conclusion we have:

Lemma 3.3.1 Any premodel P can be expanded to a model of the λ-calculus
axioms of map theory and of QND′.

28

3.4 Interpretation of propositional calculus in a premodel

The simple definitions below are transparent if we consider that T codes “truth”,
⊥ “undefinedness”, and any proper map, in particular F ≡ λx.T, represents
“falsehood”.

The usual propositional connectives ¬, ∧, ∨, ⇒, ⇔, are in map theory
translated into terms ¬̇, ∧̇, ∨̇, ⇒̇, and ⇔̇, respectively, of Λif,T (c.f. [18], p.16).
We are only interested in those which occur in the axioms, namely

∧̇ ≡ λx.λy.if x (if y T F)(if y F F)
¬̇ ≡ λx.ifxFT

The interpretation of these two terms are κ-continuous functions which are strict
in all arguments (f is strict in x if x = ⊥ implies f(x) = ⊥); they behave as
expected on T and F, and make no difference between F and other elements of
F . Two other terms that occur in the axioms are:

≈ ≡ λx.if xTF
! ≡ λx.if xTT

The interpretation of ≈ and ! are the functions “root” and the characteristic
function ofM\ {⊥}, respectively.

Remark. Let Map1 consist of the λ-calculus axioms and QND′, and let ṗ
be the term of Λif,⊥,T obtained by replacing all connectives in the formula p of
(two-valued) propositional calculus by the corresponding term of map theory (¬
by ¬̇, ∧ by ∧̇ etc and propositional variables are viewed in ṗ as λ-term variables).
It is easy to prove:

• ṗ is strict w.r.t. all its free variables.

• If p and q have exactly the same free variables, then p⇔ q is a tautology
in propositional calculus iff Map1 ` ≈ṗ = ≈q̇.

• If p is not a propositional variable, then Map1 ` ≈ṗ = ṗ.

Example: The following formulas are provable in Map1 (and map theory in
general): x∧̇y = y∧̇x, x∧̇x = ≈x, ¬̇¬̇x = ≈x, ¬̇(x∧̇y) = ¬̇x∨̇¬̇y etc and, hence,
A∧̇B = B∧̇A, ¬̇¬̇A = ≈A etc are also provable, for any terms A and B or ΛC
(or ΛM,C if we work with a premodel).

A formula like x∨¬x⇔ T is an example of tautology where the two sides do
not have exactly the same free variables and where the corresponding equation
x∨̇¬̇x = T fails for x = ⊥. To represent such formulas in map theory one
may use e.g. the construct ! like in x∨̇¬̇x =!x. A more general result is: p is a
tautology iff Map1 ` ≈ṗ =!x1∧̇ · · · ∧̇xn where x1, . . . , xn are the free variables
of p.

29

Remark. Let P be any premodel, and let A,B,A1, . . . ,An ∈ ΛM,C . Then
the following is true in P (for the interpretations of terms).

A∧̇B = T iff A = T and B = T
A∧̇B = ⊥ iff A = ⊥ or B = ⊥
A∧̇B = F otherwise
¬̇A = T iff A ∈ F
¬̇A = F iff A = T
¬̇A = ⊥ iff A = ⊥

Remark. The embedding of propositional calculus presented above shows
the semantic flavour of map theory compared to pure λ-calculus: No terms ∧̇,
T, F of pure λ-calculus, {T, F} separable, can satisfy T∧̇T = T, T∧̇F = F∧̇F = F
and x∧̇y = y∧̇x. The ability to present propositional calculus this way in MT
depends on the introduction of T and if.

Remark. Strict definitions for the logical connectives were chosen in order
to make tautologies like x∧̇y = y∧̇x carry over directly. However, non-strict
logical connectives are useful in certain cases. As an example, Appendix C
defines a non-strict logical “and”, x:y, which is used indirectly in several axioms.
Logical connectives like parallel or, ∨̃, which satisfy e.g. T∨̃⊥ = T, ⊥∨̃T = T
and F∨̃F = F were avoided in MT for computational reasons. Even though a
construct like ∨̃ is computable, it introduces a lot of trouble to include it in a
programming language and it is virtually useless to the programmer. Parallel
or, ∨̃, exists in the κ-continuous semantics, so it could be added to MT without
loss of consistency.

4 Relative interpretation of ε and φ, and of pred-
icate calculus in a premodel

Here κ is any regular cardinal ≥ ω. Let Φ ⊆M satisfy

Φ = ↑Φ, Φ essentially κ-small, ⊥ 6∈ Φ (9)

Φ is essentially κ-small if there is a κ-small Ψ such that Ψ ⊆ Φ = ↑Ψ. Hence,
we may assume

Φ = ↑Ψ, Ψ κ-small, ⊥ 6∈ Ψ (10)

We define ε and φ relative to Φ and verify the predicate calculus axioms of
map theory for arbitrary Φ satisfying (9) and T ∈ Φ. In Section 7 we fix Φ to
obtain a model of all of map theory.

30

4.1 Interpretation of ε

Let p be a choice function on Φ, i.e. a function p : P(Φ)→ Φ such that p(A) ∈ A
for all non-empty subsets A of Φ. The existence of p follows from the axiom of
choice. Define e :M→ Φ ∪ {⊥, T} by:

e(u) = ⊥ iff ⊥ ∈ uΦ
e(u) = T iff uΦ ⊆ F
e(u) = p({x∈Φ | ux = T}) otherwise, i.e. if T ∈ uΦ 63 ⊥

Lemma 4.1.1 Let u, v ∈M. If e(u) 6= ⊥ and u ≤ v then e(u) = e(v).

Proof. If ⊥ ∈ uΦ then e(u) = ⊥ ≤ e(v). If uΦ ⊆ F then vΦ ⊆ ↑uΦ ⊆ F and
e(u) = e(v) = T. Now assume T ∈ uΦ 63 ⊥. We have ux = T ⇒ vx = T and
ux ∈ F ⇒ vx ∈ F so T ∈ vΦ 63 ⊥, ux = T⇔ vx = T and e(u) = e(v). ♦
Lemma 4.1.2 e is κ-continuous.

Proof. We first show that dom e = {eu | u 6= ⊥} is open. Indeed dom e = {u |
Φ ⊆ dom u} = {u | Ψ ⊆ domu} (since dom u = ↑domu) =

⋂{Ox | x ∈ Ψ},
where Ox = {u | ux 6= ⊥}. Thus dom e appears as the intersection of a κ-small
family of open sets, which is enough to conclude that dom e is open.

We now prove that e is κ-continuous [same argument as for Lemma 6.2.2 later
on]. We have to show that e(sup B) ≤ sup eB for any κ-directed B. Without
loss of generality we suppose e(supB) 6= ⊥. Since dom e is open there is some
b ∈ B such that eb 6= ⊥; since b ≤ supB we have e(sup B) = eb ≤ sup eB. ♦

Definition. ε ≡ λ(e) will be the interpretation in M of the constant ε in
map theory (Hilbert’s epsilon operator). Note that the definition of ε depends
on Φ. ε will satisfy some axioms of map theory regardless of the choice of Φ. In
Section 7 we fix Φ such that ε satisfies all axioms of map theory.

The following lemmas are direct consequences of the definition of ε:

Lemma 4.1.3 [Ackerman’s axiom] For all u, v ∈M:

[∀x ∈ Φ : r(ux) = r(vx)]⇒ εu = εv

Lemma 4.1.4 For all u ∈M:

u(εu) = ⊥ iff ⊥ ∈ uΦ
u(εu) ∈ F iff uΦ ⊆ F
u(εu) = T iff T ∈ uΦ 63 ⊥

4.2 Quantifiers

Definitions. ∃̇ ≡ λz.≈(z(εz)) is a term of Λε. For all terms A ∈ ΛM,C we
define the terms εx.A, ∃̇x.A and ∀̇x.A of ΛM,C as follows:

εx.A ≡ ε(λx.A)
∃̇x.A ≡ ∃̇(λx.A)
∀̇x.A ≡ ¬̇(∃̇x.¬̇A)

31

The following are provable using only the lambda-calculus axioms of map
theory:

∃̇x.A = ≈[A/x:=ε(λx.A)]
∀̇x.A = ≈[A/x:=ε(λx.¬̇A)]

The following lemmas are straightforward consequences of Lemma 4.1.4:

Lemma 4.2.1 For all A ∈ ΛM,C such that FV(A) ⊆ {x}, ∃̇x.A equals ⊥, T or
F in M and:

P |= ∃̇x.A = T iff ∀u ∈ Φ.P |= [A/x:=u] 6= ⊥ and
∃u ∈ Φ.P |= [A/x:=u] = T

P |= ∃̇x.A = ⊥ iff ∃u ∈ Φ.P |= [A/x:=u] = ⊥
P |= ∃̇x.A = F iff ∀u ∈ Φ.P |= [A/x:=u] ∈ F

Lemma 4.2.2 For all A ∈ ΛM,C such that FV(A) ⊆ {x}, ∀̇x.A equals ⊥, T or
F in M and:

P |= ∀̇x.A = T iff ∀u ∈ Φ.P |= [A/x:=u] = T

P |= ∀̇x.A = ⊥ iff ∃u ∈ Φ.P |= [A/x:=u] = ⊥
P |= ∀̇x.A = F iff ∀u ∈ Φ.P |= [A/x:=u] 6= ⊥ and

∃u ∈ Φ.P |= [A/x:=u] ∈ F

4.3 Satisfaction of predicate calculus axioms

In addition to (9) and (10) we now assume

Ψ ⊆Mc (11)

Now Φ = ↑Ψ is κ-open so χΦ is κ-continuous. Define:

φ ≡ λ(χΦ)

For any u ∈ M, φu = T if u ∈ Φ and φu = ⊥ otherwise; in particular, for
any closed A ∈ ΛM,C ,

P |= φA = T iff (the interpretation of) A is in Φ
P |= φA = ⊥ otherwise

Theorem 4.3.1 The first order predicate calculus axioms of map theory are
satisfied in any κ-continuous premodel P, provided ⊥, T, if, ε and φ are inter-
preted as above and provided that (10), (11) and T ∈ Φ hold:

Q′1 : ∀̇x.A, φB → [A/x:=B]
Q2 : εx.A = εx.(φx∧̇A)
Q3 : φ(εx.A) = ∀̇x.!A
Q′4 : ∃̇x.A → ∀̇x.!A
Q5 ∀̇x.A = ∀̇x.(φx∧̇A)

32

The intuition behind each axiom is quite clear: Q′
1 says that ∀̇ quantifies over

no less than Φ and Q5 that ∀̇ quantifies over no more than Φ; in conjunction
they say that ∀̇ quantifies over Φ. Q2 says that ε merely depends on A for x ∈ Φ
and merely depends on the root of A. Hence, Q2 both expresses Ackerman’s
axiom and expresses that ε ‘quantifies’ over no more than Φ. Q3 says that εx.A
is defined iff A is defined on any x ∈ φ, and then belongs to Φ. Among other,
this means that ε ‘quantifies’ over no more than Φ. Q′4 says that if ∃x.A is true
then A is defined all over Φ.

When writing [18], Q4 and Q5 were added late in the development in order to
get two important proofs through. This has made the collection of quantification
axioms somewhat peculiar and redundant.

Axiom Q′
1 above differs from that of [18] in that the premisses of → are

reversed. Axiom Q′4 above differs from Q4 in [18] which says ∃̇x.A → φ(εx.A)
(if there exists an x ∈ Φ that satisfies A, then εx.A is such an x and, in
particular, belongs to Φ). Q4 and Q′4 are equivalent assuming Q3.
Proof of Theorem 4.3.1. To check that P satisfies the Q-axioms we work,
as usual, with closed terms of ΛM,C instead of working with open terms of ΛC .
We freely use the fact that P satisfies the λ-calculus axioms (c.f. Section 3.3)
and, in particular, we use the last remark of Section 3.4. We prove Q′1, Q2 and
Q3, and leave Q′4 and Q5 as easy exercises.

Q′1: Suppose ∀̇x.A = T and B ∈ Φ. Then, for all u ∈ Φ, [A/x:=u] = T
(Lemma 4.2.2). In particular, [A/x:=B] = T.

Q2: It is enough to prove that for all u ∈ Φ we have: r((λx.A)u) =
r((λx.(φx∧̇A))u) (c.f. Lemma 4.1.3 (Ackerman’s axiom)). But this is equiv-
alent to r([A/x:=u]) = r([A/x:=u]∧̇φu), which is trivially true since φu = T.

Q3: !A ≡ ifATT and, hence, ∀̇x.!A, has value ⊥ or T in M, and this is
also the case for φ(εx.A). Now φ(εx.A) = T iff εx.A ∈ Φ iff (λx.A)u 6= ⊥
for all u ∈ Φ (here we use T ∈ Φ); thus φ(εx.A) = T iff, for all u ∈ Φ,
if[A/x:=u]TT = T iff ∀̇x.ifATT = T. ♦

Remark. We could recover that P satisfies all theorems of (usual) predicate
calculus, provided the connectives and the quantifiers are replaced by their
dotted version and that free variables, if any, are limited to range over Φ. This
could in fact be done for predicate calculus over any signature, and is true
in fact for any possible modelisation of map theory, since there is a syntactic
translation of predicate calculus into map theory ([19], p.8, [18], p.60).

But we have not yet been restrictive enough on Φ so as to ensure that
this interpretation of predicate calculus is faithful [at this stage we could have
Φ = Ψ = {T} or Φ = Ψ = {T,F}] and of course it is not the case:

Example 1. Suppose |Ψ| < ω (which is necessarily the case if κ = ω since Ψ is
κ-small). Then we would have, for any A ∈ ΛM,C : P |= ∃̇x1 · · ·xn.[[A/x:=x1]∧̇
· · · ∧̇[A/x:=xn]⇒̇∀̇x.A], where n = |Ψ|.

Example 2. Suppose T is not in Φ. Then P |= ∀̇x∀̇y.(x∧̇y⇔̇x∨̇y).
On the contrary, Φ cannot be too rich: Φ is already bounded to be essentially

κ-small; on the other hand, requirements like λx.x ∈ Φ would contradict the
well-foundedness axioms of map theory (syntactic point of view) and the set

33

theoretic properties of the model (semantic point of view). The idea behind
Φ is that (Φ, ∈̇) is a model of ZFC for a particular term ∈̇ of ΛC . For that
particular term, ∀̇y.y∈̇λx.x is provable in MT, so λx.x represents at least the
class of all sets. The requirement λx.x ∈ Φ is equivalent to the requirement that
the class of all sets is itself a set. Furthermore our intention is not only to model
map theory but also to realise all the (semantic) intuitions which were behind it,
in particular the strong version of well-foundedness which asserts that if a and
x1, x2, · · · are well-founded (i.e. elements of Φ), then there exists an n ≥ 0 such
that ax1 · · ·xn = T. Now it is clear that λx.x ∈ Φ contradicts this property
since if a and x1, x2, · · · are all equal to λx.x, then ax1 · · ·xn = λx.x which
differs from T in any non trivial model of the λ-calculus axioms.

5 Satisfaction of the well-foundedness axioms if
σ < κ

The aim of this section is to introduce two semantic conditions on Φ and to show
that they are indeed sufficient to ensure the satisfaction of the well-foundedness
axioms. The Strong Induction Principle (SIP) is a strong non-equational way
to ensure the satisfaction of the induction rule, via the well-foundedness of Φ
w.r.t. a binary relation which will be specified below. All other well-foundedness
axioms of map theory may be viewed as simple closure properties of Φ, which will
follow essentially from the satisfaction by Φ of a recursive equation that we will
call the Generic Closure Property (GCP). These two principles, together with
the Strong Quartum Non Datur (SQND) are the basic intuitions behind map
theory ([18], part I), which can be viewed as a sufficiently powerful equational
approximation of them.

As already seen the premodels we are working with are, roughly speaking,
those κ-models of λ-calculus which satisfy SQND; the fundamental result of this
paper is that, provided there is some inaccessible below κ, they always contain
a κ-open set Φ which satisfy the SIP and GCP (in addition to the conditions
studied in Section 4, namely that Φ is essentially κ-small and contains T but
not ⊥). Otherwise stated we are providing “strong” models of map theory.

It is worthwhile to mention also the following about the meaning of the
Strong Induction Principle; since it is outside the scope of the present paper,
we will do it without any justification.

As already mentioned, it is intended in the philosophy of map theory that,
given any model M of it (found in a strong enough usual set theoretic universe),
the subclass (or subset if M is a set) Φ of all elements u of M such that φu = T
(in M), endowed with the interpretation of the term ∈̇, will be a model of ZFC.
The Induction rule conveys the fact that this latter ZFC-model is well-founded
and the Strong Induction Principle says in addition that it is an “ω-model”,
namely that is has (essentially) the same integers as the universe we started
from (two possible definitions for the set of integers in map theory are given in
[18], p.21 and p.61, respectively).

34

5.1 The strong Induction Principle and the Generic Clo-
sure Property

The statements of SIP and GCP need the definition of two operators on subsets
of M .

G(<ω) and Gω are the sets of finite and infinite sequences, respectively, of
elements of G, including the empty one. Such sequences are denoted by u, v, x,
etc, even if they are infinite. x ≤ y means that `(x) = `(y) and ∀i ≤ `(x), xi ≤
yi. For x = (xm)m∈ω ∈ Gω, and all n ≥ 0, we define: xn ≡ (x0, . . . , xn−1),
thus x0 is the empty sequence.

Definition. G is essentially κ-small (σ-small) if there is an H such that
|H| < κ (< σ) and H ⊆ G ⊆ ↑H.

Definition. The dual G◦ of any subset G of M is the set of those elements
which are well-founded w.r.t. G:

G◦ = {u∈M | ∀x∈Gω∃n∈ω: ux1 · · ·xn = T}

(As a special case, ∅◦ = M \ {⊥}). Furthermore, <G is the binary relation
defined on G◦ by

v <G u iff u 6= T and v ∈ uG (12)

In the set-theoretic world v <G u means that v “belongs to” u and that this
fact is witnessed by an element of G. This interpretation gets its full meaning
when G is Φ, namely the “class of all sets” (see below and Appendix A).

At this point we only need the most trivial properties of the operator,
namely:

• T ∈ G◦, ⊥ 6∈ G◦ and, for all u ∈ G◦ and all y ∈ G<ω, uy ∈ G◦.

• <G is well-founded on G◦.

• H ⊆ K ⇒ K◦ ⊆ H◦

The name “dual” was originally chosen because of some vague similarity
with duality in linear algebra and because Φ was originally desired to satisfy
Φ = Φ◦◦ (which did not work out well). Instead of Φ = Φ◦◦, Φ now satisfies
Φ ⊆ Φ◦◦ (Lemma A.1.4) and a softening of Φ◦◦ ⊆ Φ. The softening of Φ◦◦ ⊆
Φ is formulated in the Generic Closure Property. The property Φ ⊆ Φ◦◦ is
syntactically difficult to express, but the Strong Induction Principle below is
just as useful.

For any two subsets H and K of M , we define

H → K ≡ {u∈M | ∀x∈H: ux ∈ K}

The Strong Induction Principle (SIP) is the (semantic) requirement that

Φ ⊆ Φ◦

35

Because of the well-foundedness of <Φ on Φ◦ and of the SQND it is easy to see
that any premodel enriched with an open set Φ satisfying the Strong Induction
Principle, will weakly satisfy the Induction rule IND.

The Generic Closure Property (GCP) is the recursive equation:

Φ =
⋃
{G◦ → Φ | G ∈ Oσ(Φ)}

where Oσ(Φ) is the set of all essentially σ-small open subsets of Φ.
It would be sufficient to satisfy the simpler recursive equation Φ = Φ◦ → Φ.

However, this is inconsistent with the other requirements since it can be proved
that ε ∈ Φ◦ → Φ but ε 6∈ Φ (c.f. Appendix A.1).

The GCP admits several useful equivalent formulations which will be given
in Section 7.

The existence of an (adequate) solution of the GCP in (all) our premodels
will be proved in section 7. We will then need lemmas asserting things like:
“If G ∈ Oσ(Φ), then G◦ → G are in Oσ(Φ) too”. Facts of this kind are not
at all obvious; they force us to work with the sets of compact elements which
generate the open sets and require a real mathematical work. This motivates
the machinery developed in Section 6.

We now work with a fixed, κ-continuous premodel P = (M, Ã, λ̃) where
κ > ω. When needed, σ is an inaccessible cardinal ≤ κ. G, H and K will
denote nonempty subsets ofM. Assuming the results proved in Section 6 and 7
we suppose that we have available a Φ which satisfies the following requirements.

• Φ is an essentially κ-small open subset of M ,

• T, F ∈ Φ and ⊥ 6∈ Φ,

• Φ ⊆ Φ◦ (SIP), and

• Φ =
⋃{G◦ → Φ | G ∈ Oσ(Φ)} (GCP).

5.2 Closure properties of Φ and Φ◦ and satisfaction of the
axioms

This subsection proves the semantic versions of the well-foundedness axioms
(the “set theory” axioms in Appendix C).

Definition. Here, a κ-continuous model will be a pair (P, j) such that there
is a σ < κ, σ inaccessible, P is a κ-continuous premodel, and j interprets the
constants of map theory as indicated before; in particular, the interpretation of
φ and ε is via a κ-open set Φ satisfying the conditions just stated above.

It is easy to see that T, F ∈ Φ, if, φ, ε ∈ Φ◦, and ⊥ 6∈ Φ◦ (c.f. Appendix A.1).
Notation. H1, . . . , Hn → K means H1 → (H2 → · · · (Hn → K) · · ·)) if

n > 1. Hn → K means H, . . . , H → K where H occurs n times.

Lemma 5.2.1 For all n ∈ N,

Φ ⊆ (Φ◦)n → Φ ⊆ Φn → Φ ⊆ Φn → Φ◦ = Φ◦

36

Proof. By induction on n, using the trivial covariance and contravariance
properties of the arrow, and the various properties of Φ. We treat n = 1:

If u ∈ Φ, then u ∈ G◦ → Φ for some G ⊆ Φ, hence u ∈ Φ◦ → Φ; Φ◦ → Φ ⊆
Φ→ Φ ⊆ Φ→ Φ◦ since Φ ⊆ Φ◦, and finally Φ→ Φ◦ = Φ◦ is obvious. ♦
Corollary 5.2.2 Any κ-continuous model P satisfies the well-foundedness ax-
ioms Well1, Well3, C-A, C-K’ and C-P’ stated in Appendix C.

Proof. The axioms state T ∈ Φ, ⊥ 6∈ Φ, Φ ⊆ Φ → Φ, λx.T ∈ Φ, and
λx.(if xTT) ∈ Φ, respectively. We just have to check the last one. But it is
clear that λx.(ifxTT) ∈ G◦ → T ⊆ Φ for (all) G ∈ Pσ(Φ), since ⊥ 6∈ G◦. ♦
Fact 5.2.3 Φ is well-founded w.r.t. <Φ.

Proof. Follows immediately from Φ ⊆ Φ◦ and the definition of <Φ given in
(12). ♦
Lemma 5.2.4 Φ is the smallest subset X ofM such that

T ∈ X (Φ→ X) ∩ Φ ⊆ X (13)

Proof. That Φ satisfies (13) is obvious; conversely suppose X satisfies (13)
and Φ \ X 6= ∅; take u in Φ \ X, minimal w.r.t. <Φ. Certainly u 6= T; now,
by minimality of u, and the fact that uΦ ⊆ Φ (since u ∈ Φ ⊆ Φ → Φ) we get
uΦ ⊆ X; since X satisfies (13) we have u ∈ X which yields a contradiction. ♦
Corollary 5.2.5 Any κ-continuous model P satisfies the induction rule in Ap-
pendix C.

Proof. We assume A,B ∈ ΛM,C , A closed, FV(B) ⊆ {x}. Now, if P satisfies
the premises of the induction rule and P |= A = T, then X = {u ∈ M |
[B/x:=u] = T} satisfies (13) of Lemma 5.2.4, so Φ ⊆ X and P satisfies the
conclusion of the induction rule. ♦

We now turn to the (interpretation of the) combinators that appear explicitly
in the well-foundedness axioms of map theory, namely P , Curry and Prim, as
well as some that occur implicitly. The former are treated in Lemma 5.2.6, the
latter in Lemma 5.2.8.

Definition. The definitions of P , Curry and Prim are stated in Appendix
C. P is a pairing construct and Curry expresses currification; their definitions
are repeated here:

P = λa.λb.λx.(ifx a b)
Curry = λf.λx.λy.(f (P x y))

Prim expresses a sort of transfinite primitive recursion, and its definition
involves a fixed point operator. Here, we just have to know that for any f, a, b ∈
P, if g = Prim f a b then for all x ∈ P:

g x =
a if x = T
⊥ if x = ⊥
fλz.g(x(bz)) otherwise

37

Lemma 5.2.6 In any κ-continuous premodel P (κ > σ) we have

(a) P ∈ G◦, G◦ → G◦ for any G ⊆ Φ; (also P ∈ Φ,Φ→ Φ).

(b) Curry ∈ Φ→ Φ

(c) Prim ∈ (Φ→ Φ), Φ, Φ→ Φ

(In particular they all live in Φ◦).

Proof. (a) is clear since for all u, v ∈ G◦, Puv = λx.ifx u v ∈ G◦ → G◦ ⊆
G → G◦ = G◦ (note that Φ ⊆ Φ◦ implies G ⊆ G◦ for all G ⊆ Φ). If u, v ∈ Φ,
Puv ∈ G◦ → Φ for any G ⊆ Φ, thus Puv ∈ Φ.

(b) if u ∈ Φ, then u ∈ G◦ → Φ for some G ∈ Oσ(Φ), hence Curryu =
λx.λy.u(Pxy) ∈ G◦, G◦ → Φ ⊆ Φ (using (a) and Corollary 7.1.4).

(c) suppose f ∈ Φ → Φ and a, b ∈ Φ. Let G ∈ Oσ(Φ) be such that a, b ∈
G◦ → G (c.f. Lemma 7.1.3 (a)). We prove that g = Prim f a b satisfies g ∈
G◦ → Φ (thus g ∈ Φ). Suppose there is an x ∈ G◦ such that gx 6∈ Φ. We choose
x minimal for <G (c.f. (12)); then certainly x 6= T (otherwise gx = a ∈ Φ) and
gx = fλu.g(x(bu)). Now for all u ∈ G◦, bu ∈ G, since x(bu) <G x we have
that, for all u ∈ G◦, g(x(bu)) ∈ Φ, hence λu.g(x(bu)) ∈ G◦ → Φ ⊆ Φ and
gx ∈ Φ (since f ∈ Φ → Φ) which yields a contradiction. Hence, gG◦ ⊆ Φ and
g ∈ G◦ → Φ ⊆ Φ. ♦

Corollary 5.2.7 Any κ-continuous model P satisfies C-Curry and C-Prim.

Proof. C-Curry and C-Prim are just the simplest equational ways to express
the closure properties of Lemma 5.2.6. ♦

Lemma 5.2.8 (a) λu.λx.uxx ∈ Φ→ Φ

(b) ◦ ∈ (Φ→ Φ),Φ→ Φ where ◦ = λw.λv.λz.w(vz)

(c) λz.(w ◦ v)zz ∈ Φ for all v ∈ Φ and w ∈ Φ→ Φ.

Proof. (c) is a direct consequence of (a) and (b).
(a) let u ∈ Φ; then u ∈ G◦, G◦ → Φ for some G ∈ Oσ(Φ) (c.f. Corollary

7.1.4), hence λx.uxx ∈ G◦ → Φ ⊆ Φ as required.
(b) let w ∈ Φ → Φ and v ∈ Φ; then v ∈ G◦ → Φ for some G ∈ Oσ(Φ). If

z ∈ G◦, then vz ∈ Φ and w(vz) ∈ Φ. ♦

Corollary 5.2.9 P |= C-M1

Proof. We have to show that, for any A ∈ ΛM,C such that FV(A) ⊆ {x, z} :

λz.λx.A ∈ Φ→ Φ⇒ ∀v ∈ Φ : λx.[A/z:=vx] ∈ Φ

Let v ∈ Φ and w = λz.λx.A ∈ Φ→ Φ. By Lemma 5.2.8 (c), a = λx.(w ◦v)xx =
λx.[A/z:=vx] ∈ Φ which proves the corollary. ♦

38

Corollary 5.2.10 P satisfies Well2 and C-M2.

Proof. (Well2) First we notice that u ∈ Φ iff φu = T iff φu ∈ Φ. Second we
claim that it suffices to show that for any A ∈ ΛM,C such that FV(A) ⊆ {x},
and G ∈ Oσ(Φ), λx.A ∈ G◦ → Φ iff λx.φA ∈ G◦ → Φ. But this is clear
since, for all w ∈ G◦, (λx.A)w ∈ Φ iff [A/x:=w] ∈ Φ iff [φA/x:=w] ∈ Φ iff
(λx.φA)w ∈ Φ.

(C-M2) We have to show that, for any A ∈ ΛM,C such that FV(A) ⊆ {x, z},
∀v ∈ Φ : λx.[A/z:=v] ∈ Φ ⇒ ∀v ∈ Φ : λx.[A/x := xv/z := v] ∈ Φ. Let us fix
v ∈ Φ; by hypothesis there is a G ∈ Oσ(Φ) such that λx.[A/z:=v] ∈ G◦ → Φ.
Without loss of generality we assume v ∈ G (otherwise take G′ = G ∪ {v}).
Now, for any w ∈ G◦, wv ∈ G◦, hence (λx.[A/z:=v])(wv) ∈ Φ; thus λx.[A/x :=
xv, z := v] ∈ Φ. ♦

Remark. κ ≥ σ was enough for Well 1,3, C-A, C-K’, C-P’ and C-Curry
(which do not contain ε, even implicitly).

Remark. As already used in [18], C-M1 and C-M2 are equivalent to the
following three axioms:

φa → λx.axx

∀̇x.φ(ax), φb → φ(a ◦ b)
φa, φb → λx.a(xb)

That C-M1 can be replaced by the two former is evident from the proof of
Corollary 5.2.9. In general, the three axioms above are easier to deal with in
model-theoretic treatments than C-M1 and C-M2.

6 Duality, types and arrows in a premodel

We still work with a fixed, κ-continuous premodel P = (M, Ã, λ̃) where κ > ω.
When needed, σ is an inaccessible cardinal ≤ κ. G, H and K will denote
nonempty subsets of M.

Gc ≡ Mc ∩ G is the set of κ-compact elements of G; recall that G is open
iff G = ↑Gc (c.f. Section 2.2). δ(G) is the set of minimal elements of G; if G is
open then δ(G) ⊆ Gc but, even in this case, we may have δ(G) = ∅.

For any K, a choice function w.r.t. K is a function q : ↑K → K such that
q(x) ∈ K ∩ ↓x. q extends to (↑K)ω by q((xn)n∈ω) ≡ (q(xn))n∈ω.

Using a choice function w.r.t. Gc it is easy to prove:

Lemma 6.0.11 If G is open, then G is essentially κ-small (σ-small) iff there is
an H ⊆ Gc, |H| < κ (< σ) and G = ↑H.

6.1 Duality and types

We first quote some easy properties of the dual operator G◦. For u ∈ G◦ and
x ∈ Gω, we let x[u] denote the smallest subsequence xn such that uxn = T.

39

Fact 6.1.1 (a) T ∈ G◦ and λx1 · · ·xn.T ∈ G◦ for all n.
(b) ⊥ 6∈ G◦, and for all u ∈ G◦ and y ∈ G<ω we have uy 6= ⊥.

Fact 6.1.2 (a) G◦ = ↑(G◦) = (↑G)◦.
(b) H ⊆ G⇒ G◦ ⊆ H◦.
(c) G ⊆ ↑H ⇒ H◦ ⊆ G◦.
(d) H ⊆ G ⊆ ↑H ⇒ G◦ = H◦.
(e) If H is κ-open and H 6= G, then H◦ 6= G◦

To see (e), note that (the code of) χH belongs to H◦ \G◦.

The following notion of a type was introduced in [18]. As noted in the
introduction, it is related to the notion of type in Model Theory.

Definition. The type of u ∈ M over G ⊆ M (G 6= ∅) is the function
t(u/G) : G<ω → {⊥, T, λx.T} which associates r(uy) to any y ∈ G<ω.

We set

u =G v iff t(u/G) = t(v/G) iff ∀y∈G<ω : r(uy) = r(vy)

so

u =G v iff for all y ∈ G<ω, uy = ⊥ ⇔ vy = ⊥ and uy = T⇔ vy = T.

This last characterisation does not mention r anymore. Further define:

uG ≡ {v∈M | v =G u}

Fact 6.1.3 (a) If u =G v then u = T⇔ v = T and u = ⊥ ⇔ v = ⊥.
(b) If u =G v then uy =G vy for all y ∈ G<ω.
(c) |M/=G| ≤ 2sup(ω,|G|), thus if G is σ-small then the set of types over G will
be σ-small too.
(d) ⊥G = {⊥}, TG = {T}, and uG ⊆ F if u is proper.
(e) If u ∈ G◦, then uG ⊆ G◦; thus G◦ =

⋃{uG | u ∈ G◦}.
(f) If u ∈ G◦, then uG = ↑(uG); thus δ(G◦) =

⋃{δ(uG) | u ∈ G◦}.
(g) If u, v ∈ G◦ are compatible, then uG = vG (= wG for w ≥ u, v).
(h) All λx1 · · ·xn.T (n ≥ 0) have different types.

All this is very easy, and so is the exercise below:
Exercise. If P is a strong premodel then, for all G, u, uG is closed under

sups of bounded subsets and infs of non-empty κ-small subsets; in particular,
|δ(uG)| ≤ 1.

For general premodels we will get in fact a much better result than the latter
one, but only for u ∈ G◦ and G open (or H ⊆ G ⊆ ↑H for some H ⊆Mc): We
will show that, in this case, |δ(uG)| = 1 and uG = ↑δ(uG) (c.f. Lemma 6.1.9);
in other words, each uG has a bottom.

Lemma 6.1.4 If H ⊆ G ⊆ ↑H and u ∈ G◦, then uG = uH

40

Proof. uG ⊆ uH is clear. Suppose now we have v =H u (so u, v ∈ H◦) and let
x ∈ Gω; let q be a choice function w.r.t. H and y = q(x) ∈ Hω; let also m be
such that m = y[u] (= y[v] since v =H u). We have uyn = T = vyn for each
n ≥ m and uyn, vyn ∈ F for each n < m. Thus u and v behave the same way
on all x ∈ Gω, so u =G v. ♦
Lemma 6.1.5 If G is essentially κ-small and u ∈ G◦, then uG is open.

Proof. Because of Lemma 6.1.4 it is enough to consider the case where |G| < κ.
Now, for all y ∈M<ω define the sets

T (y) = {v∈M | vy = T}
F(y) = {v∈M | vy ∈ F}

Using Fact 3.1.1 these sets are easily seen to be κ-open. Now,

uG =
⋂{T (y) | y ∈ G<ω ∧ uy = T}

∩ ⋂{F(y) | y ∈ G<ω ∧ uy ∈ F}

thus uG is an intersection of |G<ω| open sets. If G is κ-small, then G<ω is
κ-small too (since κ > ω) and uG is open (c.f. fact 2.1.1). ♦
Corollary 6.1.6 If G is essentially κ-small then G◦ is open.

Proof. Use Lemma 6.1.5 and Fact 6.1.3 (e). ♦
Lemma 6.1.7 If G is open, then, for all u ∈M, uG = uGc .

Proof. Obviously u =G v implies u =Gc v. Now, each element of G is the
directed sup of elements in Gc; using that iterated application is κ-continuous
we have that

∀y∈G<ω : uy = sup {uz | z ≤ y ∧ z ∈ G<ω
c }

Thus t(u/G) is completely determined by t(u/Gc), i.e. u =Gc v ⇒ u =G v. ♦
To continue the study of uG and G◦ we need an intermediate definition.

Definition. For G open, ⇓G is the element of M defined by:

⇓G ≡ Yλk.λu.ifuT λy.[if (χGy) (k(uy))⊥]

where Y is some fixed point operator inM and χG is the characteristic function
of G. Thus, for all u ∈M we have:

⇓Gu = ifuT λy.[if (χGy) (⇓G(uy))⊥]

Hence:

r(⇓Gu) = r(u)
y ∈ G⇒ ⇓Guy = ⇓G(uy)

From these properties we easily get:

41

Lemma 6.1.8 For all open G and u ∈M, we have ⇓Gu ∈ uG.

Proof. We have, for all x ∈ Gω and n ∈ N: ⇓Guxn = ⇓G(uxn). Now,
⇓G(uxn) = ⊥ (or T) iff uxn = ⊥ (or T). Thus (⇓Gu)xn ≡ ⇓Guxn = ⊥ (or T)
iff uxn = ⊥ (or T), so u =G ⇓Gu which proves ⇓Gu ∈ uG. ♦

Lemma 6.1.9 For all open G and all u ∈ G◦:
(a) ⇓Gu is the minimum of uG, and uG = ↑{⇓Gu}.
(b) If G is essentially κ-small then uG is open and ⇓Gu ∈Mc (or G◦c).

Proof. (a) We first show that, if v =G u =G ⇓Gu and ⇓Gu 6≤ v then there is
an infinite sequence x ∈ Gω such that, for all n ∈ ω,

⇓Guxn 6≤ vxn (14)

Since (14) implies

uxn 6= ⊥, T (15)

(because u, ⇓Gu and v have the same type over G) the existence of such an x
contradicts u ∈ G◦.

We build xn by induction in n. As usual, x0 is the empty sequence. Suppose
we know xn satisfying (14). Then both sides of the inequality are proper maps
(because of (15), and there is an xn+1 ∈ M such that ⇓Guxnxn+1 6≤ vxnxn+1

(c.f. Lemma 3.1.6). This forces xn+1 to be in G, because of the obvious:

Fact 6.1.10 If ⇓Gux1 · · ·xn 6= T and xn+1 6∈ G then ⇓Gux1 · · ·xn+1 = ⊥.

The second claim follows, since u ∈ G◦ implies uG = ↑uG (c.f. Fact 6.1.3).
(b) follows from Lemma 6.1.5 and (a). ♦

Theorem 6.1.11 For all open G, G 6= ∅,
(a) G◦ = ↑δ(G◦) and δ(G◦) = {⇓Gu | u ∈ G◦} is an infinite set of incompatible
elements.
(b) if G is essentially κ-small, then G◦ is open and δ(G◦) ⊆Mc.
(c) if G is essentially σ-small, then G◦ is essentially σ-small (and, hence, κ-
small).

We cannot deduce that G◦ is essentially κ-small in case (b) above, unless κ
is inaccessible.
Proof. (a) use Lemma 6.1.9 and Fact 6.1.3 (e–h).
(b) use Corollary 6.1.6.
(c) follows from |δ(G◦)| = |G◦/ =G | and Fact 6.1.3 (c). ♦

Since G◦ = H◦ for those H such that H ⊆ G ⊆ ↑H (c.f. Fact 6.1.2 (d)) we
have:

Corollary 6.1.12 The same conclusions hold for those G ⊆M such that there
exist H ⊆Mc such that H ⊆ G ⊆ ↑H (and |H| < κ or σ if needed).

42

6.2 Arrows

Definition. To each u ∈M is associated the open set

domu ≡ {x∈M | ux 6= ⊥}
In order to be able to control the nature and size of

H → K ≡ {u∈M | ∀x∈H : ux ∈ K}
from that of H and K, we define, for G 6= ∅:

H →G K ≡ {u ∈ H → K |
domu ⊆ H ∧ ∀x, y∈M : (x =G y ⇒ ux = uy)}

Fact 6.2.1 (a) |H →G K| ≤ 2 + |K||M/=G|. In particular, if G and K are
σ-small, then H →G K is σ-small.

Note that |(H →G K)\{T,⊥}| ≤ |K||M/=G|; this explains where “2” comes
in.
(b) G◦ → K is obviously increasing (i.e. “covariant”) both w.r.t. G and K (for
⊆). This is still true w.r.t. K for G◦ →G K, but false w.r.t. G (unless ⊥ ∈ K,
a case we are not interested in).
(c) If ⊥ 6∈ K, then ⊥,T 6∈ G◦ →G K.
(d) For all u ∈ G◦ →G K we have u⊥ = ⊥, since ⊥ 6∈ G◦.
(e) G→ G◦ = G◦ for any G.
(f) G◦ →G δ(K) ⊆ δ(G◦ → K) for any G and K.

In fact the constraints in the definition of H →G K are so strong that
H →G K is empty, for example, if H is not enough upwards closed, or if
⊥ 6∈ K and some vG meets both H andM\H. However, these constraints are
completely coherent in the cases we are interested in, namely H = G◦ and G
κ-small (where H is open by Corollary 6.1.6).

Lemma 6.2.2 Let G open, G 6= ∅, K ⊆M, and s : δ(G◦)→ K. Then g ≡ sG◦

defined by

g(x) =
{

s(⇓Gx) if x ∈ G◦

⊥ otherwise

is κ-continuous and λ(g) ∈ G◦ →G K.

Proof. First we show

x ≤ y ∧ g(x) 6= ⊥ ⇒ g(x) = g(y) (16)

Indeed g(x) 6= ⊥ implies x ∈ G◦, so y ∈ G◦ and xG = yG (c.f. Fact 6.1.3 (g)).
Hence, ⇓Gx = ⇓Gy (Lemma 6.1.9), and g(x) = g(y).

Suppose now a = sup B for some κ-directed B. We have to show g(a) ≤
sup g(B). The non-trivial case is a ∈ G◦; then, since G◦ is open (Corollary
6.1.6), there exists a c ∈ B ∩ G◦. Now, c ≤ a; hence g(a) = g(c) ≤ sup g(B)
thus g is κ-continuous. It is now clear that λ(g) ∈ G◦ →G K. ♦

43

Corollary 6.2.3 If G is open and essentially κ-small, then G◦ 6= G.

Proof. It is sufficient to consider G 6= ∅. For any permutation s of δ(G◦)
let sG◦ be defined as in Lemma 6.2.2. We have sG◦ ∈ G◦ →G δ(G◦), by
Lemma 6.2.2, hence sG◦ ∈ δ(G◦ → G◦) (c.f. Fact 6.2.1 (f)); moreover s 6= s′

implies sG◦ 6= s′G◦ . Thus |δ(G◦ → G◦)| ≥ 2|δ(G
◦)|. Now, if G◦ = G, then

G◦ = G→ G◦ = G◦ → G◦, so δ(G◦ → G◦) = δ(G◦). This is a contradiction. ♦

Corollary 6.2.4 If G ⊆Mc, |G| < κ, then

G◦ → ↑K = ↑(G◦ → K) =
{ ↑(G◦ →G K) if T 6∈ K
↑(G◦ →G K) ∪ {T} if T ∈ K

Proof. ⊇ is obvious. Now let q be a choice function w.r.t. K, u ∈ G◦ → ↑K,
f ≡ A(u) and g ≡ (g ◦ f)G◦ . Then v ≡ λ(g) ∈ G◦ →G K and v ≤ u since
vx = q(u(⇓Gx)) if x ∈ G◦ and ⊥ otherwise. ♦

Lemma 6.2.5 If G,K ⊆Mc and |G| < σ, then G◦ →G K ⊆Mc.

Proof. We consider the functions gu,v defined, for u ∈ G◦ and v ∈ K, by

gu,v =
{

v if x ∈ uG

⊥ otherwise

gu,v is κ-continuous because gu,v = sG◦ for s : δG◦ → K ∪ {⊥} defined by
s(⇓Gu) = v, s(⇓Gu′) = ⊥ if u′G 6= uG (c.f. Lemma 6.2.2. That gu,v is κ-compact
follows from the fact that v is compact and that, for any κ-continuous f , we
have:

gu,v ≤ f iff gu,v(⇓Gu) ≤ f(⇓Gu)

Now it is enough to notice that each element w ∈ G◦ →G K is either ⊥ (if
⊥ ∈ K) or (the code of) the sup of at most |G◦/ =G | compatible functions
gu,v. If G is σ-small then w is the sup of a σ-small, hence κ-small, set of
κ-compact elements, so it is κ-compact too. ♦

Corollary 6.2.6 Suppose G ⊆ Mc and |G| < σ; then G◦ →G G ⊆ Mc and
|G◦ →G G| < σ.

Proof. The first assertion follows from Lemma 6.2.5. Now |G◦ →G G| ≤
|G||M/=G| (Fact 6.2.1) and G and M/ =G are σ-small (Fact 6.1.3; since σ is
inaccessible we get that |G◦ →G G| is σ-small too. ♦

Corollary 6.2.7 Suppose G and H are open and G is essentially κ-small, then
G◦ → H is open.

Proof. G = ↑K for some K ⊆ Gc, |K| < κ, and G◦ → H = K◦ → H =
↑(K◦ →K H) (c.f. Corollary 6.2.4) and K◦ →K H ⊆Mc (c.f. Lemma 6.2.5). ♦

44

Lemma 6.2.8 If G and H are open, and G is essentially σ-small, then

G◦ → H =
⋃
{G◦ → H ′ | ∅ 6= H ′ ⊆ H, H ′ open and essentially σ-small}

Proof. Let q be a choice function w.r.t. Hc. By Theorem 6.1.11, G◦ = ↑δ(G◦)
and δ(G◦) is σ-small. For any u ∈ G◦ → H, uG◦ ⊆ ↑uδ(G◦) ⊆ ↑q(uδ(G◦)).
Now q(uδ(G◦)) is a σ-small subset of Hc, hence H ′ = ↑q(uδ(G◦)) is open and
essentially σ-small; and of course u ∈ G◦ → H ′. ♦

7 The existence of a well behaved Φ

φ and ε will be defined, as in Section 4, from an open set Φ of M, but we now
put further constraints on Φ in order to model the well-foundedness axioms.
This amounts more or less to ensure that (Φ/

.=, ∈̇) is a model of ZFC where ∈̇
and .= are the interpretations of two ΛC-terms defined in [18], p.20 and recalled
in Appendix C. See Appendix A.3 for a closer examination of (Φ/

.=, ∈̇).
We prove in Section 7.1 the existence of a well-behaved Φ (in the sense of

Theorem 7.1.1 below).
Recall that for any E ⊆ M, Pσ(E) is the set of σ-small subsets of E and

Oσ(E) is the set of essentially σ-small open subsets of E. This notation will
merely be used for E open. Note that Oσ(E) is closed under σ-small unions
since σ is regular.

7.1 Solving the Generic Closure Property

This section is devoted to the proof of the following theorem:

Theorem 7.1.1 Suppose κ ≥ σ, σ inaccessible. Then in any κ-continuous
premodel P there is an open set Φ such that:

(1) T ∈ Φ, ⊥ 6∈ Φ, F ∈ Φ.

(2) Φ ⊆ Φ◦

(3) Φ =
⋃{G◦ → Φ | G ∈ Oσ(Φ)}

(4) Φ = ↑Ψ for some Ψ ⊆Mc such that |Ψ| ≤ σ; in particular, if σ < κ, then
Φ will be essentially κ-small.

This will be sufficient to prove the consistency of the well-foundedness ax-
ioms. However, we will use two refinements of (3) which motivate the definition
below:

Definition. For any open set Φ of M we define:

F1(Φ) =
⋃{G◦ → Φ | G ∈ Oσ(Φ)}

F2(Φ) =
⋃{G◦ → G | G ∈ Oσ(Φ)}

F3(Φ) =
⋃{G◦, G◦ → G | G ∈ Oσ(Φ)}

where A,B → C means A → (B → C). All the Fi(Φ) are open sets (c.f.
Corollary 6.2.7).

45

Lemma 7.1.2 F1 = F2

Proof. Let Φ by any open set; then G◦ → G ⊆ G◦ → Φ for any G ∈ Oσ(Φ).
Conversely, G◦ → Φ =

⋃{G◦ → K | G,K ∈ Oσ(Φ)} (Lemma 6.2.8) ⊆⋃{L◦ → L | L ∈ Oσ(Φ)} (just take L = G ∪K). So F1(Φ) = F2(Φ). ♦

Lemma 7.1.3 If Φ = F1(Φ), then

(a) ∀K∈Pσ(Φ)∃H∈Oσ(Φ) : K ⊆ H◦ → H (⊆ H◦ → Φ)

(b) ∀G∈Oσ(Φ)∃H∈Oσ(Φ) : G ⊆ H◦ → H (⊆ H◦ → Φ)

(c) Φ = F3(Φ)

Proof. We use F1 = F2 freely.
(b) follows from (a): indeed if G ∈ Oσ(Φ), then G = ↑K for some K ∈

Pσ(Φ), and K ⊆ H◦ → H implies G ⊆ H◦ → H for some K ∈ Pσ(Φ).
(c) follows from (b), indeed G◦ → G ⊆ G◦ → (H◦ → H) for some H ∈

Oσ(Φ); hence G◦ → G ⊆ L◦ → (L◦ → L) with L = G ∪H.
(a) Let K ∈ Pσ(Φ); for any v ∈ K there is Hv ∈ Oσ(Φ) such that v ∈ H◦

v →
Hv (since Φ ⊆ F2(Φ)). Now H =

⋃{Hv | v ∈ K} is still in Oσ(Φ) (since K is
σ-small) and v ∈ H◦ → H for all v ∈ K. Thus K ⊆ H◦ → H. ♦

Corollary 7.1.4 Any Φ as in Theorem 7.1.1 satisfies:

Φ =
⋃{G◦ → G | G ∈ Oσ(Φ)}

Φ =
⋃{G◦, G◦ → G | G ∈ Oσ(Φ)}

There are many other decompositions of Φ that would be sufficient for our
purpose (all the reasonable ones work). A way of proving Theorem 7.1.1 is to
view it as a corollary of:

Theorem 7.1.5 Suppose κ ≥ σ. Then, in any κ-continuous premodel P there
is a subset Ψ of Mc such that:

(1) Ψ = {T} ∪⋃{H◦ →H H | H ∈ Pσ(Ψ)}
(2) Ψ ⊆ Ψ◦

(3) |Ψ| ≤ σ (this is the only place we need that σ is inaccessible).

Proof of Theorem 7.1.1 from Theorem 7.1.5. Let Φ = ↑Ψ. Since T ∈ Ψ
and ⊥ 6∈ Ψ, we have T ∈ Φ and ⊥ 6∈ Φ. Also Φ = ↑Ψ ⊆ Ψ◦ = Φ◦ (Fact 6.1.2).
We now show that Φ = F2(Φ). Indeed:

Φ = ↑Ψ =
⋃{↑(H◦ →H H) | H ∈ Pσ(Ψ)} ∪ {T}

=
⋃{H◦ → ↑H | H ∈ Pσ(Ψ)} (Corollary 6.2.4)

⊆ ⋃{G◦ → G | G ∈ Oσ(Φ)} (just take G = ↑H)

46

Conversely, if G ∈ Oσ(Φ), then there is a K ⊆ G such that G = ↑K and
|K| < σ; if q is a choice function w.r.t. Ψ as defined at the beginning of Section
6 then H = q(K) satisfies H ∈ Pσ(Φ), G ⊆ ↑H, and H◦ ⊆ G◦ (c.f. fact 6.1.2)
thus G◦ → G ⊆ H◦ → ↑H, and the inclusion Φ ⊆ F2(Φ) above is in fact an
equality.

Finally, F = λx.T ∈ {T}◦ → {T}, hence F ∈ Φ. ♦
The proof of Theorem 7.1.5 occupies the rest of the subsection.

Definition. Ψ is the least subset X of M such that:

(1) T ∈ X (2) G ∈ Pσ(X)⇒ G◦ →G G ⊆ X (17)

Since property (17) is closed under intersection, Ψ is the intersection of all
X ⊆M which satisfy (17).

The direct analogous definition for Φ as “the least open X ofM” such that

(1) T ∈ X (2) G ∈ Oσ(X)⇒ G◦ → G ⊆ X (18)

would not have worked since the family of open sets X satisfying (18) is not of
limited size and the intersection needs not be open.

Lemma 7.1.6 Ψ ⊆Mc

Proof. Mc satisfies (17) (c.f. Lemma 6.2.5). ♦

Lemma 7.1.7 ⊥ 6∈ Ψ

Proof. Ψ\{⊥} satisfies (17) because Ψ satisfies (17) and because ⊥ 6∈ G implies
⊥ 6∈ G◦ →G G; thus, by minimality of Ψ, we have Ψ = Ψ \ {⊥}. Hence, ⊥ 6∈ Ψ.
♦

Lemma 7.1.8 Ψ = Ψ′ where Ψ′ =
⋃{G◦ →G G | G ∈ Pσ(Ψ)} ∪ {T}

Proof. Ψ′ ⊆ Ψ is obvious; conversely, if x ∈M\Ψ′, then Ψ\{x} satisfies (17),
hence x 6∈ Ψ. ♦

To prove Ψ ⊆ Ψ◦ we need another characterisation of Ψ:

Lemma 7.1.9 Ψ is the least subset X ofM such that

(1) T ∈ X (2) G ∈ Pσ(X ∩Ψ)⇒ G◦ →G G ⊆ X (19)

(and is the intersection of all these subsets X).

Proof. Let Ψ′′ be the intersection of all X satisfying (19). Obviously, Ψ satisfies
(19), therefore Ψ′′ ⊆ Ψ. But now it is clear that Ψ′′ satisfies (17), hence Ψ ⊆ Ψ′′

which ends the proof. ♦

Lemma 7.1.10 Ψ ⊆ Ψ◦

47

Proof. It is enough to prove that Ψ◦ satisfies (19) (c.f. Lemma 7.1.9); and we
already know that T ∈ Ψ◦.

Let G ∈ Pσ(Ψ◦ ∩Ψ); we have to prove that G◦ →G G ⊆ Ψ◦. Since G◦ →G

G ⊆ G◦ → G ⊆ G◦ → Ψ◦ and since Ψ◦ = Ψ → Ψ◦ (c.f. Fact 6.2.1 (e)) it
is enough to prove that Ψ ⊆ G◦ and, for this, to prove that G◦ satisfies (19).
We already know that T ∈ G◦. Let H ∈ Pσ(G◦ ∩ Ψ); we have to prove that
H◦ →H H ⊆ G◦. Now H ⊆ Ψ, hence Ψ◦ ⊆ H◦, hence G ⊆ H◦. Thus
H◦ →H H ⊆ H◦ → H ⊆ G→ H ⊆ G→ G◦ = G◦ as required. ♦

For dealing with the size of Ψ we need a last characterisation: The induction
one.

Definition. (Ψα)α≤σ is the increasing sequence of subsets ofM defined by

Ψ0 = {T}
Ψα+1 = {T} ∪⋃{G◦ →G G | G ⊆ Ψα}
Ψα =

⋃
β<α Ψβ for limit ordinals α

Lemma 7.1.11 ∀α < σ : |Ψα| < σ

This is the only point where we use that σ is inaccessible.
Proof. By induction on α. For limit ordinals α we use that σ is regular. For
successor ordinals α we use Corollary 6.2.6 (if G is σ-small then G◦ →G G is
σ-small too), the fact that |Ψα| < σ ⇒ 2|Ψα| < σ (σ inaccessible), and that the
union of less than σ sets of cardinality less that σ is less than σ (regularity of
σ). ♦

Lemma 7.1.12 Ψ = Ψσ and |Ψ| ≤ σ

Proof. It is obvious that for any α ≤ σ, Ψα ⊆ Ψ (induction in α), hence
Ψσ ⊆ Ψ. Conversely any σ-small subset G of Ψσ is already in one of the Ψα,
α < σ; hence Ψσ satisfies (17) and Ψ ⊆ Ψσ. Now |Ψ| ≤ σ since Ψ is the
increasing union of σ subsets of Pσ(Ψ). ♦

It has now been verified that Ψ as defined by (17) satisfies Theorem 7.1.5,
which ends the proof of that theorem.

7.2 Conclusion

Theorem 7.2.1 If κ is > some inaccessible cardinal σ, then any κ-continuous
premodel can be expanded to a model of map theory.

Proof. It is sufficient to interpret φ by (the code of) the characteristic function
of some open set Φ = ↑Ψ satisfying the constraints in Theorem 7.1.1, and to
interpret ε by a choice function w.r.t. Φ, as in Section 4.1. ♦

Remark. The preceding construction provides of course as many solutions
φ as there are inaccessible cardinals σ below κ. For a given σ it yields the
smallest possible Φ (this is indeed clear from the proof of Lemma A.1.1).

48

8 Elementary construction of a premodel

A solution D to (1) will be obtained from a structured web C (a p.o with
coherence relation) satisfying a more simple recursive equation. As mentioned
in Section 2.4, D will in fact be a prime algebraic domain and the web C will
be isomorphic to Dp. This solution D will be referred to as a canonical (κ-
continuous) premodel of MT; the model obtained by interpreting furthermore
φ and ε as in Section 7 will be referred to as a canonical model of MT. All
canonical models and premodels are obtained by letting σ, κ, σ≤κ range over
all regular cardinals. A canonical model is only a model of MT if σ is inaccessible
and σ < κ].

8.1 Preordered coherent spaces

A preordered coherent space (pcs) is a triple C = (D,∼,¹) such that

(a) ∼ is a reflexive and symmetric relation on D.

(b) ¹ is a reflexive and transitive relation on D.

(c) x ∼ y ∧ x′ ¹ x ∧ y′ ¹ y ⇒ x′ ∼ y′

C is an ocs (ordered coherent space) if furthermore ¹ is a p.o (i.e. is anti-
symmetric).

Example. Starting from any κ-Scott domainD, any subset E ofD, equipped
with the induced partial order and compatibility relation (x ∼ y if {x, y} has
an upper bound in D), is an ocs, but the relevant example for our purpose is
E = Dp.

(D,∼,¹) v (D′,∼′,¹′) will mean D ⊆ D′ ∧ ∼ = ∼′ ∩D2 ∧ ¹ = ¹′ ∩D2.
The following are easy:

(d) The ‘empty pcs’ (∅, ∅, ∅) is the smallest pcs (w.r.t. v).

(e) If (Cβ)β<α is an increasing sequence of pcs’s, then C = ∪β<αCβ (with the
obvious meaning: union of domains, union of relations), is a pcs; it is the
smallest pcs such that Cβ v C for all β < α.

Elements of C (i.e. elements of D) will be denoted p, q, x, y. Subsets of C
will be denoted u, v. u ⊆ C is coherent if ∀x, y∈u : x ∼ y. u ⊆ C is an initial
segment if ∀x, y : (x ∈ u ∧ y ¹ x ⇒ y ∈ u). u ∼ v if u ∪ v. For any u ⊆ C let
u denote the initial segment generated by u. The following is clearly equivalent
to (c):

(c’) ∀u : u coherent⇒ u coherent

Let C ∼= C ′ denote that the pcs’s C and C ′ are isomorphic.

49

8.2 Transferring the problem to pcs’s

To any pcs C = (D,∼,¹), we associate the p.o D = S(C) of all coherent, initial
segments of D ordered by inclusion. D will be called “the domain of web C”.

It is easy to check that S(C) is a prime algebraic domain where sup, when
defined, is union, and that u ∈ S(C) is prime iff there is a p ∈ C such that
u = {p}.

Thus D is a κ-prime algebraic domain (for any regular κ). If C is an ocs then
Dp is isomorphic to C (as ocs) (in the general case we would have to quotient
C by the equivalence relation induced by the preorder) and D appears as the
completion of C which add sups to all subsets of compatible elements of C.

We now fix κ, and let C? be the set of coherent κ-small subsets of C. It is
easily seen (or c.f. remarks in Section 2.4) that u ∈ D is κ-compact iff u = a
for some a ∈ C?. These remarks link proposition 8.2.1 below to Section 2.5 and
motivate the following definition:

Definition. F is the function which associates to any pcs C = (D,∼,¹) the
triple F (C) = (DF ,∼F ,¹F) where DF = C?×D, (u, x) ∼F (v, y)⇔ (u ∼ v ⇒
x ∼ y) and (u, x) ¹F (v, y)⇔ x ¹ y ∧ v ⊆ u.

It is straightforward to check that F (C) is a pcs, and that F is monotone
(w.r.t. v). Moreover, since κ is regular, F commutes with increasing unions
indexed by κ: If C = ∪α<κCα is an increasing union of pcs, then F (C) =
∪α<κF (Cα). We denote also F (C) by C? × C.

Lemma 8.2.1 If D is the domain of web C, then [D → D]κ is order isomorphic,
and hence κ-isomorphic, to the domain of web F (C) ≡ C? × C.

Proof. Let C = (D,∼,¹). Define Tr and A′ on [D → D]κ and S(C? × C),
respectively, by:

Tr(g) = {(a, p)∈D? ×D | p ∈ g(a)} for g ∈ [D → D]κ
A′(u)(v) = {x∈D | ∃a ⊆ v : (a, x) ∈ u} for u, v ∈ S(C? × C)

It is straightforward to prove that Tr and A′ are inverse order isomorphisms,
and hence κ-isomorphisms between the two domains. (Hint: 7 points to check).

Formally the proof of 8.2.1 does not differ from the ω-case. For the ω-
semantics this is worked out in [25] in a slightly different formalism, in [24]
for pcs’s with trivial coherence; [16] is not really relevant for pcs’s with trivial
preorders since it deals with the more accurate class of “stable” functions. ♦

Remark. A corollary of Lemma 8.2.1 is that the problem of solving D ∼=
[D → D] in the κ-ccc reduces to finding a pcs C such that C ∼= F (C) (it is
quite obvious that isomorphic pcs’s generate κ-isomorphic domains), or even
C = F (C). The second equation has no solution in a well-founded universe.

In order to take T̃ and ⊥̃ into account we define a function G on pcs’s
such that the problem of solving (1) reduces to finding a pcs C such that C =
G(F (C)), where G will be chosen such that C = G(F (C)) has a solution in any
well-founded universe.

First we fix two elements f and t of the universe which are not pairs. If
C = (D,∼,¹) and f, t 6∈ D we define G(C) = (DG,∼G,¹G) where DG =

50

D ∪ {t, f}, x ∼G y ⇔ x ∼ y ∨ x = y = t ∨ x = f ∧ y 6= t ∨ y = f ∧ x 6= t and
x ¹G y ⇔ x ¹ y ∨ x = y = t ∨ x = f ∧ y 6= t.

It is easy to see that G(C), when defined, is a pcs (an ocs if C is), that G
is monotone and that G(F (C)) is always defined (since f and t are not pairs).
Moreover, G commutes with all increasing unions of pcs’s not containing f or t.
Hence, G ◦ F commutes with all increasing unions of sequences, indexed by κ.

That solving 1 amounts to finding a fixed point to H = G ◦ F follows from
Lemma 8.2.1 and:

Lemma 8.2.2 If D is a domain of web C and f, t 6∈ D, then D⊕⊥̃ {T̃} is order
isomorphic to the domain of web G(C).

Proof. Indeed u ∈ S(G(C)) iff u = ∅ or u = {t} or u = {f}∪u′ with u′ ∈ S(C).
♦

8.3 Solving C = H(C)

We know that H(C) is defined and monotonic for all pcs’s C. Hence, the ordinal
sequence Cα defined by C0 = ∅ and Cα = ∪β<αH(Cβ) is increasing. Since κ is
a limit ordinal we have Cκ = ∪β<κCβ ; since H commutes with such increasing
unions we get H(Cκ) = ∪β<κH(Cβ) = Cκ. Hence, C = Cκ is a fixed point of
H and D = S(C) is a solution of (1).

Remark 1. As announced at the end of Section 2.2, |Dc| = κ (= |Dp|).
Indeed |C| = κ (we started from ∅, added elements at each step and obviously
|C ′| ≤ κ ⇒ |H(C ′)| ≤ κ). Obviously |Dp| ≤ |Dc| ≤ |C?| = κ. It remains
to prove κ ≤ |Dp|. Since Dp and C/ =D are order isomorphic, where =D is
the equivalence relation induced by the preorder ¹, and since κ is regular, it is
enough to show that the equivalence class of any x ∈ C is κ-small. This can be
proved easily by induction on the smallest β such that x ∈ Cβ , using once more
that κ is regular.

Remark 2. The following makes explicit the applicative behaviour of D
and the way D encodes its continuous functions; it is the starting point of any
concrete use of the canonical premodel (and model) of MT.

In D = S(C) we have, for all u, v ∈ D and any function h ∈ [D → D]:

1. ⊥ = ∅, T = {t}, λx.T = {f}, and if u 6= ∅, {t} then f ∈ u.

2. Tv = T and uv = {p∈D | ∃a⊆v: (a, p) ∈ u} if u 6= T.

3. λ(h) = {f} ∪ {(a, p) ∈ D? ×D | p ∈ h(ā)} and the interpretation of any
abstraction of Λ0

M,C is given by |λx.A| = {f} ∪ {(a, p) ∈ D? × D | p ∈
|A[x := ā]|.

Remark 3. Working with κ = ω gives a solution of (1) in the usual ccc of
ω-ccpos and ω-continuous functions. This “premodel” is indeed sufficient when
one is interested only in the concrete computational features of MT. In this
case D? is the set of coherent finite subsets of D.

51

In Appendix B we will show that all canonical premodels, and in particular
the ω-one, are adequate for concrete computation.

It is worth noticing that Cω consists of the elements of Cκ which are hered-
itarily finite sets but that Dω is no substructure of Dκ.]

9 Conclusion

The success of ZF as a system for founding mathematics is due to both that ZF
is syntactically simple and that the class of its models is mathematically rich
and well structured; in particular each model of ZF has a lot of meaningful ‘sub’
and ‘sur’-models (internal models and generic extensions), some of them being
‘canonical’ (from different points of view). The conviction of the authors is
that MT shares this wealth with ZFC. On one hand models of ZFC and MT are
closely linked, as shown by the syntactic translation in [18] and the constructions
in the present paper (c.f. Appendix A); in particular our construction shows that
there are at least as many models of MT as there are models of ZFC + SI (and
probably SI can be weakened).

On the other hand it seems that we will have a lot of freedom in building
models of MT: indeed we think that most of the techniques or frameworks avail-
able for building models of untyped λ-calculus can most probably be adapted to
yield models of MT: the essence of the work done in the present paper seems to
be in fact that all big solutions of (1) in any suitable framework can be expanded
to a model of MT. For example the constructions made in the paper seem to
carry over without problems, along the same lines, to the κ-stable semantics (on
κ-dI-domains).

Now, that the model should satisfy (1) is not a necessary condition. In
particular we conjecture that the forcing techniques initiated in [2] to show that
Ω = δδ is an easy term (namely that any equation Ω = t, t any closed λ-term,
is consistent with untyped λ-calculus) and which are used also in [21, 22, 37]
to build models of extended λ-calculi, would apply (for example one could use
them to show that Ω is an easy term also w.r.t. MT).

It is already interesting to have an explicit and (rather) simple model of MT
like ours, since first it gives a comprehensible proof of the consistency of MT
and second provides a concrete support for a simplification of the axiomatisation
which would not change its spirit much. But the existence of a great variety
of models, realising possibly different equational extensions of MT, allows much
more freedom for the subsequent axiomatisations of MT, and may give hope to
justify intuitively-correct other proposals.

Such new axiomatisations are proposed in [17]. Contrary to the present one
they incorporate order and monotonicity (and part of stability) at the level of
syntax, and hence rule out from the beginning the possibility to carry over a
modelisation like in [29]: as a matter of fact such modelisation is incompati-
ble with order and monotonicity since any two elements of the model can be
exchanged via a function which is representable in the model.

52

10 Acknowledgement

The first author is grateful to René Cori, Claude Sureson, Klaus Keimel and
Michel Parigot for their support when she was working on [18], including many
helpful and stimulating discussions. The second author is grateful to the group
at Equipe de Logique Mathématique for discussions that have been essential
for putting Map Theory into context, not least witnessed by the present paper.
Thanks are also due to Thierry Vallée for comments on the manuscript and for
pointing out an error in a proof.

The present paper is issued from a bare version of the consistency proof,
called “A simple semantic consistency proof for Map Theory based on ξ-denotational
semantics”. Following the request of one of the referees a presentation of Map
Theory has been added, as well as many motivations; moreover the proof, which
formerly followed a bottom-up approach, has been completely restructured. We
have furthermore added a more comprehensive treatment of the set theoretic
properties of the models, and the proof of the computational adequation of the
canonical model. We are grateful to the referees for having given us this op-
portunity of providing a more mature and comprehensive paper and to correct
a lot of small bugs in the meanwhile. We thank also the referees for drawing
our attention to several interesting papers, including [13, 15, 29]. In particular,
the consistency proof of Flagg-Myhill’s system, which we were not aware of,
appealed for a comparison with our own work. Such a comparison has been
included in the present version. A further step would be, as already mentioned
in Section 1.6, to look whether the alternative arguments of [29] could be carried
out for Map Theory.

A Further properties of κ-continuous models

A.1 Structural properties of Φ and Φ◦

Lemma A.1.1 Ψ and Φ are not essentially σ-small, and |Ψ| = σ.

Proof. We have not yet proved (neither claimed) that the sequence Ψα was
strictly increasing. We show here something stronger, namely that Φα = ↑Ψα

is strictly increasing (limit: Φσ = Φ). First we note that Φα+1 = Φ◦α → Φα.
Indeed, Φα+1 = ↑Ψα+1 =

⋃{↑(G◦ →G G) | G ⊆ Ψα, G 6= ∅} =
⋃{G◦ → ↑G |

∅ 6= G ⊆ Ψα}(corollary 6.2.4) = Ψ◦α → ↑Ψα = Φ◦α → Φα. And we have, for all
α ≤ σ:

Φα =
⋃

β<α

(Φ◦β → Φβ)

and also Φ◦β ⊇ Φ◦α (since Φβ ⊆ Φα). Suppose now that α is such that

Φα = Φ◦α → Φα (20)

(where, clearly, α 6= 0). Since χΦ◦α ∈ Φ◦α → {T} ⊆ Φ◦α → Φα we have χΦ◦α ∈
Φ◦β → Φβ for some β < α. But this forces Φ◦β ⊆ Φ◦α, hence Φ◦β = Φ◦α and

53

Φβ = Φα (Fact 6.1.2 (f)). Hence, Φβ = Φβ+1 = Φ◦β → Φβ . Thus there is no
first α such that (20) is true and Φα is strictly increasing. ♦

Lemma A.1.2 If σ < κ, then all inclusions of Lemma 5.2.1 are strict.

Proof. If σ < κ then Φ is essentially κ-small (by Lemma 7.1.12 or A.1.1).
Hence Φ ⊆ Φ◦ (by Corollary 6.2.3).

Now, if u ∈ Φ◦ \ Φ, then λx.u ∈ Φ → Φ◦ but λx.u 6∈ Φ → Φ; φ and λx.x
belong to Φ → Φ but not to Φ◦ → Φ (similarly: if belongs to Φ3 → Φ but
not (Φ◦)3 → Φ). Finally ε ∈ Φ◦ → Φ, since elements of Φ◦ never take the
value ⊥ when applied to elements of Φ, but ε 6∈ Φ since, for all G ∈ Oσ(Φ),
ε 6∈ G◦ → Φ: indeed G ∈ Oσ(Φ) implies G 6= Φ since Φ is not essentially
σ-small, so ε(χG) = ⊥, but obviously χG ∈ G◦. ♦

Lemma A.1.3 δ(Φ) = δ(Ψ) = {T}

Proof. Let u ∈ Φ, u 6= T. Then u ∈ Φ◦β → Φβ for some β < σ; since Φα

is strictly increasing (c.f. the proof of Lemma A.1.1), then Φβ ⊂ Φβ+1 and
Φ◦β+1 ⊂ Φ◦β (Fact 6.1.2 (e)). Now the restriction v of u to Φ◦β+1 is clearly in
Φ◦β+1 → Φβ ⊆ Φ◦β+1 → Φβ+1 ⊆ Φ; moreover v < u. ♦

Lemma A.1.4 Φ ⊆ Φ◦◦ ⊆ Φ◦. If σ < κ then both inclusions are strict.

Proof. From Φ ⊆ Φ◦ we immediately get Φ◦◦ ⊆ Φ◦. For proving Φ ⊆ Φ◦◦

it is enough to prove Ψ ⊆ Ψ◦◦ and for this to check that Ψ◦◦ satisfies (19) in
Lemma 7.1.9. Now T ∈ Ψ◦◦ is clear. Suppose G ⊆ Ψ ∩ Ψ◦◦ and G is σ-small.
We have: G◦ →G G ⊆ G◦ → Ψ◦◦ ⊆ Ψ◦ → Ψ◦◦ = Ψ◦◦. Thus Ψ◦◦ satisfies (19)
as required. Now Φ◦◦ = Φ◦ implies Φ◦ = Φ (Fact 6.1.2 (e)) but this contradicts
σ < κ (c.f. Corollary 6.2.3. Also Φ◦◦ = Φ implies Φ = ↑δ(Φ) (c.f. Theorem
6.1.11) and, hence, Φ = {T}, a contradiction. ♦

Exercise. Define inductively: Φ◦(0) = Φ and Φ◦(k+1) = (Φ◦(k))◦. Deduce
from Lemma A.1.4 that

(a) (Φ◦(2k))k is an increasing sequence (w.r.t. ⊆) and (Φ◦(2k+1))k is decreasing.

(b) for all k,m ≥ 1, Φ ⊆ Φ◦(2k) ⊆ Φ◦(2m+1) ⊆ Φ◦.

(c) all inclusions are strict if σ < κ.

The following lemma expresses where (the interpretations of) the solvable
terms of pure lambda-calculus live within κ-continuous models.

Lemma A.1.5 Let A be a pure, closed λ-term (A ∈ Λ).

(a) if A is normalisable and of order n then A ∈ Φn → Φ ⊆ Φ◦.

(b) if A is solvable and σ < κ then A 6∈ Φ.

54

Recall that A is (β-)normal of order n iff A = λx.zA1 · · · Am where `(z) =
n ≥ 0, m ≥ 0, z is a variable and the Ai’s are (β-)normal. A is normalisable
(of order n) iff A is β-equivalent to a normal term (of order n). A closed is
solvable iff ∃m ≥ 0∃B1, . . . ,Bm : AB1 · · · Bm 'β λx.x and the Bi’s are closed
normal terms. Any normalisable term is solvable. (See [4] for a treatment of
these concepts).
Proof of Lemma A.1.5. (a) Since two β-equivalent terms have the same
interpretation it is enough to prove (a) for closed normal terms, and we do
it by induction on the length `A of A. So suppose A = λx.zA1 · · · Am is
normal of order n, and closed. Then z ∈ x and all λx.Ai are closed, normal
of order ni = n + mi. Moreover `(λx.Ai) < `A. Let now u ∈ Φn. Au =
[z/x:=u][A1/x:=u] · · · [Am/x:=u]. Now, [z/x:=u] ∈ Φ (since z ∈ x). Hence
[z/x:=u] ∈ Φ◦m → Φ (c.f. Lemma 5.2.1). Also [A/x:=u] = (λx.Ai)u; by
induction hypothesis λx.Ai ∈ Φni → Φ = Φn → (Φm → Φ) ⊆ Φn → Φ◦ (c.f.
Lemma 5.2.1). Hence [Ai/x:=u] ∈ Φ◦ for each i. Thus Au ∈ Φ as claimed.

(b) Suppose we have AB1 · · · Bm 'β λx.x for some m ≥ 0, Bi closed normal
terms. Then Bi ∈ Φ◦ for all i (by (a)). If we had A ∈ Φ ⊆ Φ◦m → Φ (c.f.
Lemma 5.2.1), we would have λx.x ∈ Φ. But this contradicts Fact A.1.2). ♦

As an example of a solvable term which does not belong to Φ◦ we may take
any fixed point operator Z. To see this, we first notice that ¬̇ = λx.ifxFT is in
Φ since it is in {T,F}◦ → {T,F}. Suppose now that Z is in Φ◦. Sunce ¬̇ is in
Φ we have Z¬̇ ∈ Φ◦. This contradicts the fact (left to the reader; follows from
QND′) that any fixed point of ¬̇ is provably equal to ⊥.

For unsolvable terms the situation is less definite. Let us concentrate on
unsolvables of order zero, like Ω. On one hand none is provably in φ, since they
are all equated to ⊥ in the canonical models (c.f. Theorem B.0.2 in Appendix
B); but on the other hand some might as well be equated in some model to
some term which is in Φ (even provably), for example to T itself); this would
occur for example with Ω ≡ δδ if, as we conjectured, it is an easy term for MT.

Unsolvable terms of infinite order, like any fixed point of K ≡ λx.λy.x, can
never be in Φ◦.

A.2 The size of Φ/=Φ

In the following we prove |Φ/=Φ| = σ and that for all α < σ there exists an
essentially σ-small G ⊆ Φ such that |δG◦| ≥ |α|. The latter result will be used
for finding a model of Vσ in Section A.4. To establish these results we will prove
that there exist “self-extensional sets” G ⊆ Φ such that G/=Φ can have any
size less that σ.

Definition. G is a self-extensional set if

(a) G ⊆ Φ.

(b) G 6= ∅.
(c) G is essentially σ-small.

55

(d) G ⊆ G◦◦.

(e) x =G y ⇒ x =Φ y for all x, y ∈ G.

The name “self-extensional” refers to property (e) above.
Definition. H is a self-extensional chain if

• H is a non-empty set of self-extensional sets.

• ∀G, G′∈H: G ⊆ G′ ∨G′ ⊆ G.

Theorem A.2.1 (A) If G is a self-extensional set then so is G◦◦ and |G/=Φ| ≤
|δG◦| < |G◦◦/=Φ|.

(B) If H is a self-extensional chain then
⋃H is a self-extensional set and

|G/=Φ| ≤ |
⋃H/=Φ| for all G ∈ H.

(C) |Φ/=Φ| = σ.

(D) For all α < σ there exists an essentially σ-small G ⊆ Φ such that |δG◦| ≥
|α|.

Proof. (A) and (B) are proved as lemmas below. (C) and (D) follow from
(A) and (B) as follows: Define G0 = {T}, Gα′ = G◦◦α and Gδ =

⋃
α∈δ Gα

for limit ordinals δ. It follows from (A) and (B) by transfinite induction that
|Gα/=Φ| ≥ |α| so |Gσ/=Φ| ≥ σ which together with Gσ ⊆ Φ proves |Φ/=Φ| ≥ σ.
|Φ/=Φ| ≤ σ follows from Lemma A.1.1. Furthermore, Gα satisfies (D). ♦

We now state and prove (B).

Lemma A.2.2 IfH is a self-extensional chain then U =
⋃H is a self-extensional

set and |G/=Φ| ≤ |U/=Φ| for all G ∈ H.

Proof. The latter claim is trivial. That U is a self-extensional set requires
verification of (a) to (e). Point (a) to (c) are trivial. To see U ⊆ U◦◦ assume
g ∈ U and choose G such that g ∈ G ∈ H. Now G ∈ H ⇒ G ⊆ U ⇒ G◦ ⊇
U◦ ⇒ G◦◦ ⊆ U◦◦. To see (e) assume x, y ∈ U , x =U y. Choose G ∈ H such
that x, y ∈ G. Now x =U y ⇒ x =G y because G ⊆ U and x =G y ⇒ x=Φy
because G is self-extensional. ♦

Before we state and prove (A) as a lemma, we need some auxiliary concepts
and lemmas.

In this section, for all f ∈ M and ȳ = (y1, . . . , yn) ∈ M<ω let f [ȳ] denote
fy1 · · · yn ∈ M and let fȳ denote (fy1, . . . , fyn) ∈ M<ω. As an example,
f [gȳ] = f(gy1) · · · (gyn).

For relations R on M, for ȳ = (y1, . . . , yp) ∈ M<ω and z̄ = (z1, . . . , zq) ∈
M<ω let ȳRz̄ stand for p = q∧y1Rz1∧· · ·∧ypRzp. Recall that for ȳ = (y1, . . .) ∈
Mω and n ∈ ω, ȳn denotes (y1, . . . , yn).

For all f ∈M define f∗ ∈M by

f∗ = Yλk.λx.(ifxT λy.k(x(fy)))

56

For all x ∈M and ȳ ∈M<ω we have

r((f∗x)[y]) = r(f∗xy1 · · · yn)
= r(x(fy1) · · · (fyn))
= r(x[fȳ])

Lemma A.2.3 If G is self-extensional then ⇓G is injective from G/ =Φ to δG◦

in the sense that ⇓Gx ∈ δG◦ and ⇓Gx = ⇓Gy ⇒ x =Φ y for all x, y ∈ G.

Proof. If x ∈ G then G ⊆ Φ ⊆ G◦ and Theorem 6.1.11 gives ⇓Gx ∈ δG◦. If
x, y ∈ G then ⇓Gx = ⇓Gy implies x =G y which, since G ⊆ Φ, implies x =Φ y.
♦

Definition of ⇑G and ⇑∗G. Now assume G is self-extensional. δG◦ is a
σ-small set of incompatible, compact elements according to Theorem 6.1.11.
Hence, there exist “left inverses” ⇑G ∈ M of ⇓G which satisfy ⇑Gx ∈ G for all
x ∈ δG◦ (G 6= ∅ is needed here) and ⇑G(⇓Gz) =G z for all z ∈ G. Let ⇑G be
one such left inverse. Let ⇑∗G stand for (⇑G)∗.

Lemma A.2.4 If G is self-extensional and x ∈ δG◦ then ⇑∗Gx ∈ G◦◦ and
x ≤ ⇑∗Gx.

Proof. Let y = ⇑∗Gx, let z̄ ∈ (G◦)ω, and let z̄′ = ⇑Gz̄ ∈ Gω. Choose n ∈ ω
such that r(x[z̄′n]) = T (this is possible since x ∈ G◦ and z̄′ ∈ Gω). Now
r(y[z̄n]) = r((⇑∗Gx)[z̄n]) = r(x[⇑Gz̄n]) = r(x[z̄′n]) = T which proves y ∈ G◦◦.

Now let ū ∈ G<ω. We have (⇓Gū) ≤ ū so {T,F} 3 r(y[⇓Gū]) ≤ r(y[ū])
which proves r(y[⇓Gū]) = r(y[ū]). This in combination with r(y[⇓Gū]) =
r(x[⇑G(⇓Gū)]) = r(x[ū]) gives r(y[ū]) = r(x[ū]). Hence, y =G x which com-
bined with x ∈ δG◦ gives x ≤ y. ♦

Lemma A.2.5 If G is a self-extensional set then so is G◦◦.

Proof. We have to check (a) to (e). (a) follows from GCP by transfinite
induction in <G◦ : Let x ∈ G◦◦. We shall prove x ∈ Φ. As inductive hypothesis
assume y ∈ Φ for all y <G◦ x. If x = T then x ∈ Φ holds. If x 6= T then the
inductive hypothesis states that xz ∈ Φ for all z ∈ G◦ so x ∈ G◦ → Φ ⊆ Φ.
(b) follows from T ∈ G◦◦. (c) follows from Theorem 6.1.11(c). (d) can be seen
as follows: G ⊆ G◦◦ ⇒ G◦ ⊇ G◦◦◦ ⇒ G◦◦ ⊆ G◦◦◦◦. (e) goes as follows: let
x, y ∈ G◦◦ satisfy x =G◦◦ y and let z̄ ∈ Φ<ω. We shall prove r(x[z̄]) = r(y[z̄]).
Let z̄′ = ⇓Gz̄ ∈ (δG◦)<ω and let z̄′′ = ⇑∗Gz̄′ ∈ (G◦◦)<ω. We have z̄ ≥ z̄′ ≤ z̄′′ so
r(x[z̄]) ≥ r(x[z̄′]) ≤ r(x[z̄′′]). Furthermore, since x ∈ G◦◦ and z̄ ∈ (G◦)<ω we
have r(x[z̄′]) 6= ⊥ so r(x[z̄]) = r(x[z̄′]) = r(x[z̄′′]). Likewise, r(y[z̄]) = r(y[z̄′′]).
Furthermore, x =G◦◦ y gives r(x[z̄′′]) = r(y[z̄′′]) so r(x[z̄]) = r(y[z̄]) as required.
♦

Lemma A.2.6 If G is a self-extensional set then |G/=Φ| ≤ |δG◦| < |G◦◦/=Φ|.

57

Proof. |G/=Φ| ≤ |δG◦| follows from Lemma A.2.3. |δG◦| < |G◦◦/=Φ| follows
from |P(δG◦)| ≤ |G◦◦/=Φ| which can be seen as follows: For all S ⊆ δG◦, define
χ̂S ∈M by

χ̂Sx =

T if x ∈ ↑S
F if x ∈ ↑(δG◦ \ S)
⊥ if x 6∈ G◦

Now χ̂S ∈ G◦◦. It remains to prove S 6= T ⇒ χ̂S 6=Φ χ̂T for S, T ∈ δG◦.
However, if S 6= T then choose y ∈ δG◦ so that y is in one of S and T but not
in the other, and let z = ⇑∗Gy. Then y ≤ z ∈ G◦◦ ⊆ Φ by Lemma A.2.5 and
r(χ̂Sz) 6= r(χ̂T z). ♦

A.3 Models of ZFC within models of MT

There are two ways of finding a model of ZFC within the κ-continuous models of
MT. The first is to deduce it from the syntactical translation of ZFC into MT,
which is a difficult theorem of [18], plus the fact that the models we consider
satisfy the SQND. This translation is recalled later and uses the constructs ∈̇
and =̇ which are defined in Appendix C. The second is to prove directly that,
for our models, N ≡ (Φ/=̇, ∈̇) is isomorphic to (Vσ,∈) (within our big universe).
This last way, though providing a stronger result, is in fact much more easy;
as a matter of fact it requires no more than what we have already proved (c.f.
Section A.4).

In this section we comment on the syntactical argument and show where the
SQND comes in. First, consider a model of a theory A inside a theory B. If
both A and B are based on predicate calculus, then it is customary to model
e.g. implication in A by implication in B. In general, it is customary to model
the predicate calculus part of A by the predicate calculus part of B. Hence, to
give a model of A in B it is sufficient to define the functions and relations of A
inside B. Furthermore, A and B are sure to use the “same” predicate calculus.

Matters are more complicated if A is based on predicate calculus and B
is not. In this case, not only the functions and relations, but also the logical
connectives and quantifiers of A have to be defined in B. This is exactly the case
when A is ZFC and B is MT, and it opens the possibility that the modeling of
predicate calculus may be non-standard and may have pathological properties.
This, however, may be ruled out by assuming SQND.

The syntactic result which is proved in [18] has the following shape:

Theorem A.3.1 If A[x1, · · · , xn] is a theorem of ZFC (including predicate cal-
culus), then the equation φx1, . . . , φxn → Ȧ is a theorem of MT.

Here Ȧ is the term of MT obtained by replacing ∈, =, and each connective
and quantifier in A by its doted version as a term of MT. The definition of
A1, . . . ,An → B may be found in Section 3.2 and Appendix C.

Thus, for any theorem A[x̄] of ZFC (including predicate calculus; that is why
free variables may occur), for any modelM of MT, and for any ū ⊆ Φ the model

58

M will satisfy the equation Ȧ[ū] = T. However we need something slightly
different, namely that N satisfies the ZFC-formula A[ū]. This last assertion
must be justified by a lemma which links the two notions of satisfaction in the
two different settings, like the following:

Lemma A.3.2 For any ZFC-formula A[x̄] and for any model M of MT, we
have:

For any ū ⊆ Φ, M|=Ȧ[ū]=T⇒ N|=A[ū]

where N = (Φ/=̇, ∈̇).

Proof. The proof is of course by induction in the structure of A[x̄]. However
to achieve it we need to know (because of the negation case) that a closed term
of the shape Ȧ[x̄] can take only the two values T and F. It is provable from MT
that ∀̇x̄(if Ȧ[x̄]TT) = T, which rules out the value ⊥, and that Ȧ[x̄] = (if Ȧ TF);
the SQND is needed to conclude from this last equation that a term of the shape
Ȧ[ū] is always equal to T or F. ♦

If SQND holds, then the above is a model of ZFC in the traditional sense, and
if SQND does not hold, then the above may have some pathological properties.
It should be noted that it is still open whether or not MT is strictly stronger
than ZFC even though the above gives a model of ZFC in some sense.

SIP implies that N is an ω-model in the following sense: Let ω be the set of
integers in the universe where our model is built and let ω̇ be a map term such
that φω̇ = T and which satisfies

ω̇x = ifxT λy.ω̇(xT)

(Take ω̇ = Prim (λx.x)TT, where Prim is defined in Appendix C). The intu-
ition behind is that ω̇ is the set of Zermelo’s integers {· · · {{∅}} · · ·}; we choose
Zermelo’s integers here because they are more simple than Von Neumann in-
tegers, and are equivalent for our discussion. The n’th Zermelo integer can be
represented by An ≡ λx1 . . . xn.T, n ∈ ω; it is easy to check that φAn = T
and ω̇An = An, so all the Zermelo integers are indeed in the range of ω̇ and,
hence, are “elements of ω̇” in the sense of ∈̇. Now it is easy to show that in
any model satisfying SIP and SQND, ω̇ will have no other elements, while non
satisfaction of SIP introduces “non standard” integers and non satisfaction of
SQND introduces still stranger integers. Note that φ and ε does not occur in
the definition of ω̇, so ω̇ is a computable function. In general, if SIP and SQND
hold then sets of integers can be represented by computable functions if and
only if the sets are recursively enumerable. We finally end up this example by
noticing that computation of ω̇x merely requires knowledge of r(xTT · · ·T), so
the inner range of ω̇ is nothing else than {T}.

A.4 Finding Vσ in a κ-continuous model

Theorem A.4.1 IfM is a κ-continuous model, then N ≡ (Φ/=̇, ∈̇) is isomor-
phic to (Vσ,∈).

59

Proof. In what follows the metavariables u, v range over elements of Φ. The
rank of v is the smallest ordinal α < σ such that v ∈ Φα, and “induction in v”
means induction in the rank of v.

We define a function s on Φ by recursion in the rank of v by:

s(v) ≡
{ ∅ if v = T
{s(vx) | x ∈ Φ} otherwise

The aim is to show that the function s′ induced by s on Φ/=̇ is the required
isomorphism. It is easy to prove successively that:

(1) s(v) ∈ Vσ, by induction in v.

(2) u ≥ v ⇒ s(w) = s(v), by induction in v.

(3) u=̇v = T⇔ s(u) = s(v), by induction in v and using SQND.

(4) u∈̇v = T⇔ s(u) ∈ s(v), by induction in v and using SQND.

It remains to prove ∃u ∈ Φ: s(u) = x for all x ∈ Vσ. This is trivial for x = ∅
and the rest is by induction in the rank of x: Assume x ∈ Vσ, x 6= ∅, and assume
s(uy) = y for all y ∈ x. From x ∈ Vσ we have that x is σ-small. Choose G ⊆ Φ
such that |δ(G◦)| ≥ |x| (using Theorem A.2.1 (D)), and choose u′ ∈ G◦ → Φ
such that the range of u′ equals {uy | y ∈ x} (by Lemma 6.2.2). Using GCP, let
u be the element of Φ corresponding to u′. Now s(u) = x. ♦

B Computational adequacy of the canonical model

In this section we restrict our attention to the set Λc (c for computable) of
MT-terms in which φ, ε and ⊥ do not occur. For convenience, and without loss
of generality, we require all occurrences of if to be followed by three arguments.
Λc can be seen as the syntax class defined thus:

variable ::= x | y | z | . . .
Λc ::= variable | λvariable.Λc | (Λc Λc) | T | ifΛc Λc Λc

Let Λc
c be the set of terms in Λc that are closed.

Elements of Λc will be considered to be equal if they differ only in naming
of bound variables.

Now let→L be the least relation on Λc that satisfies the following statements
for all A,B, C,A′ ∈ Λc.

TB →L T
(λx.A)B →L [A/x:=B]
if TB C →L B
if (λx.A)B C →L C
AB →L A′B if A →L A′
ifAB C →L ifA′ B C if A →L A′

60

Above, [A/x:=B] denotes substitution with suitable renaming of bound vari-
ables.

Note that if S ∈ Λc then S →L T holds for at most one T ∈ Λc (up to
renaming of bound variables), so→L may be seen as a partial function from Λc

to Λc. Terms S ∈ Λc for which S →L T holds for no T ∈ Λc will be said to be
in root normal form.

Let →→L be the reflexive, transitive closure of →L. This relation represents
the leftmost reduction strategy [4] applied to Axioms Apply 1, Apply 2, Select
1, and Select 2 in Appendix C when these axioms are read as reduction rules.

Now define Nt, Nf and N⊥ thus:

Nt = {A ∈ Λc | A→→L T}
Nf = {A ∈ Λc | ∃B ∈ Λc:A→→L λx.B}
N⊥ = Λc \ (Nt ∪Nf)

(where x may be free in B in the second equation above).
It is straightforward to write a computer program which performs the left-

most reduction strategy, so it is straightforward e.g. to write a computer pro-
gram which, given a term T ∈ Λc

c, prints “T” after a while if T ∈ Nt, prints
“F” after a while if T ∈ Nf , and proceeds forever without printing anything if
T ∈ N⊥. The purpose of the present section is to prove that canonical models
are faithful to this computational aspect in the sense that such a program prints
“T” iff T = T in the model and similarly for the other two possibilities. This is
formally expressed in the computational adequacy theorem below.

For the time being letM be any model of MT, let F =M\{T,⊥}, and let
|T | denote the interpretation of T in M. For T ∈ Λc

c we obviously have

T ∈ Nt ⇒ |T | = T
T ∈ Nf ⇒ |T | ∈ F
T ∈ N⊥ ⇐ |T | = ⊥

The main result of the present section is that the converse is also true if M is
canonical:

Theorem B.0.2 (Computational adequacy) IfM is canonical and T ∈ Λc
c

then

T ∈ Nt ⇔ |T | = T
T ∈ Nf ⇔ |T | ∈ F
T ∈ N⊥ ⇔ |T | = ⊥

Readers familiar with Tait’s reducibility (also called computability) tech-
nique and to intersection type systems will notice that the following proof is
based on these ideas, and could be written within a type assignment setting.
Doing so is not necessary here but the correspondence is sketched in a remark
later on.

Now letM be a canonical model. Recall that elements ofM are subsets of
the set C where the elements of C represent prime elements of M and recall

61

that M is a p.o. ordered by a relation ≤ which is simply the subset relation.
There is a canonical injection from C toM (which takes prime elements to their
initial segments) and a canonical injection from Λc

c toM (which takes terms to
their interpretation). Using these injections it makes sense to write e.g. p ≤ T
for prime elements p and closed terms T . For open terms T , p ≤ T will be
taken to mean that p ≤ T holds for all values of free variables.

For any closed term T we have |T | ⊆ C. We trivially have p ∈ |T | ⇔ p ≤ T .
Hence, for any term T , |T | may be seen as the set of prime elements smaller
than T .

Now we introduce the converse. For all prime elements p ∈ C we introduce
the set I(p) of terms T ∈ Λc for which, intuitively, p ≤ T . I(p) will be referred
to as the interpretation of p. The formal definition of I(p) will not be based on
≤ but will be a syntactic definition defined by recursion in the rank of p. Since
T ∈ I(p) and p ∈ |T | intuitively both express p ≤ T we would expect to have
T ∈ I(p) ⇔ p ∈ |T |. We shall prove a lemma similar to this from which the
computational adequacy theorem follows.

Now recall that C = (C?×C)∪{t, f}. t represents T (in the sense that their
canonical injections intoM are equal), so we would like to have

I(t) = Nt

Likewise, f represents λx.⊥ so we would like to have

I(f) = Nf

Elements of C? represent compact elements. If c ∈ C? then c is a set of prime
elements and c represents the least upper bound of these elements. Hence, the
set I(c) of terms A ∈ Λc greater than c can be defined from I(p) thus:

I(c) = {A ∈ Λc | ∀p∈c:A ∈ I(p)}
Elements of C? × C represent prime elements. If (c, p) ∈ C? × C then (c, p)
represents the least map f for which fc = p. Hence, we would like to have

I(c, p) = I(c)→ I(p)

where

X → Y = {A ∈ Nf | ∀B ∈ X:AB ∈ Y }
The above equations define I(p) uniquely for all p ∈ C by recursion in the

rank of p.
A set X ⊆ Λc of terms will be said to be saturated if T ∈ X and S→→L T

implies S ∈ X. Hence, X ⊆ Λc is saturated if:

TE1 · · · En ∈ X ⇒ TBE1 · · · En ∈ X
[A/x:=B]E1 · · · En ∈ X ⇒ (λx.A)BE1 · · · En ∈ X
A ∈ Nt ∧ BE1 · · · En ∈ X ⇒ (ifAB C)E1 · · · En ∈ X
A ∈ Nf ∧ CE1 · · · En ∈ X ⇒ (ifAB C)E1 · · · En ∈ X

62

Note that Nt and Nf are saturated and that X → Y is saturated whenever
Y is saturated. The proof of the adequacy theorem has two key steps, the first
of which is the following lemma.

Lemma B.0.3 I(p) is saturated for all p ∈ C.

Proof. The proof is by induction in the rank of p. I(t) = Nt and I(f) = Nf

are saturated as noted above. If p = (c, p′) then I(p) = I(c, p′) = I(c) → I(p′)
which is saturated because I(p′) is saturated by the inductive hypothesis. ♦

The second key step is proved by structural induction over Λc where the
first was by induction over C. The second key step establishes the previously
mentioned link between p ∈ |T | and T ∈ I(p) which both intuitively express
p ≤ T .

Lemma B.0.4 Let T ∈ Λc. Let x1, . . . , xn be the free variables of T . Let
e1, . . . , en ∈ C?. Let E1 ∈ I(e1), . . . , En ∈ I(en). For all terms G let Ge stand
for [G/x1:=e1, · · · , xn:=en] and let GE stand for [G/x1:=E1, · · · , xn:=En]. For all
p ∈ C we have:

p ∈ |Te| ⇒ TE ∈ I(p)

Note that for T ∈ Λc
c the lemma gives

|T | = T ⇔ t ∈ |T | ⇒ T ∈ I(t) = Nt

|T | ∈ F ⇔ f ∈ |T | ⇒ T ∈ I(f) = Nf

from which the computational adequacy theorem follows.
Before proving Lemma B.0.4, we state and prove an auxiliary lemma:

Lemma B.0.5 If p, q ∈ C and p ¹ q then I(q) ⊆ I(p).

Proof. The proof is by induction in the rank of p and q. p, q ∈ C and p ¹
q gives four cases to consider: (1) p = q = t, (2) p = q = f , (3) p = f
and q = (q1, q2) ∈ C?×C, and (4) p = (p1, p2) ∈ C?×C and q = (q1, q2) ∈
C?×C. In case (1) and (2) the lemma is trivial. In case (3), I(p) = Nf and
I(q) = I(q1) → I(q2) = {A ∈ Nf | · · ·}. In case (4) we have p2 ¹ q2 and
∀q3∈q1∃p3∈p1: q3 ¹ p3. Hence, by inductive hypothesis, I(q2) ⊆ I(p2) and
∀q3∈q1∃p3∈p1: I(p3) ⊆ I(q3). The latter implies I(p1) ⊆ I(q1) which, together
with the former, yields I(q1, q2) ⊆ I(p1, p2). ♦
Proof of Lemma B.0.4. As mentioned, the proof is by structural induction
in T . This gives rise to five cases:

Case 1. Assume T ≡ xi. If p ∈ |Te| = |ei| then p is in the initial segment
generated by ei so p ¹ p′ ∈ ei for some p′. p′ ∈ ei gives I(ei) ⊆ I(p′) by the
definition of I and p ¹ p′ gives I(p′) ⊆ I(p) by lemma B.0.5 below. Hence,
TE ≡ Ei ∈ I(ei) ⊆ I(p′) ⊆ I(p).

Case 2. Assume T ≡ T. We have p ∈ |Te| = |T| = {t} ⇒ p = t ⇒ TE ≡
T ∈ I(p).

63

Case 3. Assume T ≡ AB and p ∈ |Te| = |AeBe|. If t ∈ |Ae| then p = t and
t ∈ |Ae| ⇒ AE ∈ I(t) = Nt ⇒ AEBE ∈ Nt = I(t) = I(p). If t 6∈ |Ae| then choose
c such that (c, p) ∈ |Ae| and c ⊆ |Be|. We have c ⊆ |Be| ⇒ ∀p′∈c: p′ ∈ |Be| ⇒
∀p′∈c:BE ∈ I(p′) ⇒ BE ∈ I(c). Furthermore, (c, p) ∈ |Ae| ⇒ AE ∈ I(c, p) =
I(c)→ I(p). Finally, AE ∈ I(c)→ I(p) and BE ∈ I(c) gives TE ≡ AEBE ∈ I(p).

Case 4. Assume T ≡ ifAB C. If p ∈ |Te| = |ifAB C| then t ∈ |Ae| ∧ p ∈
|Be| ∨ f ∈ |Ae| ∧ p ∈ |Ce|. Hence, by the inductive hypothesis, AE ∈ I(t)∧BE ∈
I(p) ∨ AE ∈ I(f) ∧ CE ∈ I(p). Using the definition of I(t) and I(f) this gives
AE ∈ Nt ∧ BE ∈ I(p) ∨ AE ∈ Nf ∧ CE ∈ I(p). Finally, using the saturation of
I(p) this gives TE ≡ ifAE BE CE ∈ I(p).

Case 5. Assume T ≡ λy.A where y is not among x1, . . . , xn and does not
occur free in E1, . . . , En. Further assume p ∈ |Te| = |λy.Ae|. If p = f then
TE = λy.AE ∈ Nf = I(f) = I(p). If p 6= f then p has the form (c, p′) and
p′ ∈ |(λy.Ae)c| = |[A/x1:=e1, · · · , xn:=en, y:=c]|. Now assume B ∈ I(c). From
the inductive hypothesis we have [AE/y:=B] ≡ [A/x1:=E1, · · · , xn:=En, y:=B] ∈
I(p′) so, by the saturation of I(p′) we have TEB ≡ (λy.AE)B ∈ I(p′) so TE ∈
I(c)→ I(p′) = I(c, p′) = I(p). ♦

Remark Elements of D may be viewed as formulas of an extended but strict
“intersection type system”. For this it is enough to change the notation (c, p)
of pairs into c → p, to read a as the “conjunction” of its elements, and → as
implication. We use only “strict formulas” in the sense that no conjunction is
allowed on the right side of the arrow (moreover “external” conjunction is not
needed); they are “extended” in the sense that we use a global and unordered
conjunction of <ω or <κ elements, instead of usual binary conjunction. Note
that → is no more, here, than the inclusion of D? ×D into D. Then one can
easily produce rules typing each term of Λc in such a way that it is equivalent
for a formula p to belong to the interpretation of a (closed) term A or to be a
type for A in the system (for a systematic treatment of such a view, c.f. [5];
strict intersection type systems have also been studied in [3].

C Syntax and axioms of map theory

The grammar of map theory

variable ::= x | y | z | . . .
term ::= variable | λvariable.term | (term term) | T | ⊥ | if | ε | φ
wff ::= term = term

64

Various definitions in map theory

F = λx.T
¬̇x = if xFT
≈ x = if xTF
!x = if xTT
¡x = if xFF
x∧̇y = if x (if y FT) (if y FF)
x∨̇y = if x (if y TT) (if y TF)
x⇒̇y = if x (if y TF) (if y TT)
x⇔̇y = if x (if y TF) (if y FT)
∃̇A = ≈ (A εA)
∃̇x.A = ∃̇(λx.A)
∀̇x.A = ¬̇∃̇x.¬̇A
x=̇y = (ifx (if y TF) (if y F

(∀̇u∃̇v.(xu)=̇(y v))∧̇(∀̇v∃̇u.(xu)=̇(y v))))
x∈̇y = if y F ∃̇v.x=̇(y v)
Y = λf.((λx.(f (xx))) (λx.(f (xx))))
Yf.A = (Y λf.A)
P = λa.λb.λx.ifx a b
Curry = λf.λx.λy.(f (P x y))
Prim = λf.λa.λb.Yg.λx.ifx a (f λu.(g (x (b u))))
F′ = λf.λx.(f x)
φx.A = φλx.A
x:y = if x y T

A1, . . . ,An→(C=D) is shorthand for the equation A1: . . . :An:C=A1: . . . :An:D
A1, . . . ,An→C is shorthand for the equation A1: . . . :An:C=A1: . . . :An:T

65

Axioms/inference rules

Axioms of Section 4 in [18] (λ-calculus)

Trans A = B;A = C ` B = C
Sub1 A = B; C = D ` (AC) = (BD)
Sub2 A = B ` λx.A = λx.B
Apply 1 (TB) = T
Apply 2 ((λx.A)B) = [A/x:=B] if B is free for x in A
Apply 3 (⊥B) = ⊥
Select 1 if TB C = B
Select 2 if (λx.A)B C = C
Select 3 if⊥B C = ⊥
Rename λx.[A/y:=x] = λy.[A/x:=y] if x is free for y in A and vice versa

Axioms of Section 5 in [18] (propositional calculus)

QND’ [A/x:=T] = [B/x:=T];
[A/x:=(F′ x)] = [B/x:=(F′ x)];
[A/x:=⊥] = [B/x:=⊥]
` A = B

Axioms of Section 6 in [18] (first order predicate calculus)

Quantify 1 φA, ∀̇x.B→((λx.B)A)
Quantify 2 εx.A = εx.(φx∧̇A)
Quantify 3 φεx.A = ∀̇x.!A
Quantify 4 ∃̇x.A→φεx.A
Quantify 5 ∀̇x.A = ∀̇x.(φx∧̇A)

Axioms of Section 7 in [18] (set theory)

Well 1 φT = T
Well 2 φx.A = φx.φA
Well 3 φ⊥ = ⊥
C-A φa, φb→φ(a b)
C-K’ φx.T = T
C-P’ φx.ifx TT = T
C-Curry φa→φ(Curry a)
C-Prim ∀̇x.φ(f x), φa, φb→φ(Prim f a b)
C-M1 ∀̇z.φx.A→∀̇z.φx.((λz.A) (z x))
C-M2 ∀̇z.φx.A→∀̇z.φx.((λx.A) (x z))
Induction If x does not occur free in A and y does not occur (free or bound)

in B, then A, x→B;A, ¬̇x, φx, ∀̇y.[B/x:=(x y)]→B ` A, φx→B

The axioms of Section 7 in [18] are referred to as the well-foundedness axioms.

66

Index

x[u], 39
<G, 35
G◦, 10, 35
G(<ω), 35
Gω, 35
H → K, 35
H →G K, 43
Λc, 60
Φ, 6, 30
Ψ, 30
⊥, 23
⊥D, 18
χG, 24
λ, 22, 23
x ≤ y, 35
→, 27
u =G v, 40
uG, 24
uG, 40
u−1G, 24
⇓G, 41
↓G, 18
↓cu, 19
↓pu, 20
↓u, 18
A =MT B, 5
E ⊕⊥̃ {T̃}, 22
↑G, 18
↑u, 18
|[A/x := u]|, 26
xn, 35

A, 21, 23
κ-algebraic, 19
almost extensional, 22

bounded, 18

C, 25
canonical (κ-continuous) premodel

of MT, 49
canonical model of MT, 49
κ-ccpo, 18

κ-chains, 9
characteristic function, 24
choice function w.r.t. K, 39
κ-compact, 19
compatible, 18
consistent, 18
κ-continuous, 18
κ-continuous model, 36
κ-continuous premodel, 23
κ-cpo, 18

Dc, 19
κ-directed, 18
domu, 43
Dp, 20
dual, 10, 35

essentially κ-small, 35
extensional, 22

F ′, 24
F, 23
F , 23
Frege structure, 13

GCP, 10, 34, 36
Generic Closure Property, 10, 34, 36

I(p), 62
inner range, 10, 59
interpretation, 62

`(u), 25

M, 25
maps, 8, 23

non-monotonic implication, 27

Pχ(E), 17
premodel, 23
prime, 20
κ-prime algebraic, 20
proper maps, 23

67

pure λ-terms, 25

r, 23
restriction of u to H, 24
root function, 23
root normal form, 61

saturated, 62
κ-Scott domain, 20
self-extensional chain, 56
self-extensional set, 55
SIP, 10, 34, 35
χ-small, 17
σ-small, 35
SQND, 9, 34
strict κ-directed, 18
Strong Induction Principle, 10, 34,

35
strong premodel, 24
Strong Quartum Non Datur, 9, 34

T, 23
t(u/G), 40
κ-topology, 18
type, 40
type of u ∈M over G ⊆M, 40
type over G, 10

V, 25

well-founded, 5
well-founded maps, 10
well-founded w.r.t. G, 10, 35
well-foundedness axioms, 36, 66

68

References

[1] P. Aczel. Frege structures and the notions of proposition, truth and set. In
J. Barwise, H. J. Keisler, and K. Kunen, editors, The Kleene Symposiom,
pages 31–59, Amsterdam, 1980. North-Holland.

[2] J. Baeten and B. Boerboom. Omega can be anything it should not be.
Indag. Mathematicae, 41:111–120, 1979.

[3] S. Van Bakel. Complete restrictions of the intersection type discipline.
Theoretical Computer Science, 102(1):135–163, July 1992.

[4] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and The Foundation of Mathematics. North-
Holland, 1984.

[5] C. Berline. Cours de Lambda-calcul. Université de Paris 7 (book in prepa-
ration), 1996.

[6] C. Berline and K. Grue. A simple consistency proof for Map Theory,
based on ξ-denotational semantics. Technical Report 50, Prepublication
de l’Equipe de Logique Mathematique, 1994.

[7] C. C. Chang and K. J. Keisler. Model Theory, volume 73 of Studies in
Logic and the Foundations of Mathematics. North-Holland, 1973.

[8] A. Church. The Calculi of Lambda Conversion. Princeton University Press,
1941.

[9] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended
type structures and filter lambda-models. In G. Longo G. Lolli and A. Mar-
cja, editors, Logic Colloquium’82, pages 241–262. Elsevier Science Publish-
ers, 1984.

[10] S. Feferman. Toward useful type-free theories.I. Journal of Symbolic Logic,
49:75–111, 1984.

[11] R.C. Flagg. K-continuous lattices and comprehension principles for Frege
structures. Annals of Pure and Applied Logic, 36:1–16, 1987.

[12] R.C. Flagg and J. Myhill. An extension of Frege structures. In E.G.K.
Lopez-Escobar D.W. Kuecker and H. Smith, editors, Mathematical Logic
and Computer Science, pages 197–217, New-York, 1987. Marcel Dekker.

[13] R.C. Flagg and J. Myhill. A type-free system extending ZFC. Annals of
Pure and Applied Logic, 43:79–97, 1989.

[14] G. Frege. Begriffschrift, a formula language, modelled upon that of arith-
metic, for pure thought. In J. van Heijenoort, editor, A Source Book in
Mathematical Logic, 1879–1931, pages 1–83. Harward University Press,
Cambridge, 1967.

69

[15] P. Di Gianantonio, F. Honsell, and G. Plotkin. Uncountable limits and the
lambda-calculus. Nordic Journal of Computing, 2:126–145, 1995.

[16] J.Y. Girard. The system F of variable types, fifteen years later. Theoretical
Computer Science, 45:159–192, 1986.

[17] K. Grue. Stable map theory. Submitted to the Church Festschrift (to be
modified).

[18] K. Grue. Map theory. Theoretical Computer Science, 102(1):1–133, July
1992.

[19] K. Grue. Map theory – preface, appendix and index. DIKU Report 92/16,
Department of Computer Science, University of Copenhagen, DIKU, Uni-
versitetsparken 1, DK–2100 Copenhagen, Denmark, 1992.

[20] D. Hilbert and P. Bernays. Grundlagen der Mathematic, volume 2.
Springer-Verlag, 1939.

[21] Y. Jiang. Consistency of a lambda-theory with n-tuples and easy terms.
Archives of Mathematical Logic, 34(2):72–96, 1995.

[22] R. Kerth. Isomorphisme et équivalence équationelle entre modéles du
lambda-calcul. Ph.D thesis, Université Paris 7, 1995.

[23] J.L. Krivine. Lambda-calcul: types et Modèles. Masson, Paris, 1990.

[24] J.L. Krivine. Lambda-calculus, types and models. Ellis & Horwood, 1993.

[25] K.G Larsen and G. Winskel. Using information systems to solve recursive
domain equations. In Lecture Notes in Computer Science, volume 173
(Semantics of data types), pages 109–130. Springer-Verlag, 1984.

[26] J. McCarthy. A basis for a mathematical theory of computation. In P. Braf-
ford and D. Hirschberg, editors, Computer Programming and Formal Sys-
tems, pages 33–70. North-Holland, 1963.

[27] G. Plotkin. A power domain for countable non-determinism. In Lec-
ture Notes in Computer Science, volume 140, pages 418–428. ICALP’82,
Springer-Verlag, 1982.

[28] G. Plotkin. Set-theoretical and other elementary models of the lambda-
calculus (in a collection of contributions in honour of Corrado Bohm on
the occasion of his 70th birthday). Theoretical Computer Science, 121(1-
2):159–192, 1993.

[29] G. Plotkin. On a question of Friedman. Preprint, 1995.

[30] B. Poizat. Cours de Theorie des Modèles. Nur Al-Mantiq Wal-Ma’rifah,
1985.

70

[31] M. Schönfinkel. On the building blocks of mathematical logic. In J. van
Heijenoort, editor, A Source Book in Mathematical Logic, 1879–1931, pages
355–366. Harward University Press, Cambridge, 1967.

[32] D. Scott. Continuous lattices. In F.W. Lawvere, editor, Lecture Notes in
Mathematics, volume 274, Toposes, algebraic geometry and logic, pages
97–136. Proceedings of Dalhousie Conference, Springer-Verlag, 1972.

[33] D. Scott. Models for various type-free λ-calculi. In Studies in Logic and
The Foundation of Mathematics, volume 74, pages 157–187. Proceedings of
the IVth Int. Congress for Logic, Methodology and Philosophy of Science,
1973.

[34] D. Scott. Combinators and classes. In Lecture Notes in Computer Science,
volume 37, pages 1–26. Springer-Verlag, 1975.

[35] D. Scott. Some philosophical issues concerning the theory of combinatorss.
In Lecture Notes in Computer Science, volume 37, pages 346–366. Springer-
Verlag, 1975.

[36] D. Scott. Domains for denotational semantics. In Lecture Notes in Com-
puter Science, volume 140, pages 577–613. ICALP’82, Springer-Verlag,
1982.

[37] C. Zylberajch. Syntaxe et sémantique de la facilité en lambda-calcul. Ph.D
thesis, Université Paris 7, 1991.

71

