Supplementary Notes for MAC-lectures September 3-8

September 5, 2003

Type Tables
From the classical mathematics we know some classical values, e.g.

The positive integers: 1, 2, 3, etc.
In the Mac System Z* denotes the set containing all ’classical maps weakly /strongly repre-
senting’ a positive integer value (Z stands for the german ”zahlen”). Before we reach chapters
9 and 10 we cannot understand the phrase ’classical maps weakly/strongly representing’, but
it helps to know that

e The Map program actually represents all the mathematical expressions in our mathe-
matical system (e.g. the Mac System) by means of so-called maps. Hence, Map will
(and we may) interpret the expressions 1, 2, 1+1, 2-0, 3 etc. as being ’classical maps’!

e The Map program may have several (weak or strong) representations (maps) for expres-
sions with the same value, but all these maps represent that value. Hence, Map may
represent the number 2 in different ways, as well as the term 141, but these maps all
represent the value 2.

If you now are ready to accept that e.g. 1+1 is a ’classical map representing’ a positive
integer, I can tell you that this fact is expressed by [1+1 € Z*] in the Mac System.
Hence, the set Z* contains all terms being equal to one of the integers 1, 2, 3, 4 etc.

The natural numbers: (Terms equal to) 0, 1, 2, 3, etc. belong to the set N.
The negative integers: (Terms equal to) -1, -2, -3, etc. belong to the set Z~
The integers: (Terms equal to) ..., -3,-2,-1,0, 1, 2,... belong to the set Z

The decimal fractions: (Terms equal to e.g. the numbers above, but also some more — c.f.
next page) belong to the set D

The boolean values: (Terms equal to) T, F belong to the set B.
Furthermore, [T € T] and [F € F] hold.

The exception: (Terms equal to) e belong to the set X

Note that e is considered a classical value/map, contrary to the value 1 which is non-classical
and does not belong to any set! If we e.g. have to find the values of the terms

[T+5] and[L+5]
we may look at page 607 and use the type table, row 2 coloumn 3, for the first expression (saying
that an element in B plus an element in D gives an element in X, i.e. o). Since L does not belong
to any set, we cannot, however, use the type table for the second expression, but the rule below
the table is applicable.

Real Numbers and Decimal Fractions

The set of real numbers is often illustrated by a number axis, on which only the integers are
marked:

If you have an infinite sequence of increasing/decreasing real numbers of the form 1.0, 1.5, 1.75,
1.875,.. where the difference from 2 is halved in each step, it is not difficult to see that the
sequence converges to (i.e. is from a certain step arbitrary close to) a number (2), but how about
the sequences 1, 2, 3, 4,.... or -1,-2,-3,-4,... ?

The latter sequences do not converge to any real number, so therefore the set of real numbers is
often supplemented by two mon-real numbers: oo (’infinity’) and —oo (’minus infinity’). These
two numbers are respectively larger than and smaller than any real number, and now 1, 2, 3, 4,...
converges to a number (c0) and so does -1, -2, -3, -4,... (—o0). This extended number set may be
illustrated this way:

Besides the integers, what numbers are contained in the set of real numbers?

Decimal Fractions: Apart from digits and maybe a sign symbol, we use a decimal point to
obtain numbers like -0.0012045, 120.45, +1204500.000 (the latter being equal to the integer
1204500).

Rational Numbers: Denoting numbers as ratios between integers, we now have the decimal
fractions -12045/10000000, 12045/100, +1204500/1 as well as some more numbers, e.g. 1/3
=0.3333333333333......

Irrational Numbers: Although we may come arbitrarily close to any real number by using
rational numbers, there are some real numbers that are not rational. As an example 7
= 3.14159265358979323846.... is irrational, although the rational numbers 22/7, 2199/700,
219911/70000,... come closer and closer to .

Klaus might have chosen to include all these numbers (they can be represented by 'maps’) in the
Mac System, but since this course is not ’only’ about mathematics, but also computation, he chose
the (exact/classical) decimal fractions and some floating/hardware-represented decimal fractions
as the most general type of numbers in the Mac System, and included exact and floating versions
of o0 and —oo in the set D of decimal fractions!
Assume that you have a computer that computes with digits (we don’t want to look at bits), and
the registers may contain 3 decimal digits plus information about the sign (+,-) and the position
of the decimal point. That computer cannot represent a number like -0.0012045, but the digits in
120, the -, and the position of the decimal point can be stored:

Mantisse: m = -1.20 (normalised such that 1 < | m | < 10), Exponent: e = -3
Reading this ’register’ we see the floating decimal fraction corresponding to m-10°, i.e. the Mac
number

-p. 0 P120F

When the 0’s are not stored, they are denoted (. Hence, the number - 0.0 0120F reveals that
only 3 digits have been stored (the precision of the number is 3), and that it is a floating(due
to "F’)/stored representation of the exact/classical decimal fraction -0.00120 (which has infinite
precision, since it is the same as -0.0012000000000...).

Decimal Fractions and Typetables

The exact decimal fractions have no ’F’ or stroked 0’s, and they are found in the set D__, since
the subscript on D-sets denotes the precision. D consists of the classical decimal fractions and
thus +o0o are not in this set!

The exact numbers oo and —oo have infinite precision, too, since they are not stored in a register,
hence they are found in the sets DS and D>, respectively.

The exact decimal fractions and the exact co and —oo may be stored on a computer with space
for m digits or on a computer with space for (a different number) n digits. The subscripts on the
D-sets to which these floating decimal fractions belong are then changed from oo to m or n.

Hence,
[-0.00120 € D__], [- P. D P120F € D3], [- 0. P0120F € Dy],
[-oo € D], [[00@3 € D;*°] and [-00@4 € D]
since '@’ is the operator, which one may use to round a number (e.g. -00) to a floating number of
a certain precision (e.g. 3 or 4), i.e. -0.00120Q3 = - p. 0 P120F.

We may now use the type tables in volume 3 for checking whether, e.g. the sum of decimal numbers
with different finite precisons becomes a number:

- 0. P P120F + - P. P0120F = e (Type Table, p.607, 8’th row 9’th coloumn)
or whether an exact or floating version of co added to a decimal fraction gives oo (it does not!).

