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On the definition of the substitution operator

In Chapter 7 the value of the term [ (A| x := B ) ] is only defined in a special case,
viz. when [ B] is 'free for [x] in[ A]:

The value of [ (A| x := B ) ] is found by substituting all free occurencesof [x | in [ A ] by [ B |
if [ B] is free for [x] in [ A]. (cf. page 217)

This gives rise to four questions:

1) How do we find the free occurences of [x |"in [ A] ?
Answer: By drawing a binding diagram, e.g. by means of the syntax tree for [ A ]".

2) How do we substitute the free occurences of [x | in [A] by [B] ?
Answer: Since there are invisible parenthesis around each occurence of [x ]'in [ A ],
the section Correct substitution of equals in ’Extended Summary of the MAC-Lecture
September 1’ tells us, that (if [ B ] is free for [ x| in [ A ]') we may substitute [ x| by
[ B] enclosed by parenthesis, and only remove the parentheses if they are superfluous.
For example:

[(x+2x+xt+x|x:=14+y)= 1+y+2(1+y)+ QA +y)T + 1 +y)]

3) What does it mean that [ B ] should be free for [x | in [ A] ?
Answer: As described on page 217 it means that no free variable in [ B ] may become
bound by the substitution in 2). A direct translation of ’free for’ into the Danish
fri for’ may seem rather misleading, since it is mot the question whether the vari-
able [ x ] occurs in [ B ] or not! The phrase ’free as’, i.e. ’fri (nar [ B | optraeder)
som’ might have been more appropriate, but unfortunately ’free for’ is the standard
terminology found in the literature.

4) How do we find the value of [ (4| x := B )] when [ B] is not free for [x ] in [ A] ?
Answer: A free variable in [ B ] can only become bound by the substitution in 2)
if that variable has the same name as a binding variable i [ A ] (Please think this over!)
Hence, the problem does not occur in a simple term (where all binding variables
are distinct and also distinct from any free variable). Simplification of the term
[ (A| x :== B )] can always be obtained by renaming the binding (and any bound)
variables (i.e not only the bound variables, cf. the errata list), and thus we may always
obtain a simple term, where the substitution in 2) is allowed.
For example: ([A=(x|y:=2)] and [B=y] ):

[(Alx:=B) = ((x|y=2)|x:=y)
((vlu:=2)|vi=y)=(ylu:=2)=y]

due to simplification and substitution of any free occurences of the binding variables.



On Chapter 8: Functions

In Chapter 8 two binary operators and a new type of values of nullary operators are introduced.
The two new constructs (which are operators, although this is only specified implicitly in the chapter)

are:
a) The application operator : A’ B (i.e. the term [ A ] applied to the term [ B ])

b) The lambda operator: Ax.A  (i.e. lambda x dot A’, where x is a variable and A a term)

Since [ A’ B ] and [ Ax.A | are syntactically correct compositions of mere operators, they are
terms and thus have a value if all the free variables in [ A ] and [ B ] have one.

What the value of terms such as [T’ L] or [ (1:: 5) ’ (2-x + 4) | (for x = 1, say) are, is, however,
not revealed until Chapter 9, but all terms do have a value when any free variable is given one!!

Until now all values of nullary operators have either been [ L |* or a value belonging to one of
the sets in the type tables of Volume 3 (e.g. B, D, X or E). When we have drawed syntax trees,
the leaves of the syntax trees were nullary operators with such values, and we have not
distinguished between these nullary operators and their values. Hence, we have claimed that e.g.
numbers are nullary operators, but in fact it is only the value of certain nullary operators that may
be numbers!

The reason is that 'numbers’ is a semantic concept (the ‘'meaning/value’ of the operator [ 2] is a
certain number), whereas ’operators’ is a syntactic concept telling us e.g. how many arguments
the operator need (nullary, unary, binary, ternary, n-ary operators) and where to put the operator
(prefix, infix, suffix, outfix, 'none’) in order to write a term.

When the term consists of more than one operator, the difference between syntax and semantics
may become more clear. Consider e.g. the expression

[21 - 249517 + 5697 — 2]

Most people will consider this as being a term (with a certain value), whereas very few will consider
it to be the number 5245552 (at least until they find the value of the term!).
When we draw the syntaz tree of the term and perform graph reductions:

+ 5245552

5697

21| | 249517

we thus see how a term composed of 3 binary operators and 4 nullary operators are reduced to a
term consisting of only one nullary operator. Now it is much more easy to find the value, since
the value of the first term equals the value of the last one. In other words: the latter term is
almost transparent in the sense that the semantics/meaning to which it refers is seen immediately
by those familiar with the base-10 number system. Hopefully, you also find the lecture notes and
the supplementary notes referential transparent instead of wondering about the syntax (i.e. the
composition of the single characters and words) in the English texts!



Consider now the expression
[fa(x) =2-x+4]

Since the expression contains the directive [ = ]° we no longer have a term, but a statement defining
the unary operator [ f5 ]°. Since [ f3 ]° is no nullary operator it does not have a value (contrary
to [ f3(x) ] for some value of [ x ]'), and thus [ f3 ]° can never be input argument to any operator
nor the output result from one.
Contrary to this

[fo=Ax.2-x+4]

is a statement defining the nullary operator [ f» ], whose value is a function which may be
passed as input value to an operator or be obtained as the output value from one.
Due to

[ Mac rule ApplyLambda : (Ax.A4)'S = (Ajx:=S8) ]

the values of [fy ' y] is the same as the values of [ f3(y) |, but the syntax trees show a difference
in syntax, since the arity of the two operators [ fo | and [ f3 ]° are distinct:

v —"

Like the previous nullary operators [ f2 ] is to be found among the leaves of the syntax tree and
has a (new type of) value, whereas none of this is true for the operator [ f3 ]°.

Hence,

[ f3]° is a unary operator, but no term(!), since it has no value.

[ f3(x)] is a term (a unary and a nullary operator). The value is the value of [ 2.x + 4 ]".

[2x + 4] is a term (two binary and three nullary operators). Dueto [ f3(x) = 2x + 4]

the value is the same as the value of [ f3(x) .

[ f2] is aterm (anullary operator). The value is the function which multiplies with 2 and adds 4.
[ Ax. 2.x+4] is a term (three binary and three nullary operators). Dueto[ fo = A x. 2-x + 4]

the value is the same as the value of [ f2 ]".

[ f27x] isaterm (abinary and two nullary operators). The value is the value of [ 2.x + 4.

As is the case with substitution, renaming of binding (and any bound) variables are also important
when applying (terms with values being) functions:

[(Ax. Ady.x)'y'2 = . duv) ' y'2 =y



